Intent Classification of Voice Queries on Mobile Devices

Subhabrata Mukherjee
IBM India Research Lab
subhabmu@in.ibm.com

Ashish Verma
IBM India Research Lab
vashish@in.ibm.com

Kenneth W. Church
IBM T.J. Watson Research Center
kwchurch@us.ibm.com

ABSTRACT
Mobile query classification faces the usual challenges of encountering short and noisy queries as in web search. However, the task of mobile query classification is made difficult by the presence of more interactive and personalized queries like map, command and control, dialogue, joke etc. Voice queries are made more difficult than typed queries due to the errors introduced by the automatic speech recognizer. This is the first paper, to the best of our knowledge, to bring the complexities of voice search and intent classification together. In this paper, we propose some novel features for intent classification, like the url’s of the search engine results for the given query. We also show the effectiveness of other features derived from the part-of-speech information of the query and search engine results, in proposing a multi-stage classifier for intent classification. We evaluate the classifier using tagged data, collected from a voice search android application, where we achieve an average of 22% f-score improvement per category, over the commonly used bag-of-words baseline.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Intent Classification, Mobile Search

1. INTRODUCTION
Mobile queries have been moving away from traditional web search queries, and becoming a lot more personalized and interactive with the increased usage of smartphones, intelligent agents like Siri, Google Voice and navigational assistants like GPS. This has led to new query types requiring local information (where is the closest restaurant), command-and-control (open facebook), dialogue (how are you?), joke (will you marry me?) etc. The usage of an automatic speech recognizer introduces errors in the text transcript due to incomplete queries and background noise. Coupled with these issues are the standard challenges of short query classification with a lot of ambiguity due to lack of context. A particular challenging aspect of intent classification is to come up with a single appropriate category for a query. The query find me the nearest restaurant can be map, command-and-control or a restaurant query with different probabilities. To resolve this confusion we propose a multi-stage classifier where the first stage predicts the top K categories for a given query. The second stage combines the first stage prediction with some additional features using regression to predict the most appropriate query category.

Web query classification accuracy is found to be boosted with the usage of a web search engine that helps in query expansion [1]. However, the features commonly used for web query expansion, like the contents or meta-data of a web page, are less preferable for mobile queries to keep the online data requirement low for a faster response to keep up with the inter-activeness of mobile query applications. We propose a novel method to use search engine results (only url’s) for intent classification of queries.

In this work, we show that the part-of-speech tag of the query helps in certain categories. For example, command-and-control queries are more likely to start with verbs (call mom) than knowledge queries (what is the capital of India) which are more likely to start with the POS categories like WP, WRB etc.

In addition to the before mentioned features, we used other derived features like url ranking, query-url overlap, sequence of POS tags etc. and propose a multi-stage classifier for effective query categorization. Although query length statistics are similar to earlier studies [2][3], the proportion of music and navigational queries is found to increase a lot in our data (~ 8-10%) with similar decrease in proportion of news and sports queries. Joke, dialogue, asr_error, universal_acceptor, endpoint and command-and-control query categories are newly introduced in our work.

2. Query Intent Classification
An automatic speech recognizer is used to obtain the text transcript of voice queries over the mobile. The resultant text is fed into the multi-stage classifier. We have classified the voice queries into thirty broad categories. Table 1 shows the query categories along with the impressions per category. An impression of a query denotes the number of times the query was repeated.

Table 1. Query Categories with Percentage of Impressions

<table>
<thead>
<tr>
<th>Category</th>
<th>Impressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>offer_suggestions, stock_prices, book, calendar, math, tv, news, request_for_documentation, math, news, joke, eventsearch, non-english, date_time, image_search, food, asr_error, product</td>
<td>< 1 %</td>
</tr>
<tr>
<td>sports, restaurant, knowledge, endpoint, weather</td>
<td>2-3 %</td>
</tr>
<tr>
<td>dialogue, movies, music</td>
<td>3-4 %</td>
</tr>
<tr>
<td>universal_acceptor</td>
<td>7 %</td>
</tr>
<tr>
<td>map, command-and-control</td>
<td>11-12 %</td>
</tr>
<tr>
<td>navigational, websearch</td>
<td>22-24 %</td>
</tr>
</tbody>
</table>

Copyright is held by the author/owner(s).
ACM 978-1-4503-2038-2/13/05.
classifier using bag-of-words (which forms the vocab), part-of-speech tag information and domain words of the query as features. The domain words of a query are obtained by passing the query through a web search engine and extracting the domains from the url’s of top ranked retrieved pages. For example, given the query the avengers, the search engine retrieves the domain-words imdb marvel en.wikipedia youtube imd tv trailers.apple yahoo marvel.

Let \(Q = \{ q_i \} \) be a query with the part-of-speech tagset \(T = \{ t_i \} \), where \(t_i \) is the POS tag of \(q_i \). Let \(D \) be the set of search engine urll’s for \(Q \), where \(\{ d_j \} \) are domain-words. The feature vector of \(Q \) is formed by \(F = \{ Q, T, D \} \). Probability of \(F \) belonging to class \(C \) is given by, \(P(C|F)=\arg \max \Pi_i P(q_i|t_i,C) P(t_i|\epsilon,C) P(\epsilon|d_j,C) P(d_j|C) \). Here, certain independence assumptions have been made. A word is taken to be dependant on only its POS tag, and the POS tag of a word depends on the POS tag of the previous word. The domain-words are taken to be dependant on only the class, to deal with the sparsity of the feature space. The top \(K \) ranked classes are taken along with some additional features (Table 2) which are used in a logistic regression classifier in stage two of classification.

![Figure 1. F-Score of Intent Classification Models](image1.png)

Figure 1. F-Score of Intent Classification Models

classifier using bag-of-words (which forms the vocab), part-of-speech tag information and domain words of the query as features. The domain words of a query are obtained by passing the query through a web search engine and extracting the domains from the url’s of top ranked retrieved pages. For example, given the query the avengers, the search engine retrieves the domain-words imdb marvel en.wikipedia youtube imd tv trailers.apple yahoo marvel.

Let \(Q = \{ q_i \} \) be a query with the part-of-speech tagset \(T = \{ t_i \} \), where \(t_i \) is the POS tag of \(q_i \). Let \(D \) be the set of search engine urll’s for \(Q \), where \(\{ d_j \} \) are domain-words. The feature vector of \(Q \) is formed by \(F = \{ Q, T, D \} \). Probability of \(F \) belonging to class \(C \) is given by, \(P(C|F)=\arg \max \Pi_i P(q_i|t_i,C) P(t_i|\epsilon,C) P(\epsilon|d_j,C) P(d_j|C) \). Here, certain independence assumptions have been made. A word is taken to be dependant on only its POS tag, and the POS tag of a word depends on the POS tag of the previous word. The domain-words are taken to be dependant on only the class, to deal with the sparsity of the feature space. The top \(K \) ranked classes are taken along with some additional features (Table 2) which are used in a logistic regression classifier in stage two of classification.

![Figure 2. Multi-Stage Classifier for Intent Classification](image2.png)

Table 2. Snapshot of Features used in Regression Model

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Example Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music Indicators</td>
<td>Presence of the substrings music, song, lyrics, pandora in the query or domain words</td>
</tr>
<tr>
<td>Map Indicators</td>
<td>Presence of the substrings find, close, direction, near, where in the query</td>
</tr>
<tr>
<td>Movie Indicators</td>
<td>Presence of IMDB as the topmost domain word</td>
</tr>
<tr>
<td>Command-and-Control Indicators</td>
<td>Query starting with a Verb</td>
</tr>
<tr>
<td>Websearch Indicators</td>
<td>Presence of Wikipedia in the topmost two domain words</td>
</tr>
<tr>
<td>Knowledge Indicators</td>
<td>Presence of ask, answer in the query or domain words; presence of start POS tags as WRB and WP</td>
</tr>
<tr>
<td>Weather Indicators</td>
<td>Presence of the substrings weather, rain, forecast in the query or domain words</td>
</tr>
<tr>
<td>Sport Indicators</td>
<td>Presence of sport, goal, nba, espn, play in query or domain words; overlap with a seed list of Sport terms</td>
</tr>
<tr>
<td>Restaurant Indicators</td>
<td>Presence of the substrings restaurant, food, yelp, eat in query or domain words</td>
</tr>
<tr>
<td>Endpoint or Universal Accepter Indicators</td>
<td>Query ending with POS tags VBD, VB, JJ, IN, TO, RP, DT, JJ, LL, T, Q, C, N, DT, DT, query Length</td>
</tr>
</tbody>
</table>

The features in Table 2 involve substring matching and domain-word ranking and overlap with query which is not used in stage one of the classifier. The features for each class are designed to resolve the confusion between it and the classes it is frequently confused with. During training, the regression classifier assigns positive weights to the features that support the class and negative weights to the features of the conflicting classes. The substrings in Table 2 are chosen as the ones having maximum information gain from a heldout training data. Let \(P_c(Q) \) be the probability of query \(Q \) belonging to class \(C \), as assigned by the regression classifier. Let \(\theta_i \) be the threshold for class \(C \), which is learnt from a split of the training data. The final class of the query is given by,

\[
C^* = \arg \max_i \frac{P_c(Q|\theta_i) \cdot \Pi_i P(q_i|t_i,C) P(t_i|\epsilon,C) P(\epsilon|d_j,C) P(d_j|C)}{\theta_i}
\]

3. **Experimentation**

52,282 unique queries, having a total of 1,04,950 impressions, are collected from an android voice search application and manually tagged, of which 11,675 queries are frequent ones (average impression per query > 20). The average number of words per query is 2.3. The average word error rate (WER) of the ASR engine is 20%. Stanford POS-tagger [4] and Yahoo BOSS [5] search engine are used. Logistic regression classifier is trained with impressions, in the second level of classification. The data is split in the ratio 30-30-20-20 to train the Naive Bayes, Regression Model, obtain threshold for each class (to maximize f-score) and the last split is used for testing the multi-stage classifier. Figure 1 shows the performance of the classifier using features like vocab, part-of-speech information, Yahoo BOSS domain words, and derived features for regression. The categories shown above have per-category impression > 1% of the total impressions. The figure depicts the usefulness of domain words as very powerful features for classification by incorporating external knowledge in the classifier. The POS information proves beneficial in most cases which detects the query pattern (especially start and end tags). The final regression classifier with all features is the best one.

4. **Conclusions**

In this work we have shown the usefulness of domain words, part-of-speech information and other derived features for intent classification of voice queries over mobile. We have evaluated the proposed approach against manually tagged data and achieved significant improvements over the baseline. External knowledge incorporated by the domain words and the part-of-speech pattern for certain query classes prove effective in distinguishing between close query categories, to predict the most appropriate one.

5. **References**