Abstract: An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number \(k \) such that there is an acyclic edge coloring using \(k \) colors and is denoted by \(a'(G) \). It was conjectured by Alon, Sudakov and Zaks (and earlier by Fiamcik) that \(a'(G) \leq \Delta + 2 \), where \(\Delta = \Delta(G) \) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require \(\Delta + 2 \) colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all \(d \)-regular graphs with \(2n \) vertices and \(d > n \), requires at least \(d + 2 \) colors. We also show that \(a'(K_{n,n}) \geq n + 2 \), when \(n \) is odd using a more non-trivial argument. (Here \(K_{n,n} \) denotes the complete bipartite graph with \(n \) vertices on each side.) This lower bound for \(K_{n,n} \) can be shown to be tight for some families of complete bipartite graphs and for small values
of \(n \). We also infer that for every \(d, n \) such that \(d \geq 5 \), \(n \geq 2d + 3 \) and \(dn \) even, there exist \(d \)-regular graphs which require at least \(d + 2 \)-colors to be acyclically edge colored. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226–230, 2010

Keywords: acyclic edge coloring; acyclic edge chromatic index; matching; perfect 1-factorization; complete bipartite graphs

All graphs considered in this article are finite and simple. A proper edge coloring of \(G = (V, E) \) is a map \(c: E \to C \) (where \(C \) is the set of available colors) with \(c(e) \neq c(f) \) for any adjacent edges \(e, f \). The minimum number of colors needed to properly color the edges of \(G \) is called the chromatic index of \(G \) and is denoted by \(\chi'(G) \). A proper edge coloring \(c \) is called acyclic if there are no bichromatic cycles in the graph. In other words, an edge coloring is acyclic if the union of any two color classes induces a set of paths (i.e., linear forest) in \(G \). The acyclic edge chromatic number (also called acyclic chromatic index), denoted by \(a'(G) \), is the minimum number of colors required to acyclically edge color \(G \). The concept of acyclic coloring of a graph was introduced by Grünbaum [6]. Let \(\Delta = \Delta(G) \) denote the maximum degree of a vertex in graph \(G \). By Vizing’s theorem, we have \(\Delta \leq \chi'(G) \leq \Delta + 1 \) (see [4] for proof). Since any acyclic edge coloring is also proper, we have \(a'(G) \geq \chi'(G) \geq \Delta \).

It has been conjectured by Alon et al. [2] that \(a'(G) \leq \Delta + 2 \) for any \(G \). We were informed by Alon that the same conjecture was raised earlier by Fiamcik [5]. Using probabilistic arguments Alon et al. [1] proved that \(a'(G) \leq 60\Delta \). The best known result up to now for arbitrary graph is by Molloy and Reed [7] who showed that \(a'(G) \leq 16\Delta \).

The complete graph on \(n \) vertices is denoted by \(K_n \) and the complete bipartite graph with \(n \) vertices on each side is denoted by \(K_{n,n} \). We denote the sides of the bi-partition by \(A \) and \(B \). Thus \(V(K_{n,n}) = A \cup B \).

Our Result. Alon et al. [2] suggested a possibility that complete graphs of even order are the only regular graphs which require \(\Delta + 2 \) colors to be acyclically edge colored. Nešetřil and Wormald [8] supported the statement by showing that the acyclic edge chromatic number of a random \(d \)-regular graph is asymptotically almost surely equal to \(d + 1 \) (when \(d \geq 2 \)). In this article, we show that this is not true in general. More specifically we prove the following Theorems:

Theorem 1. Let \(G \) be a \(d \)-regular graph with \(2n \) vertices and \(d > n \), then \(a'(G) \geq \Delta + 2 = \Delta(G) + 2 \).

Theorem 2. For any \(d \) and \(n \) such that \(dn \) is even and \(d \geq 5 \), \(n \geq 2d + 3 \), there exists a connected \(d \)-regular graphs that requires \(d + 2 \) colors to be acyclically edge colored.

Theorem 3. \(a'(K_{n,n}) \geq n + 2 = \Delta + 2 \), when \(n \) is odd.

Remarks.

1. It is interesting to compare the statement of Theorem 1 to the result of [8], namely that almost all \(d \)-regular graphs for a fixed \(d \), require only \(d + 1 \) colors to be
acyclically edge colored. From the introduction of [8], it appears that the authors expect their result for random \(d\)-regular graphs would extend to all \(d\)-regular graphs except for \(K_n\), \(n\) even. From Theorems 1 and 2 it is clear that this is not true: There exists a large number of \(d\)-regular graphs which require \(d+2\) colors to be acyclically edge colored, even when \(d\) is fixed.

2. The complete bipartite graph, \(K_{n+2,n+2}\) is said to have a perfect 1-factorization if the edges of \(K_{n+2,n+2}\) can be decomposed into \(n+2\) disjoint perfect matchings such that the union of any two perfect matchings forms a hamiltonian cycle. It is obvious from Lemma 1 that \(K_{n+2,n+2}\) does not have perfect 1-factorization when \(n\) is even. When \(n\) is odd, some families have been proved to have perfect 1-factorization (see [3] for further details). It is easy to see that if \(K_{n+2,n+2}\) has a perfect 1-factorization then \(K_{n+2,n+1}\) and therefore \(K_{n+1,n+1}\) has a acyclic edge coloring using \(n+2\) colors. Therefore the statement of Theorem 3 cannot be extended to the case when \(n\) is even in general.

3. Clearly if \(K_{n+2,n+2}\) has a perfect 1-factorization, then \(a'(K_{n,n})=n+2\). It is known that (see [3]), if \(n+2\in \{p,2p-1,p^2\}\), where \(p\) is an odd prime or when \(n+2<50\) and odd, then \(K_{n+2,n+2}\) has a perfect 1-factorization. Thus the lower bound in Theorem 3 is tight for the above-mentioned values of \(n+2\).

Proof of Theorem 1. Observe that two different color classes cannot have \(n\) edges each, since that will lead to a bichromatic cycle. Therefore at most one color class can have \(n\) edges while all other color classes can have at most \(n-1\) edges. Thus the number of edges in the union of \(\Delta(G)+1=d+1\) color classes is at most \(n+d(n-1)<dn\), when \(d>n\). (Note that \(dn\) is the total number of edges in \(G\).) Thus \(G\) needs at least one more color. Thus \(a'(G)\geq d+2=\Delta(G)+2\). ■

Remark. It is clear from the proof that if \(n+d(n-1)+x<brdn\) then even after removing \(x\) edges from the given graph, the resulting graph still would require \(d+2\) colors to be acyclically edge colored.

Proof of Theorem 2. If \(d\) is odd, let \(G'=K_{d+1}\). Else if \(d\) is even let \(G'\) be the complement of a perfect matching on \(d+2\) vertices. Let \(H\) be any \(d\)-regular graph on \(N=n-n'\) vertices. Now remove an edge \((a,a')\) from \(G'\) and an edge \((b,b')\) from \(H\). Now connect \(a\) to \(b\) and \(a'\) to \(b'\) to create a \(d\)-regular graph \(G\). Clearly \(G\) requires \(d+2\) colors to be acyclically edge colored since otherwise it would mean that \(G'=\{(a,a')\}\) is \(d+1\) colorable, a contradiction in view of the Remark following Theorem 1, for \(d\geq 5\). ■

Complete bipartite graphs offer an interesting case since they have \(d=n\). Observe that the above counting argument fails. We deal with this case in the next section.

COMPLETE BIPARTITE GRAPHS

Lemma 1. If \(n\) is even, then \(K_{n,n}\) does not contain three disjoint perfect matchings \(M_1, M_2, M_3\) such that \(M_i\cup M_j\) forms a hamiltonian cycle for \(i,j\in \{1,2,3\}\) and \(i\neq j\).
Proof. Observe that a perfect matching of $K_{n,n}$ corresponds to a permutation of \{1,2,\ldots,n\}. Let the perfect matching M_i corresponds to permutation π_i. Without loss of generality, we can assume that π_1 is the identity permutation by renumbering the vertices of one side of $K_{n,n}$.

Suppose $K_{n,n}$ contains three perfect matchings M_1, M_2, M_3 such that $M_i \cup M_j$ forms a hamiltonian cycle for $i,j \in \{1,2,3\}$ and $i \neq j$.

Now we study the permutation $\pi_i^{-1} \pi_j$. Since $M_i \cup M_j$ induces a hamiltonian cycle in $K_{n,n}$, it is easy to see that the smallest $t \geq 1$ such that $(\pi_i^{-1} \pi_j)^t(1) = 1$ equals n.

It follows that, in the cycle structure of $\pi_i^{-1} \pi_j$, there exists exactly one cycle and this cycle is of length n. The sign of a permutation is defined as: \(\text{sign}(\pi) = (-1)^k\), where k is the number of even cycles in the cycle structure of the permutation π. Recalling that n is even, we have the following claim:

\textbf{Claim 1.} \(\text{sign}(\pi_i^{-1} \pi_j) = -1\) for $i,j \in \{1,2,3\}$ and $i \neq j$.

Now with respect to $\pi_i^{-1} \pi_j$, taking $\pi_i = \pi_1$ (the identity permutation) and $\pi_j = \pi_2$ (or π_3), we infer that $\text{sign}(\pi_2) = -1$ and $\text{sign}(\pi_3) = -1$. Now $\text{sign}(\pi_2^{-1} \pi_3) = \text{sign}(\pi_2^{-1}) \text{sign}(\pi_3) = (-1)(-1) = 1$, a contradiction in view of Claim 1. \(\blacksquare\)

\textbf{Proof of Theorem 3.} Since $K_{n,n}$ is a regular graph, $\Delta(K_{n,n}) \geq \Delta + 1 = n + 1$.

Suppose $n+1$ colors are sufficient. This can be achieved only in the following way:

One color class contains n edges and the remaining color classes contain $n - 1$ edges each. Let α be the color class that has n edges. Thus color α is present at every vertex on each side A and B. Any other color is missing at exactly one vertex on each side.

\textbf{Observation 1.} Let $\theta \neq \alpha$ be a color class. The subgraph induced by color classes θ and α contains $2n - 1$ edges and since there are no bichromatic cycles, the subgraph induced is a hamiltonian path. We call this an (α, θ) hamiltonian path.

\textbf{Observation 2.} Let θ_1 and θ_2 be color classes with $n - 1$ edges each. The subgraph induced by color classes θ_1 and θ_2 contains $2n - 2$ edges. Since there are no bichromatic cycles, the subgraph induced consists of exactly two paths.

Note that there is a unique color missing at each vertex on each side of $K_{n,n}$. Let $m(u)$ be the color missing at vertex u. For $a_1 \in A$ and $b_1 \in B$, let $m(a_1) = m(b_1) = \beta$. Let the color of the edge $(a_1, b_1) = \gamma$. Clearly $\gamma \neq \alpha$ since otherwise there cannot be an (α, β) hamiltonian path, a contradiction to \textbf{Observation 1}. For $a_2 \in A$ and $b_2 \in B$, let $m(a_2) = m(b_2) = \gamma$. It is clear that $a_1 \neq a_2$ and $b_1 \neq b_2$. Consider the subgraph induced by the colors β and γ. In view of \textbf{Observation 2} it consists of exactly two paths. One of them is the single edge (a_1, b_1). The other path has length $2n - 3$ and has a_2 and b_2 as end points.

Now we construct a $K_{n+1,n+1}$ from the above $K_{n,n}$ by adding a new vertex, a_{n+1}, to side A and a new vertex, b_{n+1}, to side B. Now for $u \in B$ color each edge (a_{n+1}, u) by the color $m(u)$ and for $v \in A$ color each edge (b_{n+1}, v) by the color $m(v)$. Assign the color α to the edge (a_{n+1}, b_{n+1}). Clearly, the coloring thus obtained is a proper coloring.

\textit{Journal of Graph Theory} DOI 10.1002/jgt
Now we know that there existed an \((x, \beta)\) Hamiltonian path in \(K_{n,n}\) with \(a_1\) and \(b_1\) as end points. Recalling that \(m(a_1) = m(b_1) = \beta\), we have \(\text{color}(a_{n+1}, b_1) = \beta\). It is easy to see that in \(K_{n+1,n+1}\), this path along with the edges
\((a_1, b_{n+1}), (b_{n+1}, a_{n+1})\) and \((a_{n+1}, b_1)\) forms an \((x, \beta)\) Hamiltonian cycle. In a similar way, for \((x, \gamma)\) Hamiltonian path that existed in \(K_{n,n}\), we can see that in \(K_{n+1,n+1}\), we have a corresponding \((x, \gamma)\) Hamiltonian cycle.

Recall that there was a \((\beta, \gamma)\) bichromatic path starting from \(a_2\) and ending at \(b_2\) in \(K_{n,n}\). In the \(K_{n+1,n+1}\) we created, we have \(c(a_2, a_{n+1}) = \gamma, c(a_1, b_{n+1}) = \beta, c(a_{n+1}, b_1) = \beta\) and \(c(a_{n+1}, b_2) = \gamma\). Thus the above \((\beta, \gamma)\) bichromatic path in \(K_{n,n}\) along with the edges \((a_2, b_{n+1}), (b_{n+1}, a_1), (a_1, b_1), (b_1, a_{n+1}), (a_{n+1}, b_2)\) in that order forms a \((\beta, \gamma)\) bichromatic Hamiltonian cycle. Thus, we have 3 perfect matchings induced by the color classes \(x, \beta\) and \(\gamma\) whose pairwise union gives rise to Hamiltonian cycles in \(K_{n+1,n+1}\), a contradiction to Lemma 1 since \(n+1\) is even.

REFERENCES

[8] J. Něsetřil and N. C. Wormald, The acyclic edge chromatic number of a random \(d\)-regular graph is \(d+1\), J Graph Theory 49 (2005), 69–74.