Domain Cartridge: Unsupervised Framework for Shallow Domain Ontology Construction from Corpus

Subhabrata Mukherjee
Jitendra Ajmera, Sachindra Joshi

Max Planck Institute for Informatics
IBM India Research Lab

CIKM 2014

November 17, 2014
Motivation: Domain Term Discovery

Usefulness for Parsing. Consider the examples:

- “use sprint zone”
 - Parse w/o domain knowledge — use/noun sprint/verb zone/noun
 - Parse with domain knowledge — use/verb {sprint zone}/noun

- “transfer files via usb cable”

Parser generates noisy or incomplete parse without the domain knowledge

- ‘sprint’ and files’ are not verbs
- “sprint zone, usb cable” are multi-word concepts
Motivation: Domain Term Discovery

Usefulness for Parsing. Consider the examples:

- “use sprint zone”
 - Parse w/o domain knowledge — use/noun sprint/verb zone/noun
 - Parse with domain knowledge — use/verb {sprint zone}/noun

- “transfer files via usb cable”

Parser generates noisy or incomplete parse without the domain knowledge

- ‘sprint’ and files’ are not verbs
- “sprint zone, usb cable” are multi-word concepts
Motivation: Domain Term Discovery

Usefulness for Parsing. Consider the examples:

- “use sprint zone”
 - Parse w/o domain knowledge — use/noun sprint/verb zone/noun
 - Parse with domain knowledge — use/verb {sprint zone}/noun

- “transfer files via usb cable”

Parser generates noisy or incomplete parse without the domain knowledge

- ‘sprint’ and files’ are not verbs
- “sprint zone, usb cable” are multi-word concepts
Motivation: Domain Relation Discovery

- Interactive dialogue systems
 - For user query “battery of my device depletes fast”, the knowledge ‘battery’ is a Feature-Of ‘device’ enables system to clarify about Type-Of device

- Query expansion
 - E.g. Consider Synonyms along with original query, ‘battery’ is a Feature-Of ‘phone’ as well as ‘tablet’ ‘device’

- Query re-formulation
 - For user query “screen freezes E5150”, the knowledge ‘E5150’ is a Type-Of ‘Error’ results in query re-formulation “screen freezes error E5150"
Motivation: Domain Relation Discovery

- Interactive dialogue systems
 - For user query “battery of my device depletes fast”, the knowledge ‘battery’ is a Feature-Of ‘device’ enables system to clarify about Type-Of device

- Query expansion
 - E.g. Consider Synonyms along with original query, ‘battery’ is a Feature-Of ‘phone’ as well as ‘tablet’ ‘device’

- Query re-formulation
 - For user query “screen freezes E5150”, the knowledge ‘E5150’ is a Type-Of ‘Error’ results in query re-formulation “screen freezes error E5150"
Motivation: Domain Relation Discovery

- Interactive dialogue systems
 - For user query “battery of my device depletes fast”, the knowledge ‘battery’ is a Feature-Of ‘device’ enables system to clarify about Type-Of device

- Query expansion
 - E.g. Consider Synonyms along with original query, ‘battery’ is a Feature-Of ‘phone’ as well as ‘tablet’ ‘device’

- Query re-formulation
 - For user query “screen freezes E5150”, the knowledge ‘E5150’ is a Type-Of ‘Error’ results in query re-formulation “screen freezes error E5150"
Unsupervised Framework

- Typically for a domain, a lot of knowledge articles, manuals, tutorials etc. are available in a variety of formats.

- Most of these documents have less hyperlink and table (info-box as in Wikipedia) information, or extraction is difficult (E.g. pdf).

- Challenge is to learn a shallow ontology from raw unannotated plain text.
Unsupervised Framework

- Typically for a domain, a lot of knowledge articles, manuals, tutorials etc. are available in a variety of formats.

- Most of these documents have less hyperlink and table (info-box as in Wikipedia) information, or extraction is difficult (E.g. pdf).

- Challenge is to learn a shallow ontology from raw unannotated plain text.
Unsupervised Framework

- Typically for a domain, a lot of knowledge articles, manuals, tutorials etc. are available in a variety of formats

- Most of these documents have less hyperlink and table (info-box as in Wikipedia) information, or extraction is difficult (E.g. pdf)

- Challenge is to learn a shallow ontology from raw unannotated plain text
Domain Cartridge as a Graph
Domain Cartridge as a Graph

device

handset

android

Operating system

sim

insert

card

Samsung

Samsung Galaxy victory

Samsung array
Domain Cartridge as a Graph

- handset
- android
- Operating system
- sim
- insert
- card
- Samsung Galaxy victory
- Samsung array
- device
- blackberry
- install
- samsung
- Domain term
- Domain process
- Action-On

Diagram showing relationships and actions involving domain terms.
Roadmap

- Unsupervised framework for shallow domain ontology construction:
 - Domain Term Discovery (DTD)
 - Improvement of Parser performance by DTD
 - Domain Relation Discovery (DRD)

- Use-Case: Improvement of an in-house Question-Answering system

- Conclusions
Roadmap

- Unsupervised framework for shallow domain ontology construction:
 - Domain Term Discovery (DTD)
 - Improvement of Parser performance by DTD
 - Domain Relation Discovery (DRD)

- Use-Case: Improvement of an in-house Question-Answering system

- Conclusions
Roadmap

- Unsupervised framework for shallow domain ontology construction:
 - Domain Term Discovery (DTD)
 - Improvement of Parser performance by DTD
 - Domain Relation Discovery (DRD)

- Use-Case: Improvement of an in-house Question-Answering system

- Conclusions
Roadmap

- Unsupervised framework for shallow domain ontology construction:
 - Domain Term Discovery (DTD)
 - Improvement of Parser performance by DTD
 - Domain Relation Discovery (DRD)

- Use-Case: Improvement of an in-house Question-Answering system

- Conclusions
Corpus: Knowledge articles, manuals, tutorials etc.

Domain Cartridge: Framework
Parsing

Domain Cartridge: Framework
Parsing

“Turn the wi-fi radio on or off”

English Slot Grammar (ESG) parser used. 50 - 100 times faster than Charniak parser
Prismatic Relations

Shallow semantic relationship (SSR) annotation over ESG parser output generates normalized parser relation

E.g., “Samsung has a battery” and “Samsung’s battery died” both generate the same relation ‘nnMod:samsung_battery’
Prismatic Relations

Shallow semantic relationship (SSR) annotation over ESG parser output generates normalized parser relation

E.g., “Samsung has a battery” and “Samsung’s battery died” both generate the same relation ‘nnMod:samsung_battery’
Lucene Index – For efficient retrieval of relations, documents, positional information, proximity based queries etc.
Domain Cartridge: Framework

Diagram:
- Corpus
- ESG Parser
- Prismatic Relations
- Random Index
- Secondary Index
- Primary Index
- Domain Terms
- HITS
- Synonym Extractor
- Type-Of Extractor
- Feature-Of Extractor
- Action-On Extractor
- Domain Ontology
Domain Term Discovery

ESG parser maintains a domain term lexicon of multi-word concepts. E.g. “touch screen, sprint navigation”

Noun Phrase Chunking on *document titles* to extract frequently occurring concepts as domain words

![Diagram of noun phrase chunking](https://via.placeholder.com/150)
Domain Term Discovery

ESG parser maintains a domain term lexicon of multi-word concepts. E.g. “touch screen, sprint navigation”

Noun Phrase Chunking on document titles to extract frequently occurring concepts as domain words

Turn

obj

comp

or

radio

nadj

nadj

the

wi-fi

lconj

rconj

on

off

the wi-fi radio
Domain Term Discovery

- Enrich lexicon and bootstrap parser
- Parser generates refined output

High precision but low recall — as titles are precise, clean but short

To extract more fine-grained domain terms HITS is used on parser output
Domain Term Discovery

- Enrich lexicon and bootstrap parser
- Parser generates refined output

High precision but low recall — as titles are precise, clean but short

To extract more fine-grained domain terms HITS is used on parser output
HITS

- Any Shallow Semantic Relation (SSR) from ESG parser is a *hub* generating domain terms

- Any domain term is an *authority* influenced by incoming features from hubs

- Good authorities incorporated in Parser Domain Term Lexicon

- Parser is re-run, refined relations generated, and previous steps iterated until convergence
HITS

▶ Any Shallow Semantic Relation (SSR) from ESG parser is a *hub* generating domain terms

▶ Any domain term is an *authority* influenced by incoming features from hubs

▶ Good authorities incorporated in Parser Domain Term Lexicon

▶ Parser is re-run, refined relations generated, and previous steps iterated until convergence
HITS

- Any Shallow Semantic Relation (SSR) from ESG parser is a hub generating domain terms

- Any domain term is an authority influenced by incoming features from hubs

- Good authorities incorporated in Parser Domain Term Lexicon

- Parser is re-run, refined relations generated, and previous steps iterated until convergence
HITS

- Any Shallow Semantic Relation (SSR) from ESG parser is a *hub* generating domain terms
- Any domain term is an *authority* influenced by incoming features from hubs
- Good authorities incorporated in Parser Domain Term Lexicon
- Parser is re-run, refined relations generated, and previous steps iterated until convergence
Domain Adaptation for IE and IR

Domain Term Discovery

Domain Relation Discovery

Experiments

Hubs

rel:svo:phone_offer_subscription

rel:nnMod:phone_screen

rel:npo:phone_on_battery

rel:dm_obj:use_phone

rel:dm_obj:charge_phone

rel:dm_obj:charge_battery

Authorities

cpt:verb:offer

cpt:noun:phone

cpt:noun:iPhone

cpt:noun:battery

cpt:verb:charge
Feedback

Domain Cartridge: Framework
Parser Performance Improvement

Number of incomplete parses went down by 73% after incorporating domain terms in the parser lexicon
Domain Terms

software-version htc-evo wi-fi memory-card microsoft-exchange lg-optimus samsung-m400 samsung-galaxy-victory software-updates samsung-array text-messaging touch-screen blackberry-bold

Table: Snapshot of multi-word domain terms extracted by NP Chunking.

optimus-g set-up novatel-wireless e-mail sierra-wireless apple-id google-maps play-music mobile-network 10-digit internet-explorer slacker-radio caller-id google-search address-book my-computer software-update blackberry-id as-well-as windows-update terms-of-service drop-down pro-700 add-on scp-2700 mac-os device-manager voice-mail non-camera

Table: Snapshot of multi-word domain terms extracted by HITS (not found by NP Chunking).
Domain Cartridge: Framework

Diagram showing the flow of data through the framework, starting with a corpus, then passing through an ESG parser and a prismatic relations process, leading to secondary and primary indices, and finally to domain terms extracted through random index, synonym extractor, type-of extractor, feature-of extractor, and action-on extractor.
Random Indexing (RI)

For computing word similarity and dimensionality reduction

RI considers “term X term” co-occurrence, as opposed to “term X document” matrix — allowing for incremental learning of context information, scaling up with the corpus size

Relational Distributional Similarity — Two terms are similar if they appear in a similar context with similar Shallow Semantic Relations

Random Index Vector Update — Neighborhood constitutes of syntactic relations between target term and neighboring terms
Random Indexing (RI)

For computing word similarity and dimensionality reduction

RI considers “term X term” co-occurrence, as opposed to “term X document” matrix — allowing for incremental learning of context information, scaling up with the corpus size

Relational Distributional Similarity — Two terms are similar if they appear in a similar context with similar Shallow Semantic Relations

Random Index Vector Update — Neighborhood constitutes of syntactic relations between target term and neighboring terms
Random Indexing (RI)

For computing word similarity and dimensionality reduction

RI considers “term X term” co-occurrence, as opposed to “term X document” matrix — allowing for incremental learning of context information, scaling up with the corpus size

Relational Distributional Similarity — Two terms are similar if they appear in a similar context with similar Shallow Semantic Relations

Random Index Vector Update — Neighborhood constitutes of syntactic relations between target term and neighboring terms
Domain Cartridge: Framework
Synonym Discovery

Random Index gives top N similar terms for a given term

HITS gives dominant domain terms and domain (SSR) relations

$$Sim(w_i, w_j) = \frac{\sum_p \mathbb{1}_{l_i = l_j, k_i = k_j} (f_{w_{k_i}} p, f_{w_{k_j}} p')}{\sum_p \sum_r \mathbb{1}_{l_i = l_r, k_i = k_r} (f_{w_{k_i}} p, f_{w_{k_r}} p')}$$

Numerator — #Freq. of common (dominant) words in both neighborhood with similar dominant SSR relations

Denominator — #Freq. of the common word in any other neighborhood with similar SSR relation
Synonym Discovery

Random Index gives top N similar terms for a given term

HITS gives dominant domain terms and domain (SSR) relations

$$Sim(w_i, w_j) = \frac{\sum_p \sum_{l_i = l_j, k_i = k_j} (f_{w_{k_j}, p}, f_{w_{k_j}, p'})}{\sum_p \sum_r \sum_{l_i = l_r, k_i = k_r} (f_{w_{k_r}, p}, f_{w_{k_r}, p'})}$$

Numerator — #Freq. of common (dominant) words in both neighborhood with similar dominant SSR relations

Denominator — #Freq. of the common word in any other neighborhood with similar SSR relation
Synonym Discovery (RI)
Domain Cartridge: Framework
Relation Discovery

ESG SSR relations exploited to discover domain relation between two words

Feature-Of typically marked by noun-noun modifications and subject-object relations

Relation Discovery

Action-On marked by “dm” and verb-object relations

Type-Of marked by Hearst patterns like “or, especially” and SSR relations like “svo:include, npo:like, npo:such-as, npo:as”

E.g. “rel:svo:devices_include_HTC, rel:npo:applications_such-as_WhatsApp, rel:npo:features_like_call, rel:npo:contact_such-as_address”.
Relation Discovery

Action-On marked by “dm” and verb-object relations

Type-Of marked by Hearst patterns like “or, especially” and SSR relations like “svo:include, npo:like, npo:such-as, npo:as”

E.g. “rel:svo:devices_include_HTC, rel:npo:applications_such-as_WhatsApp, rel:npo:features_like_call, rel:npo:contact_such-as_address”.
Domain Term Evaluation

5000 articles, tutorials and manuals from the smartphone domain

We used the Back-of-the-Book Index (BOI) of manuals, to create ground truth for domain term discovery

Baselines:

- **BabelNet** (R. Navigli and S. P. Ponzetto. BabelNet: Building a very large multilingual semantic network. ACL '10.)

- **Yago** (F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. WWW '07.)
Domain Term Evaluation

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordNet</td>
<td>22.62%</td>
</tr>
<tr>
<td>NP Chunking on Titles</td>
<td>32.45%</td>
</tr>
<tr>
<td>HITS</td>
<td>40.87%</td>
</tr>
<tr>
<td>Yago</td>
<td>43.77%</td>
</tr>
<tr>
<td>BabelNet</td>
<td>53.74%</td>
</tr>
</tbody>
</table>

Table: Domain term evaluation.
Recall of a Question-Answering System

<table>
<thead>
<tr>
<th>Recall@N</th>
<th>With Domain Term Lexicon</th>
<th>Without domain term lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>recall@1</td>
<td>0.40</td>
<td>0.33</td>
</tr>
<tr>
<td>recall@2</td>
<td>0.49</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table: Performance of a QA system with and without domain term lexicon.

Incorporation of domain terms in parser lexicon improves QA system performance

Domain Relation Evaluation

2000 word pairs (500 for each of four categories) are manually annotated by two annotators

<table>
<thead>
<tr>
<th>System</th>
<th>Type-Of</th>
<th>Feature-Of</th>
<th>Action-On</th>
</tr>
</thead>
<tbody>
<tr>
<td>BabelNet, WordNet</td>
<td>19.27%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yago</td>
<td>25.12%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Domain Cartridge</td>
<td>77%</td>
<td>85.7%</td>
<td>68%</td>
</tr>
</tbody>
</table>

Table: Recall comparison of systems for 3 relations.
Synonym Discovery: Distributional Similarity Comparison

<table>
<thead>
<tr>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yago</td>
<td>38%</td>
<td>32%</td>
<td>34.37%</td>
</tr>
<tr>
<td>BabelNet, WordNet</td>
<td>83%</td>
<td>31%</td>
<td>45.14%</td>
</tr>
<tr>
<td>Domain Cartridge (DC)</td>
<td>58%</td>
<td>41%</td>
<td>47.60%</td>
</tr>
<tr>
<td>DC + WordNet</td>
<td>62%</td>
<td>40%</td>
<td>49.00%</td>
</tr>
<tr>
<td>DC + ESG Parser Features</td>
<td>65%</td>
<td>39%</td>
<td>49.14%</td>
</tr>
</tbody>
</table>

Table: Precision-Recall comparison of Domain Cartridge (random-indexing, HITS and sim. eqn.) with other systems.
Synonym Discovery: Comparison with Distributional Similarity Measures in WordNet

<table>
<thead>
<tr>
<th>WordNet</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCH</td>
<td>0.22</td>
</tr>
<tr>
<td>RES</td>
<td>0.31</td>
</tr>
<tr>
<td>JCN</td>
<td>0.42</td>
</tr>
<tr>
<td>PATH</td>
<td>0.42</td>
</tr>
<tr>
<td>LIN</td>
<td>0.43</td>
</tr>
<tr>
<td>WUP</td>
<td>0.43</td>
</tr>
<tr>
<td>LESK</td>
<td>0.45</td>
</tr>
<tr>
<td>Domain Cartridge</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table: F-Score comparison of WordNet similarity measures with Domain Cartridge.
Conclusions

- Unsupervised framework for shallow domain ontology construction, without using manually annotated resources
- Multi-words form an important component of Domain Term Discovery
- Incorporation of domain terms in parser lexicon results in 73% reduction in incomplete parses, improving performance of an in-house QA system by upto 7%
- Synonym discovery approach, using Relational Distributional Similarity, RI, HITS etc., performs better than other existing approaches