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Abstract

We introduce new linear operators for surface param-
eterization. Given an initial mapping from the parametric
plane onto a surface mesh, we establish a secondary map
from the plane onto itself that mimics the initial one. The
resulting low-distortion parameterization is smooth as it
stems from solving a quasi-harmonic equation. Our param-
eterization method is robust and independent of (the quality
of) the initial map.

1. Introduction

The parameterization of surfaces is a cornerstone to var-
ious applications in computer graphics such as texture map-
ping, resampling, and simulation. Without loss of general-
ity parameterization can be regarded as establishing a bi-
jective mapping between a given surface and a parametric
domain. In the following, we consider surfaces homeomor-
phic to a disk which are mapped onto the plane.

The main concern of surface parameterization methods
is the reduction of parametric distortion as any attempt to
flatten a surface onto the plane generally induces a certain
amount of distortion. In fact, basic differential geometry
reveals that isometric or length-preserving mappings exist
only for the rare special case of surfaces having the same
local intrinsic geometry as the plane. In general, a map-
ping is locally characterized by the first fundamental form,
a 2 × 2 tensor which tells how distances (and hence an-
gles and area) measured in the parametric domain are trans-
lated to distances on the surface. Hence, all information on
the distortion is captured by this tensor.

Besides from providing a least-distorted mapping, a
good parameterization method should be efficient for pro-
cessing large surface meshes and robust, i.e., insensitive to
highly irregular input. These requirements make linear pa-
rameterization methods particularly interesting. They are
efficient as they only require the solution of a sparse lin-
ear system. They have proven to be robust as they guaran-
tee a valid solution for appropriate boundary conditions.

Furthermore, their relative simplicity and ease of imple-
mentation makes them highly attractive.

A major drawback of most existing linear methods is
the little to no control over distortion: The generally ob-
served scaling in triangle area when moving away from the
boundary is often not acceptable as a certain amount of area
preservation is crucial for many applications.

In this paper, we develop a new and general approach
to efficiently reduce the parametric distortion. In brief the
main contributions are

• An efficient, robust linear parameterization method.

• The construction of a quasi-harmonic map based on a
tensor field, which is derived from an initial mapping.

• The discretization of the linear operator.

In contrast to most linear methods mainly relying on the
Laplace equation, our work is based on the crucial observa-
tion that the general quasi-harmonic equation can account
for both, area and angle distortion. In this construction a ten-
sor field captures the mapping of each triangle and guides
flattening process. Thus reducing the parametric distortion
while maintaining smoothness of the solution. We derive
linear operators for the discretization of the problem. To
our knowledge, these operators have not been constructed
before, and quasi-harmonic maps have not been taken into
account in the parameterization literature. Both ingredients
provide a sound theoretical framework of our approach.

The variational nature of our setting guarantees the
smoothness of the parameterization. The existence and
uniqueness of a solution to the arising linear system is dis-
cussed, and guarantees on the validity of the mapping are
provided. Similarly to conformal maps, the quasi-harmonic
map is independent of the resolution and the regular-
ity of the input mesh.

2. Background

2.1. Overview of Related Work

The importance of parameterization techniques for com-
puter graphics is reflected by the significant amount of work



Figure 1. Texturing a camel head model
(11K∆) using a discrete conformal map ([19,
6]; left) and our quasi-harmonic map (right).

on the topic in the last years, see [10] for an extensive re-
cent survey. In the following, we briefly overview related
work.

Most of the research effort in this area aims at control-
ling and reducing distortion by minimizing a certain defor-
mation energy. For several approaches, the arising numeri-
cal problem is non-linear as e.g. in [5, 14, 23, 24, 29]. These
methods commonly require hierarchical solvers [15, 22]
even for moderately sized meshes and are computationally
involved in general. A quasi-Newton type optimization to
reduce parametric stretch was proposed in [28]. An exten-
sion to the shape preserving weights [8] was introduced in
[12] by using an additional anisotropic stretch term. Des-
brun et al. [6] simplify the problem to a univariate non-
linear optimization and linearly blend base parameteriza-
tions. An alternative approach [26] avoids global optimiza-
tion problems by simultaneously cutting the surface and
computing the parameterization. In this paper we consider
surfaces homeomorphic to a disk and do not allow addi-
tional cuts. Higher genus surfaces can be partitioned into
appropriate patches which are parameterized separately, see
e.g. [19].

Surface parameterization can be addressed as a linear
problem by solving the Laplace equation. This leads to the
discrete conformal maps [7, 13, 20] possibly with Dirichlet
or Neumann boundary conditions [6, 19]. An interesting ap-
proach was proposed by Lévy [18] which allows the user to
specify point constraints interactively. A method based on
Laplacian smoothing of regular grid covering the planar do-
main of the initial mapping was introduced in [25]. Most
recently, Floater introduced a convex combination mapping
based on the mean value property of harmonic functions [9]
as a superior alternative to the shape preserving method [8].

The discrete conformal maps attempt to preserve an-
gles and allow scaling, i.e., the associated first fundamental
form would be a scaled version of the identity matrix in an
ideal setting. Several of the non-linear approaches attempt
to minimize certain matrix norms ([5, 14]) or a stretch de-
fined in terms of the eigenvalues of the metric tensor ([23]).
In contrast to these, our approach takes into account and de-
rives the tensor as a whole.

2.2. Discrete Setting

A triangular surface mesh S is described as the pair
(K, S), where K is a simplicial complex represent-
ing the connectivity of vertices, edges and faces, and
S = (X1, . . . , Xn), where Xk ∈ R

3 refer to the geomet-
ric positions of the vertices.

We represent a parameterization of surface as an
isomorphic mesh U = (K, (U1, · · · , Un)), where
Uk = (uk, vk)> ∈ R

2, 1 ≤ k ≤ n, denotes posi-
tions in the (planar) parameter domain.

We define the 1-ring neighborhood of a vertex i ∈ K as
the set of adjacent vertices Ni = {j|(i, j) ∈ K} directly
connected to i by an edge. Linear parameterization schemes
can be interpreted as solving the Laplace equation. For the
mapping function g from the surface to the plane we have
the two-dimensional equation

∇2g = 0 . (1)

The driving principle behind this setup can be interpreted
as the equilibrium state of a membrane, which conforms
to solving the Laplace equation given appropriate boundary
conditions. While this topic has motivated a wide range of
research and applications in mathematics and physics (see
e.g. [3] and the references therein), its formulation in a mod-
ern discrete form goes back at least to the famous 1928 pa-
per of Courant, Friedrichs, and Lewy [4] on the discretiza-
tion of partial differential equations. (The discretization of
complex processes may date back to Bernoulli’s treatment
of the brachistochrone problem.) This was the origin of
many modern discretization methods such as finite differ-
ences and finite elements. Some of the early work on the
computation of conformal maps and the discretization of
differential operators can be consulted in [2, 27].

In our context, where the support of the Laplacian oper-
ator is restricted to the 1-ring of a vertex, the parameteriza-
tion problem reduces to solving the following equation for
all internal vertices

L(Ui) =
∑

j∈Ni

wij(Ui − Uj) = 0 . (2)

Given appropriate conditions on the boundary and on the
weights wij , j ∈ Ni, the resulting parameterization is guar-
anteed to be a one-to-one mapping, see e.g. [10]. The pa-
rameterization depends closely on the choice of weights
used for the discrete operator L.

3. Motivation

Conformal maps in the strict Riemann sense preserve an-
gle measures continuously. In a discrete setting, this prop-
erty is no longer valid as non-planar 1-rings cannot be



Figure 2. The figure compares results ob-
tained for the mannequin head using [28]
(left) with the tensorial quasi-harmonic map
(right).

mapped conformally to the plane. Furthermore, a confor-
mal map in its canonical form does not preserve measures
other than angles. As a typical observation, the distortion
grows as one moves away from the boundary – the more
complicated the geometry of the mesh, the more significant
the distortion. Linear parameterization methods establish a
discrete form of conformal maps exhibiting nice mathemat-
ical properties. However, they might not be suitable for a
wide range of practical applications due to the lack of con-
trol over area distortion. Fig. 1 illustrates this situation.

Given the scarcity of isometric maps which preserve an-
gles and areas at the same time, a good direction of investi-
gation is to establish smooth blends of both kinds – authalic
and conformal parameterizations. An elegant approach is
proposed in [6] yielding locally area preserving properties.
In [28] an alternative approach is proposed, which uses a
spring analogy to set up a weighted system of linear equa-
tions. The weights are intended to account for the distortion
measure proposed in [23], and the iterative quasi-Newton
type optimization method reduces the computational com-
plexity of the original problem to a great extent. However,
there is no guarantee of convergence to a minimum. In prac-
tice, divergence of the method is observed, and the results
may even degenerate after a number of iterations.

Our goal is to derive the general construction of a class of
maps that offer both, good area and good angle preserving
properties smoothly across the mesh. Our approach to the
problem stems from the following question: Given a map g

from the plane to a surface mesh, can we find a mapping f

from the plane onto itself that has the same properties as the
initial map (see Fig (3)). Finding such a map would yield
an optimal parameterization that mimics the original map-

ping but this time from the plane into itself. In the following
we define the required properties of such maps, and we pro-
pose a method for establishing them. In brief, the basic ap-
proach can be overviewed as follows:

1. Provide an initial map g, e.g., a discrete conformal pa-
rameterization. (Any non-degenerate setting without
overlapping boundaries would work, like, e.g., a rea-
sonable projection.)

2. For every triangle, estimate the Jacobian matrix C of
the map f from the first fundamental form of g. (Sec-
tion 4)

3. Building upon our discretization of the quasi-harmonic
equation, compute weights wij and set up a linear sys-
tem. (Sections 5 and 6)

4. Solve the arising linear system. The same boundary
conditions as in step (1) are used.

5. If required, iterate restarting from step 2.
(Note that our method stabilizes after few iterations
and would not degenerate.)

f

g

Figure 3. g maps the planar domain to the sur-
face, and f is a mapping of the plane onto it-
self.

4. Quasi-Harmonic Maps

In order to motivate the ensuing discussion, we start with
the following simple problem: Given a single triangle of a
surface mesh and a map g that carries the triangle into a cor-
responding triangle in the planar domain. Solely from the
properties of the map g, we can establish a second map f

that reproduces exactly the initial triangle on the plane from
the second triangle. Formally, the problem can be coined
as follows. Recalling basic theory of differential geometry



(see e.g. the introduction in the survey [10] and references
therein), the deformation of the initial mapping is given by

dX = JdU , (3)

where the Jacobian J is a 3x2 tensor. Taking the norm we
get

‖dX‖2 = dU>J>JdU . (4)

In this expression, we already recognize the first fundamen-
tal form I = J>J . An ideal mapping in the plane, which ex-
actly mimics the behavior of the initial mapping, would in-
duce the same distortion of lengths as this initial mapping,
i.e.,

‖dx‖2 = dU>
IdU , (5)

where x denotes a displacement in the plane. Now, we
would like to derive an expression similar to (3) – this time
in the plane – i.e.,

dx = CdU . (6)

Here, the Jacobian C of the new mapping is a 2× 2 ma-
trix which should satisfy

I = C>C . (7)

Since the first fundamental form is symmetric positive defi-
nite, the matrix C can be found as the square root of I. Note
that I can be computed from the Jacobian of the mapping.
For a concise formulation of the square root of a 2×2 matrix
we refer to [17]. This derivation of the Jacobian C is orig-
inal compared to existing parameterization methods where
emphasis is solely on the eigenvalues and the related norms.

So far, we illustrated the basic idea and considered only a
single triangle. Given a surface mesh, immediately the ques-
tion arises, whether we can compute the vertex positions of
the new mesh from the Jacobian matrices of the transforma-
tions defined over each triangle. It turns out that the prob-
lem is generally overdetermined and may not have a solu-
tion at all. This does not come as a surprise due to the fact
that isometric mappings exists only for the special case of
developable surfaces.

Excluding a direct approach to the problem, we propose
an alternative to account for the Jacobian matrix. Recalling
that harmonic maps minimize the Dirichlet energy

∫

Ω

‖∇g‖2 , (8)

our approach attempts to recover the geometry of the origi-
nal mesh by minimizing the following energy functional

∫

Ω

(C∇f) · (∇f) . (9)

The partial differential equation associated with this energy
is the following quasi-harmonic equation

div(Cgradf) = 0 . (10)

This equation and its many variants are typically used for
modeling many steady state problems in mechanics and
electromagnetism (see e.g. [30]). Say, the distribution of
vertices is given by f , the flux of the distribution f is given
by C gradf , and due to conservation law this type of prob-
lem conforms to solving the two-dimensional elliptic steady
state equation (10). And consequently this guarantees that
our solution will show the same qualitative behavior as gen-
eral elliptic problems. In particular the solution will not
show jumps but will vary smoothly.

Under mild conditions the solution to the problem exists
and is unique, see [11] (Appendix I) for a detailed analy-
sis of the convergence properties. In our case the symmetric
nature of the tensor C and given that it does not stem from
a degenerate initial parameterization (triangle collapsing to
one point) guarantees that a solution to the quasi-harmonic
equation exists and is unique.

Moreover, we note that our setup is a special case of
the Leray-Lions equation [16]. A geometric interpretation
of such maps can be found in [1].

5. Discretization

In the following we solve the variational problem asso-
ciated with the quasi-harmonic equation (10). We refer to
vertices and triangles as explained in Fig. 4 (a).

In dealing with equations of this type, it is much more
advantageous to tackle the integral form rather then the par-
tial differential equation itself. This is not fortuitous as the
Gauss divergence theorem yields a much easier expression
to handle

∫

A

div(Cgradf)dA =

∮

∂A

(Cgradf) · n dl = 0 . (11)

Hence, the integral form of the quasi-harmonic equation ob-
tained by integrating over some non-overlapping regions
reduces to a simple integration of the gradient over their
boundaries. We define the non-overlapping areas for the in-
tegration as the dual mesh defined by the centroids of the
triangles and the midpoints of the edges over every 1-ring
neighborhood (see Fig. 4 (b)). We remark that this dual has
exactly the same area as the mesh.

The gradient on a triangle {i, j, j + 1} associated with
the edge {i, j + 1} is given by

gradT (fj,j+1) =
x
⊥
i,j+1

2AT

,

where x
⊥
i,j denotes the edge vector rotated by π

2 (see Fig. 5).
Equation (11) involves only the normal to the boundary

of the ring which is just the normalized boundary edge ro-
tated by π

2 , so given an edge and its two adjacent triangles
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Figure 4. (a) Indexing of direct neighbors j

and associated triangles in the 1-ring of the
center vertex i, angles are indexed per trian-
gle j. As all derivations are local to the 1-
ring, we avoid double indices, so implicitly
Tj = {i, j, j + 1}. (b) The integration area for
the discretization of (11) is given by the dual
mesh. For the mean value coordinates the in-
tegration area is a circle.

Tj−1 = {i, j−1, j} and Tj = {i, j, j+1}, the weight asso-
ciated the edge {i, j} can be written in the following form

wij =
x
⊥
j−1,iCj−1 · x⊥

j,j−1

4Aj−1
+

x
⊥
j+1,jCj · x⊥

i,j+1

4Aj

, (12)

In the discrete setting, the tensor field C is defined piece-

i

j−1

j

j+1 jT

Figure 5. The two triangles adjacent to
edge (i, j). The outward vectors x⊥ corre-
spond to respective edges rotated by π

2 .

wise per triangle and can be computed in a straightforward
manner using simple algebra. From equation (12). It turns
out that when the tensors Cj−1 and Cj associated respec-
tively with triangles Tj and Tj−1 are both equal to the iden-
tity, this expression simplifies to the well-known cotangent
weights, which are widely used for the computation of the
discrete Laplacian operator. We note that in this special case
the initial mapping is isometric, and hence the solution will
be identical to the initial map.

Figure 6. The tensorial discrete quasi-
harmonic map of the venus model is visual-
ized by applying a checker board texture.

6. Mean Value Coordinates extension

A sufficient condition for guaranteeing the validity of
the approach is the positivity of the weights in equation
(12), formally expressed as the discrete maximum princi-
ple. For solving the Laplace equation based on the cotan-
gent weights, this means that the Delaunay criterion should
hold for all internal vertices while all angles facing bound-
ary edges should be acute. Given appropriate boundary con-
ditions this condition is sufficient to guarantee the construc-
tion of a valid mapping. However, in general it is not nec-
essary, and in many instances the arising system may have
a valid solution even in the presence of negative weights.
For the quasi-harmonic setting described above, the Delau-
nay condition is no longer sufficient. In fact, the validity is
guaranteed only if all angles are acute.

One way to satisfy this condition (or at least the Delau-
nay criterion) is, for instance, to apply Rivara’s edge bi-
section algorithm [21], which is guaranteed to keep angles
away from 0 and π.

Another way is the use of alternative weights. A promis-
ing class of weights are Floater’s mean value coordi-
nates [9], as they guarantee positivity regardless of the
interior angles of the triangle mesh.

For the sake of completeness, we will show how to de-
rive a new class of discrete quasi-harmonic maps that are
based on the mean value coordinates. Here, we note that
for a general tensor C, rather complicated trigonometric ex-
pressions have to be integrated over circular regions result-
ing in a comparatively complicated formula for the weights.
For ease of explanation and for the sake of a concise final
expression, we restrict ourselves in this section to the case
where C is a scaled unit tensor, formally C = κI . (In fact,
this is the special case of a scalar version of the approach,
for example, κ can be taken as the per triangle ratio of the
initial map and the original mesh.) Note that all our numer-
ical examples for the mean value coordinates are computed
with general tensors, and we refer to Appendix A for the
general formula.



Figure 7. Self-correction and convergence for a regular half-sphere model. An ill-shaped initial map
(left) is chosen. The series on the right shows the quasi-harmonic maps obtained from the 1st to 5th
iteration.

We proceed similarly to [9], however, we discretize the
quasi-harmonic equation again starting from the divergence
theorem. For this purpose, we first compute the gradient:
Given a triangle Tj = {i, j, j + 1} with vertex positions ui,
uj , uj+1 and a function f defined over this triangle, the fol-
lowing relations hold for a point u = (u, v) in the triangle.
Let γj denote the angle at ui. In local polar coordinates

u− ui = r (cos γ, sin γ)> , (13)

and for f

f(u) − f(ui) = gradf · (u − ui) ,

where the gradient is given by

gradf = HT (u− ui) .

Here, the value of HT can be found by applying a simple
linear interpolation over the triangle T , we get

HT =
sin(γj − γ)

r rj sin γj

(f(uj) − f(ui)) +

sin(γ)

r rj+1 sin γj

(f(uj+1) − f(ui)) .

Where rj and rj+1 denote the length of ui − uj and
ui − uj+1 respectively. Now substituting this expression
in (11), and keeping in mind that the gradient and the out-
ward normal to the circle are collinear, we obtain the fol-
lowing expression

∫ 2π

0

κ gradf · ndγ =
∑

j

∫ γj

0

κjHTj
r dγ , (14)

and expanding the right hand side we obtain

∑

κj

∫ γj

0

sin(γj − γ)

rj sin γj

(f(uj) − f(ui)) +

sin(γ)

rj sin γj

(f(uj+1) − f(ui)) .

(Notice that the r term was simplified.) After integration
and reassembly of terms, we get the following

X

j

»

1 − cos γj

sin γj

κj +
1 − cos γj+1

sin γj+1

κj+1

–

(f(uj) − f(u))

rj

= 0 .

(15)
If κ is constant over the mesh, we can recognize the mean

value coordinates in the above expression. We note that for
this derivation, the dual mesh can be used as circles around
the vertices (see Fig. 4), and since the arising equations are
independent of the radii of the circles, we conjecture a pos-
sible connection to circle packing. Consequently, the inte-
gration area is smaller than the total area of the mesh. This
explains the loss of conformality accumulated by this dis-
cretization method, which is here traded for robustness.

7. Discussion

Our approach explicitly accounts for directions as well as
distortion. This is due to the newly introduced planar Jaco-
bian that mimics the reference Jacobian. In fact, this means
that we can start from any initial parameterization, possi-
bly suffering from high distortion, as the use of the geo-
metric tensor defined over the mesh implicitly yields a self-
correcting scheme. This is illustrated by a small example
in Fig. 7. For real models, we can even start from a pro-
jection (eventually forcing a convex boundary) onto a least-
squares plane – ignoring foldovers. All the examples were
computed in this manner, showing the robustness to high-
distortion for complex data.

Successive solutions of weighted linear systems have
been used for surface parameterization in [28]. According
to the authors, their method diverges towards larger distor-
tion after few iterations. We observe that our method does
not degenerate while iterating, rather it stabilizes, and the
result does not change after few (3-5 in the examples) iter-
ations. We believe that this difference arises from the fact
that although the spring analogy gives a nice interpretation
of differential equations, it is not always intuitive to derive
accurate discretizations, like for the discrete conformal pa-
rameterization, solely based on this analogy.



It is worthwhile to note that taking powers of the tensor
C extends the range of possible mappings.

8. Results

Fig. 11 compares the distortion of angles and triangle ar-
eas for discrete conformal maps, stretch minimization using
[28] and the quasi-harmonic map for the mannequin head
model (Fig. 2). In the graphs, the distortion on the horizontal
axis is plotted over the sequence of mesh elements, show-
ing a peak for every triangle. The optimal ratio is 1. The
figure shows that the quasi-harmonic map preserves confor-
mality to a great extent while the area distortion is effec-
tively reduced.

We applied our parameterization method to a variety of
reasonably complex, non-trivial geometric models, for the
planar setting. The Figures 1,2, 6, and 8-10 show exam-
ples, where the map is visualized either by mapping a regu-
lar checker texture, or the planar image is rendered with the
original shading. The solution of the linear system within
one iteration is in the order of seconds as it is typical for
solving this class of problems on current hardware. Three
to five iterations have been used as described above.

9. Conclusion

We presented a new low-distortion surface mesh pa-
rameterization method based on solving a discrete quasi-
harmonic equation. For developing the method, we intro-
duce new linear operators, which capture the metric prop-
erties of the surface. The variational nature of the approach
ensures the smoothness of the resulting map. Our param-
eterization method is robust and insensitive to possible ill
configurations of the initial map. In fact, for most cases the
methods converges from a simple projection on the least
squares plane even for complex models.
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A. Mean Value Coordinates
In Section 6 we simplified the discretization of the quasi-

harmonic equation (10) effectively to the scalar case. Now
given a general (symmetric) tensor C =

[

a c
c b

]

, the integral
(14) can be written in the following form again using local
polar coordinates
Z

2π

0

C gradf ·ndγ =
X

j

Z

γj

0

rHTj
C

„

cos(γ)
sin(γ)

«

·

„

cos(γ)
sin(γ)

«

dγ ,

and we obtain the weights associated with each edge j as

wj =
1

3rj

[

(aj + 2bj + 2cj sin γj) tan
γj

2

+ (aj − bj) sin γj

]

+
1

3rj

[

(aj+1 + 2bj+1) tan
γj

2

+ 2cj+1 sin γ2
j+1

+ (aj+1 − bj+1) sin γj+1 cos γj+1

]

,

where again indices denote edges and associated triangles.
It is easy to see that the above expression simplifies to

(15) if a = b and c = 0, and consequently if in this case a

is constant over the mesh, we obtain Floater’s mean value
coordinates.

Figure 8. Mapping a face model (28K∆);
from top: discrete conformal map [19,
6], stretch minimization using [28], quasi-
harmonic map.

Figure 9. Quasi-harmonic map of the tweety
(97K∆) model with a hole (red boundary) cut
in its bottom.



Figure 10. Maps of a sculpture (89K∆). Left: Mean value coordinates. Right: Quasi-harmonic map.
The mesh was obtained from a range scan of the wooden sculpture Freezing Old Woman (Frierende
Alte, 1937) by the German expressionist sculptor Ernst Barlach (1870-1938).
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Figure 11. Distortion of angles and triangle areas for the mannequin head model. Red: discrete con-
formal map ([19, 6]). Green: stretch minimization using [28], blue: quasi-harmonic map.
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