l‘)

Check for
updates

The Game of Bridge: A Challenge for ILP

Swann Legras!, Céline Rouveirol>™) | and Véronique Ventos!3®)
! NUKKAI Inc., Paris, France
vventos@nukk.ai
2 L.ILP.N, UMR-CNRS 7030, Univ. Paris 13, Villetaneuse, France
celine.rouveirol@lipn.univ-parisi3.fr
3 L.R.I., UMR-CNRS 8623, Univ. Paris-Saclay, Orsay, France

Abstract. Designs of champion-level systems dedicated to a game have
been considered as milestones for Artificial Intelligence. Such a success
has not yet happened for the game of Bridge because (i) Bridge is a
partially observable game (ii) a Bridge player must be able to explain
at some point the meaning of his actions to his opponents. This paper
presents a simple supervised learning problem in Bridge: given a ‘limit
hand’, should a player bid or not, only considering his hand and the con-
text of his decision. We describe this problem and some of its candidate
modelisations. We then experiment state of the art propositional machine
learning and ILP systems on this problem. Results of these preliminary
experiments show that ILP systems are competitive or even outper-
form propositional Machine Learning systems. ILP systems are moreover
able to build explicit models that have been validated by expert Bridge
players.

1 Introduction

Designs of champion-level systems dedicated to a game have long been consid-
ered as milestones for Artificial Intelligence; IBM computer Chess Deep Blue
beating in 1997 world champion Gary Kasparov was one of these adventures,
another more recent one being DeepMind Alphago outperforming in 2017 World
Champion Ke Jie at the game of Go [15]. One major challenge still remain-
ing concerns the game of Bridge where the level of robots is far from the best
human players. There are two main reasons for that: (i) Bridge is a partially
observable game (ii) a Bridge player must be able to explain at some point the
meaning of his actions. For example, an opponent can ask for explanations on
the inferences related to the choice of an auction rather than another. The need
for explainability coupled with the fact that knowledge in Bridge is relational let
us think that Bridge is a killer application for ILP. As a proof of concept, this
paper! presents a simple supervised learning problem in Bridge: given a ‘limit
hand’, should a player bid or not, only considering his hand and the context

! This research work is conducted as part of the vBridge project (former name
AlphaBridge) supported by NukkAT Inc., Paris.
© Springer Nature Switzerland AG 2018

F. Riguzzi et al. (Eds.): ILP 2018, LNAI 11105, pp. 72-87, 2018.
https://doi.org/10.1007/978-3-319-99960-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99960-9_5&domain=pdf

The Game of Bridge: A Challenge for ILP 73

of his decision. After describing this problem and how it has been modeled, we
experiment state of the art propositional machine learning and ILP systems on
this problem. Results of these preliminary experiments show that ILP systems
are competitive or even outperform propositional Machine Learning systems on
this problem. More importantly, ILP systems are flexible enough, given their
explicit background knowledge and the fact that they build explicit and expres-
sive models, to support the expert Bridge players in the modelling process.

The goal of the paper is to demonstrate that Bridge displays a certain number
of characteristics that would benefit from a relational representation. Building
explicit rules or patterns for Bridge indeed requires the expressiveness of ILP:
given his thirteen cards (his hand), a player makes decisions according to prop-
erties of the hand. These properties can be related to specific cards, sets of cards
or other abstractions of the hand. The symbolic approach is quite flexible, and
allows experimenting with various abstractions of examples description through
the use of background knowledge, in close interactions with the experts. The
relational nature of the language used for describing the background knowledge
facilitated the task of the experts.

The plan of the paper is as follows: we first describe the target Bridge problem
in Sect. 2. We then model this problem as a binary classification one and design a
first propositional representation of examples to be handled by a state of the art
propositional learning system (Sect. 3). Section 4 describes alternative relational
representations of examples as well as settings for the two state of the art ILP
systems studied, Aleph and Tilde. Section5 gives some empirical comparisons
of the models learnt in those quite different contexts (accuracy, complexity).
Relational models are then discussed and assessed by Bridge experts in Sect. 6.
Finally, Sect.7 draws some conclusions and some perspectives for the vBridge
project.

2 Description of the Bridge Problem

In the present section, we give a short overview of the game of Bridge and we
present the decision problem handled in this paper. The interested reader can
refer for instance to [12] for a more complete presentation.

Bridge is a trick-taking card game opposing four players divided in two part-
nerships (pairs). A standard 52 card pack is shuffled and each player receives a
hand that is only visible to him. Pairs stand across each other. A Bridge deal
is divided into two major playing phases using different devices (represented
Fig. 1): the bidding phase and the card play. The goal of the bidding is to reach
a contract which determines the minimum number of tricks the pair commits to
win (between seven and thirteen) during the card play, either with no trump or
in a determined suit as trump. The different final contracts are denoted by nS
where n is a number between 1 and 7 and S € (#, O, &, &, NT). The contract
nS determines the minimum number of tricks the pair commits to win (n + 6)
and which suit is the trump, NT to expressing the fact that there is no trump.
For instance 49 is fulfilled if the number of tricks won is at least 10 (4 + 6)

74 S. Legras et al.

Fig. 1. The two devices used in Bridge: bidding cards (left) and standard cards (right)

with a © trump. The major problem during the bidding phase is to be able to
evaluate the trick-taking potential of a pair of hands, each player not knowing
what his partner holds. Players use bidding cards to pass information to their
partner about their hand. The last bid represents the contract to be played.
During the card play, the goal is to fulfill (or to defeat for the defending side)
the contract reached during the first phase. Each player plays a card at his turn.
As this paper focuses on a bidding problem we will not go into further detail on
this phase.

2.1 Opening Bid Problem

During the bidding phase, the dealer is the first to bid and has to decide between
opening (the bidding) or passing. If he passes then the opponent at his left has to
decide between opening and passing and so on. It can happen, although rarely,
that all 4 players pass: the deal is a ‘passout’.

When deciding whether to open or not, the player evaluates his hand by
counting the total of ‘High-Card Points’ (HCP: Ace=4, King =3, Queen =2,
Jack=1). It is a way to rapidly assess the potential of a hand as higher card
have more chance to earn a trick during card play. Generally, early bids like
opening bids are made according to as set of rules. For instance, in modern
Standard American system (SAYC), 1-of-a-suit opening requires at least 12 HCP.
In some limit cases, experts allow themselves to deviate slightly from the rules
and produce a bid that does not meet with the generally admitted conditions of
application of a rule. Thus 11HCP hands are limit cases in which some players
may decide to open and some others not. The decision to open or not an 11HCP
hand is called in the following the opening bid problem. The opening bid problem
is linked to a Bridge situation as that represented in Fig. 2. The example (refered
to as Example 1) of this figure will be used in the following to illustrate our
explanations.

The Game of Bridge: A Challenge for ILP 75

To bid or not to bid ?

4 A 10 6 4

¥YyQ32

® 9 6
North East South West
PASS PASS PASS ?

EE

Fig. 2. Example 1: a bidding decision for West (Color figure online)

Parameters: when holding an 11HCP hand, the decision to open or not is
based on several parameters: the position (1st if he is the dealer, 2nd after one
Pass, 3rd after two Pass or 4th after 3 Pass), the vulnerability measuring the
risk/reward score-wise and the evaluation of the hand.

Players are represented by North, East, South and West (abbreviated to
N, E,; S, W) the pairs being NS and EW. Here, North is the dealer. The
vulnerability of the two sides is represented by the color of the players (green is
Not vulnerable and red Vulnerable). The decision is related to West according
to his hand, his position (4th since there are 3 passes from the other players),
and his vulnerability (Not Vulnerable since his color is green).

By clicking on ‘Yes’, West decides to open and then he deviates slightly from
the 12 HCP rule since his hand has only 11 HCP (4+2+43+2).

The ability to wisely depart from the rule framework does make a difference
at an early stage of the bidding phase because the final contract (and therefore
the score) depends heavily on initial actions.

Finally, it is said that in these situations, Bridge players exercise their hand
judgment without being able to elicit their decision making process: this skill is
built on strong and personal experience and is very difficult to get. The decision
and evaluation also vary a lot from one player to another, even of similar level.

3 Learning Problem and First Model

The opening bid problem is a binary classification problem where Task T consists
in predicting if a given expert opens or passes according to a Bridge situation
like that in Ezample 1. The input of the learning problem is a set of n labeled
examples (z;, class;) where class; belongs to {+, —} (positive or negative exam-
ples), the output is a classifier, i.e., a function h(x) that assigns each example x
to its class: + (open) or — (pass).

76 S. Legras et al.

3.1 DataSets

We randomly generated 6 sets of unlabeled samples. Those sets have been labeled
by four Bridge experts (F1, ..., E;) who are among the best 100 players of their
home country. These experts have similar level but different styles that affect
their decision to open or not (with the exact same cards, 2 experts are likely to
make different decisions). Table 1 sums up the set features and some statistics
about the labeling of examples.

Table 1. Samples sets

Labeled set | S So S3 Sy Ss.1 Ss,2 Se
Unlabeled set | Ry Ry R3 R4 Rs Rs Rs
Expert Eq E> E> Es3 E,4 E, E,
Size 1000 1000 970 790 1222 1222 1079

Pos./Neg 768/232 1 681/319 | 540/430 603/187 | 681/541 | 582/640 | 560/519
Pos rate (%) | 76.80 68.10 55.67 76.33 55.72 47.63 51.90

Sets R;, i € {1..4} were tagged once and by only one expert. Let us call S;,
i € {1..4} the corresponding sets of labeled examples.

The opening bid decision is a complex issue, being not unusual that the same
expert makes different decisions while facing the exact same situation. To get
an idea of expert’s consistency, expert F, was given twice the set Rs5 to label, a
number of months apart and with the deals arranged in a different order. The 2
labeled sets are called S5 ; and Ss . Finally, S¢ = S51 N S5 2 represents the set
of samples of R5 which have been ‘consistently’ labeled by E4. The consistency
rate of expert E4; when labeling Rj5 is only 88.30%.

Bridge players with similar level may have very different features. For instance
E, is a conservative player who seldom trespasses the limits fixed by the bidding
system while F; and F3 are ‘aggressive’ players. Their ratio of positive examples
in the last row of Table1 is consistent with their presumed aggressiveness.

3.2 Propositional Representation of Examples
We first represent examples using a propositional representation.

Definition 1 (Propositional representation of examples). A labeled
example is represented by: [c, with n € {1..52}, position, vulnerability, class].
We use the following ascending order for cards: &, &, O, & and for each suit :
2, ..., 10, J, Q, K, A.

¢; = 1 if the hand has the corresponding card and 0 otherwise, position €
{1..4}, vulnerability € {1..4} with 1 = the two pairs are not vulnerable, 2 = not
vulnerable opponents vulnerable, 8 = vulnerable opponents not vulnerable and
= the two pairs are vulnerable, Class = 1 if the expert opens and 0 if he passes.

The Game of Bridge: A Challenge for ILP 77

3.3 Binary Classification Using SVM

We chose Support Vector Machines among various paradigms that are used for
learning binary propositional classifiers (e.g. Decision Trees, Bayesian Classifi-
cation, Perceptron, etc). Experiments were performed with a SVM learner with
linear kernel as implemented in the Scikit-learn? toolbox [14].

4 Building Rule Sets with ILP Systems

The ILP systems used in the experiments are Aleph [16] and Tilde [3]. They are
both state of the art ILP system, quite different in their learning process. Aleph
learns from entailment. Given a set of positive examples £ and a set of negative
examples £~ and a background theory B, the learning goal is to find a hypothesis
H in the form of a Prolog program, such that Ve € ET : HA B | e and
Ve € E~ : HAB = e. Examples in this framework are single literals representing
the class (open/1). Background knowledge is represented as a mixture of facts
and rules that can be used to enrich the examples’ description.

Aleph’s learning proceeds top-down. It learns sets of rules using a covering
approach. Aleph selects an example e not covered by the current theory. A
learning loop starts by building a bottom clause from e, a most specific clause
e given e and B). This bottom clause will be the lower bound of Aleph’s search
space. Aleph then explores top-down generalizations of bottom clause that satisfy
the language bias and mode declarations. Several search strategies have been
implemented in Aleph, we have used the default one (best first).

Tilde learns a relational decision tree from interpretations. Given a set of
classes C' (each class label ¢ is a nullary predicate), a set of examples E (each
element of F is of the form (e,c) with e a set of facts (interpretations) and ¢
a class label) and a background theory B, the goal is to find a hypothesis H
(a Prolog program), such that V(e,c) € E;HAeAB |= ¢,and V¢ € C —c:
HAeANB = . As quoted in [3]:

Since in learning from interpretations, the class of an example is assumed
to be independent of other examples, this setting is less powerful than the
standard ILP setting (e.g., for what concerns recursion). With this loss of
power comes a gain in efficiency, through local coverage tests. The inter-
esting point is that the full power of standard ILP is not used for most
practical applications, and learning from interpretations usually turns out
to be sufficient for practical applications.

This is the case for our classification problem.

A first order logical decision tree (FOLDT) is a binary decision tree in which
the nodes of the tree contain a conjunction of literals and different nodes may
share variables, under the following restriction: a variable that is introduced in a
node must not occur in the right branch of that node. In order to refine a node
with associated query @, Tilde computes the refinement of) given the language

2 http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/

78 S. Legras et al.

bias and chooses the refinement that results in the best split. The best split is
the one that maximizes a certain quality criterion by default the information
gain ratio. The conjunction at a given node consists of the literals that have
been added to @ in order to produce its refinement.

The ILP systems allow for using a powerful and flexible target representation
language through the use of explicit background knowledge, here represented
as a set of definite clauses. To cope with the increased size of the hypothesis
space, both Aleph and Tilde allow the user to define the search space through
sophisticated language bias. This language bias can be seen as a grammar-like
user defined specification of the search space.

4.1 Relational Representation

In this section, we present the different background knowledges (denoted BK; in
the remainder of the paper) that have been used as an input of the ILP systems as
well as modeling assumptions used to obtain them. These BK stem from a joint
work with the Bridge experts in order to achieve both an acceptable Bridge-wise
representation and an acceptable learning performance. These objectives will be
assessed in Sect. 5, the expert validation of the results is given in Sect. 6.

The first BK BK| is a simple translation of the propositional representation
described in Sect. 3.2.

BKjy: The following predicates form the common background for all BKs (F
represents the example primary key).

— open(E, Class) with Class = pos or neg

— has_hand(E, H) where H is a list of card constants representing the hand’s
example

— has_card(E,C) is true if C is a card occurring in E’s hand

— position(E, P) with P a digit between 1 and 4 representing the position of
the expert

— vuln(E,V1,V2) with V1 and V2 = g (not vulnerable) or r (vulnerable)
representing the vulnerability of the player and of its opponents.

According to BKy, Example 1 in Fig.2 (denoted by el in the following), is
represented by the following facts:

open(el, pos). has_hand(el, [¢6, 9, d2,d10, dq, dk, h2, h3, hq, s4, s6, 10, sa]).
position(el,4). wvuln(el,g,r).

has_card(el,c6). has_card(el,c9). .. has_card(el,sa).

BKj;: In order to introduce some abstraction and Bridge knowledge in the hand’s
description, we added some predicates to characterize card properties according
to a Bridge expertise such as: the suit, the rank, the suit category (minor/major)
and the rank category of the card (small_card from 2 to 10 or honor from Jack
to Ace), represented with the following predicates:

has_suit(Card, Suit). has_rank(Card, Rank).
honor(Card). minor(Card). small_card(Card).

The Game of Bridge: A Challenge for ILP 79

Expert’s validation related to the intermediate BK obtained (see Sect.6),
allows us to introduce higher level predicates related to hands’ properties:

nb(E, Suit, Number). plusvalue(E).
lteq(Number, Number). gteq(Number, Number).

nb describes the length of a particular suit. nb(h1, heart, 3) expresses the fact
that the hand in Ezample 1 has 3 cards in ©. plusvalue allows to rate a hand
as ‘good’.

One of the difficulties to adequately represent Bridge expertise was to deter-
mine at which granularity level the example had to be represented. We illustrate
this point with the concept of exact distribution (number of cards per suit)
related to a hand, that is an important parameter to evaluate a hand’s potential
outside the value of HCP. As an illustration, the exact distribution of the hand
of Example 11is 4-3-4-2 (4, 39, 4 and 2&). However, a Bridge player will often
reason in terms of hand patterns denoting the distribution of the thirteen cards
by decreasing order irrespective of the suits in question (e.g. 4-4-3-2 for Example
1). The term distribution will further refer to this notion and not to the exact
distribution. This notion can be abstracted slightly more by classifying hands
into three main classes: balanced, semi_balanced and unbalanced according to
their distribution. For example, balanced hands are hands with no short suit
(0 or 1 card). The following rules allow to saturate examples with this property:

balanced(E) :- distribution(E, [4,3,3,3]).
balanced(E) :- distribution(E,[4,4,3,2]).
balanced(E) :- distribution(E,[5,3,3,2]).

Thus, we can change the granularity of the hypothesis language: just give the
exact distribution, replace the exact distribution by the distribution, remove
both and only use the predicates balanced, semi_balanced and unbalanced, etc.

BK5: Finally, BKs = BK; Ulist_honor(E, Suit, ListH) where ListH is the list
of honors of suit Suit in the hand. list_honor/3 introduces an abstraction of the
list of cards of a given suit since only the most important cards (honours) are
taken into account. We will check in the experiments if this additional predicate
impacts and hopefully improves the quality of learned models.

4.2 Aleph and Tilde Settings

In this section, we discuss the different settings used in Aleph and Tilde in the
experiments shown in next section. Some of them are inherent to the algorithm
used, some are choices to either increase performance, readability of the output
or simplicity of implementation. We only detail the most important settings for
each system. We refer to the user guides of both systems [2,16].

Target Predicate. The target predicate for Tilde is open(E, Class), and open(E)
for Aleph.

80 S. Legras et al.

Language Bias. After background predicates have been defined, the language
bias describes more precisely how these predicates should be used to form rules.
The most important information for Aleph is the definition of predicate modes
(should constants or variables — input or output® — occur in which arguments of
the literals. Preliminary tests have shown that the predicate distribution better
behaves with Aleph than with Tilde.

The lookahead capability of Tilde allows creating nodes labeled with con-
junctions of nb(E, Suit, Value) and gteq or lteq describing length of specific or
major/minor suits. Tilde is thus able to generalize the idea of distribution by per-
forming multiple tests on the different length of suits with the predicate. Aleph
handles less easily this kind of abstraction, that requires to learn longer clauses,
with the counterpart of explosion of search complexity, but behaves well with the
distribution predicate. We therefore chose to disallow Tilde to use distribution
predicate in its language bias.

Negative Literals. Aleph does not produce rules that have negative literals in
their body (it only builds definite clause programs). We have therefore encoded in
the Background Knowledge some predicates representing the negation of another
predicate (e.g notplusvalue). Tilde as a decision tree learner obviously does not
need such explicit negative literals.

Search Options. The goal of this paper being to apply state of the art techniques
on a new problem, we chose to use default search options whenever possible in
both Aleph and Tilde. Tilde’s search options were all default ones (for Aleph:
mincase = 2, minacc = 0; for Tilde: heuristic = gainratio, pruning = c45 safe
pruning, stopping criterion = mincase).

When using Aleph, the only options that deviated from default values were
clauselength (the maximum length of rules generated) that was set to 6, minpos
(the minimum positive coverage of each rule) set to 2 and noise (the maximum
number of negative examples a rule can cover) was set to 5. We set this last
value empirically, by running the problem with various BKs, datasets and noise
values. We observed that a noise of 0 was not appropriate, as even experts may
contradict themselves when labeling examples for this problem (see Sect.3.1).
The mean performance curves across datasets do not show any clear trend to help
us setting this noise parameter (see Fig. 9 in the Appendix*). We have therefore
chosen 5 as a good compromise between the performance and specificity of rules
obtained. The parameter minacc was set to its default value (0) as we observed
a loss of accuracy when setting it over 0.5.

3 An input variable already occurs in the left part of the clause under development,
while an output variable does not occur in the current clause (and in its head) and
is therefore existentially quantified.

* http://www.nukk.ai/TLP2018/.

http://www.nukk.ai/ILP2018/

The Game of Bridge: A Challenge for ILP 81

5 Experiments

We have run experiments for all datasets and systems. Because of lack of space,
we only comment here on graphs for datasets S; et S5 labeled by experts with
different profiles: E'; which is very structured and concise, and E4 whose decision
making process is driven by special cases. These assumptions will be confirmed
in Sect. 6. Graphs for other datasets are provided in the appendix (Fig. 7). Their
complete analysis is outside the scope of the paper.

The performance measure to assess all classifiers is accuracy: TgI%N where
TP and TN denote the true positive and true negative examples, whereas P
and N denote the number of positive and negative examples.

S1 S5.2
0.95 0.95
— Majority — Majority
090 W SVM 0.90 { WEm SVM
e Aleph e Aleph
0.85- W Tilde 0.85{ W Tilde

SVM BkO Bkl Bk2 BkO Bkl Bk2

SVM BkO Bkl Bk2 BkO Bkl Bk2

Fig. 3. Accuracy (mean and standard deviation) for all classifiers on S1 and Ss.2

5.1 First Experiments

The performance of the classifiers is here evaluated using stratified 10-fold cross-
validation. We see on Fig. 3 that:

— SVM together with Aleph and Tilde using BK((refered to in the remain-
der as propositional learners) behave poorly, whatever dataset is used. The
performance of those classifiers seem to depend also on the ratio P/N mate-
rialized by the performance of the majority classifier: they better model non-
aggressive players. The propositional learners are nevertheless not able to
reach a good performance. Some essential (relational) information is missing
from the representation;

— Using relational BK (BK; and BK>), ILP systems both significantly outper-
form the SVM system as well as ILP systems operating on raw propositional
examples’ representations (Sect.3.2) on datasets shown, as well as others
shown in the appendix. This demonstrates the relational essence of the prob-
lem. Their performances are around 82%, which can be considered as quite
acceptable, considering E4’s consistency rate (88%), as shown in Sect. 3.1.
Again, we evaluate here the relevance of the representation of examples and
background knowledge more than the performance of propositional vs. rela-
tional learning systems.

82 S. Legras et al.

— Aleph and Tilde have close performances whatever dataset and BK is used. It
is in particular not possible to distinguish from an accuracy point of view mod-
els built using BK; or BK,. Tilde may slightly outperform Aleph, although
not on all sets.

5.2 Performance in Function of the Training Set Size

To evaluate the sensitivity of the learning systems to the training set size, we
proceed as follows. For a given fold 4, 1 < ¢ < 10, let us denote by Test; the test
set and T'rain; the training set of the fold. For each fold ¢ and proportion p, we
sampled a stratified sample set T} ,, of size % from T'rain;. Each classifier
learned for T; ;, was evaluated on T'est;. Curves of Fig. 4 show the mean accuracy
over 10 folds of the classifier learned with training set T;, as a function of p for
background knowledge BK; and BKo5.

As expected, the performance of all classifiers increases with the training set
size, although we observe that ILP systems are able to reach a good performance
with relatively few examples (only 10% of the training set). Hopefully, we do
not observe any loss in performance for the largest training sets, which allows
discarding overfitting.

S1 S1

09 09

08 /\'K/\

RBEEEEs

accuracy
)
<
accuracy
)
3

0.6 0.6
—&— tilde { —&— tilde
0.5 —4— aleph 0.5 —&— aleph
— svm — svm
—— majority —— majority
0.4 04
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
proportion of learning samples proportion of learning samples
S5.2 S5.2
09 09

0.8

accuracy
accuracy

—— tilde — tilde
—#— aleph 0.5 —+— aleph
— svm B Tk
0.4 "
— majority — majority
0.4
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
proportion of learning samples proportion of learning samples

Fig. 4. Accuracy curves for BK; (left) and BK> (right) for datasets S1 and Ss.2

The Game of Bridge: A Challenge for ILP 83

We have again checked whether one ILP system significantly outperforms the
other (paired t-test with 95% confidence). Significant differences are reported on
the curve with a /AA. There are very few such differences in the performances of
the two ILP systems, however Tilde is almost always the winner in such cases
(see Fig. 10 in appendix), except for S5 on BKs,. In this case, list_honor/3
allows to describe specific rules that Aleph can discover better than Tilde.

The difference w.r.t. the performance between BK; and BK> is tenuous
whereas the differences in the theories and decision trees produced are obvious
(see Fig.5). These curves show the number of rules for Aleph and the number
of nodes for Tilde for the same training set size as the previous curves.

S1 S5.2

—— tilde tree's nodes Bk2
aleph's rules Bk2

—— tilde tree's nodes Bk1

—— aleph's rules Bkl

—— tilde tree's nodes Bk2
aleph's rules Bk2

—— tilde tree's nodes BK1

—— aleph's rules Bkl

20

of rules/nodes
of rules/nodes

0.0 02 04 0.6 08 1.0 0.0 02 0.4 06 038 10
proportion of learning samples proportion of learning samples

Fig. 5. Model complexity (number of nodes and rules) for S1 and Ss.» datasets and
given different background knowledges (BK; and BK>)

The only difference between BK; and BK5 is the list_honor/3 predicate. It
is used in about 80% of Aleph’s rules and Tilde’s nodes for BK5. Aleph is less
resistant to over-fitting (the complexity of the model increases regularly whereas
the performance remains relatively stable after seeing about 70% of the training
set). This is less true for Tilde, for which the model complexity stabilizes for
S1 and BK;. Aleph’s model complexity does not vary between BK; and BK,
(about 25 rules for S; and between 30 and 40 rules for S5.2). This is not the case
for Tilde : the number of nodes of the learned DT is between 1.3 and 2 times
larger for BK5 than for BKj;.

6 Expert Validation

First of all, expert validations have been used to incrementally update the BK. In
order to achieve this task, we made some experiments (not detailed in this paper)
on intermediate BKs between BK(y and BK; and we have presented the outputs
of the models to the different experts. Their feedback (they validated or not the
rules obtained) on the results help us to update at each step the current BK. For
instance, seeing that the language used in rules was too poor led experts to advise

84 S. Legras et al.

us to use other features such as the sum of the card numbers in © and #. Experts
also provided us with card combinations that make a hand more valuable (for
instance King-Queen in a 5+suit) allowing to define and incrementally refine
the predicate plusvalue. At the end of this process, we obtained BK; which
is the first BK coupling good performances and positive feedback from experts
regarding the learned rules. The experiments presented below are related to BK;
and BK2

All experts noted that this experience had modified their strategy in this
part of the game. The difference between the percentages of opened hands by
E, on the same set (47.63 % the second time vs 55.72% the first time) confirms
this point.

The following rule was unanimously validated. It reflects the fact that experts
open with at least 6 cards in any suit.

rl: (Pos cover = 162 Neg cover = 1)
open(A) :- nb(A,B,C), gteq(C,6).

About the 12 rules produced by Aleph, experts gave the following opinion: 3
excellent rules (rl and r2, r3 below).

r2 : (Pos cover = 68 Neg cover = 3)
open(A) :- plusvalue(A), position(A,3).

r3 : (Pos cover = 42 Neg cover = 4)
open(A) :- nb(A,spade,B), gteq(B,4), position(A,4).

r2 expresses that a player should open if he is in 3rd position and holds a good
hand, whereas r3 means that a player should open if he is in 4th position and
has more than 4 spades. When generating r3, Aleph discovered a famous Bridge
rule known as ‘the rule of 15”: a player should open if he is in 4th position and
if the number of HCP (11 points for all hands of this problem) plus the number
of Spades is greater than or equal to 15. According to Bridge experts, the other
rules were non-informative or even ridiculous for 2 of them.

The complexities of the models learned by Aleph are very similar among the
experts (about 22 rules, see curves of Figs. 5 and 8 and Table 2 in the appendix).
To get rid of the bias of the training set size, Table 2 in the appendix shows
an evaluation of the learning model’s complexity per expert depending on the
background knowledge and the algorithm used for 4 training sets of the same size
for each expert (703 training examples randomly selected from each set listed
in the table). Set S3 that does not appear in the table obtained an average of
37.3 rules, a confirmation that this is a more difficult set (see Sect.3.1). On the
contrary, the complexity of the model learned by Tilde on sets labeled by expert
Ey (S1) is significantly lower than those of every model related to the other
experts.

The size of player’s decision tree gives information about the player himself.
For instance, F has a scientific background and an analytical mind whereas F,
has a more intuitive approach of the game. This is confirmed by the fact that

The Game of Bridge: A Challenge for ILP 85

nb(A-C,-D)lteq(D.2)?

Yes No,

nb(A spade,-E) lteq(E,3)? neg
{Ip0s:5.0,neg32.0]}
No.
pos
[[p0s:108.0,neg5.0]}

No ves

Y
neg nd(Aclud,-H),gteq(H.4)? pos
{[p0s:0.0,neg19.0] [lpos:18.0,neg1.0]]

ves No
pos
[[pos:2.0,neg0.0]}

neg
{lp0s:0.0,neg4.0]]

nb(A-l-J),major_s(l),gteq(J,3)?
Yes

neg
[lpos:8.0,neg14.01}

No

pos
[[p0s:2.0,neg0.0]]

Fig. 6. Decision Tree on S7 (279 learning samples) with BK;

Ey’s decision tree is two times smaller than E,’s decision tree (Sso dataset).
Moreover, the rules generated from F,’s set are of little interest to other players,
being much too specific.

For this reason, we made a new experiment with expert F; on a new and
smaller set S7 (310 examples, 279 used for training), with a high level of difficulty
since there is no hand in this dataset with more than 5 cards in a suit and the
expert’s position cannot be 3. The BK used is BK;. We focus on F;’s validation
on the decision tree produced by Tilde given Fig. 6.

Several rules associated with nodes have been described as ‘excellent’ by
F;. For instance, the rule associated with the root node translated as ‘if the
distribution of the hand is 4333, I pass’ corresponds to one of the first criteria of
his decision. The expert validated all the rules related to the nodes except one.
Finally, the global vision of the tree appeared to him congruent with his approach
of the problem. It is to be noted that before these experiments, the expert was
not able to explain clearly his decision-making process on this type of opening.

86 S. Legras et al.

In other words, Bridge experts make decision using a black-box approach, our
methods allowing us to take a look inside the black-box.

7 Conclusions

Bridge has been subject to much research, mostly related to the conception of
a Bridge robot. We refer to Paul Bethe’s report [1] for extensive state of art on
Computer Bridge. Like many programs playing incomplete information games,
most current Bridge programs use Monte-Carlo methods which were initiated as
early as 1949 by Nicholas Metropolis [13]. This method’s adaptation to Bridge
has been formalized in [7]. For more than 20 years, best Bridge robots have been
competing at official World Computer-Bridge Championships (WCBC). The last
2 WCBC have been won in 2016 and 2017 by a version of AI Wbridge5 that
has benefited from an enhancement of its Monte-Carlo simulations (see [17]).
Some approaches using symbolic formalisms have been used in sub-problems of
Bridge. For instance, in [6] the program Finesse that is coded in Prolog optimizes
a card play sub-problem. In [9], authors use Horn clauses to model a bidding rule
base. More recently neural approaches (e.g. [8,19]) have been successfully used
to automate a limited version of the bidding process. However, these approaches
do not provide explanations and do not allow to deviate from the rules as a
human does for instance in our opening problem.

The methods displayed in this article for the opening bid problem are cur-
rently being extended to other Bridge situations, some of them requiring an
upgrade to multi-class learning. Future work related to a Probabilistic Inductive
Logic Programming (PILP) framework [4] seems very appropriate since proba-
bilistic reasoning is central in Bridge. Another important extension of the current
work is the ability to invent new predicates, using various techniques such as rela-
tional pattern mining [5], or more recent approaches in a Statistical Relational
Learning context [10,11]. As stated in [18], Bridge is a great challenge for Al
and much work related to the definition of a Bridge Al remains to be done. The
design of a hybrid architecture including recent numerical, probabilistic, sym-
bolic machine learning modules is currently under process in a project called
vBridge (new version of the AlphaBridge project), this work is the prime stone
of the ILP-PILP module that will be central in vBridge. In such a framework,
ILP systems could be used as a front-end to statistical learning systems in order
to generate appropriate representations of examples that take into account some
relational traits of the learning problem at hand.

References

1. Bethe, P.: The state of automated bridge play. PDF (2010)

2. Blockeel, H., et al.: The ace data mining system user’s manual. https://dtai.cs.
kuleuven.be/ACE/doc/ACEuser-1.2.16.pdf

3. Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling up inductive logic
programming by learning from interpretations. Data Min. Knowl. Discov. 3(1),
59-93 (1999)

https://dtai.cs.kuleuven.be/ACE/doc/ACEuser-1.2.16.pdf
https://dtai.cs.kuleuven.be/ACE/doc/ACEuser-1.2.16.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

The Game of Bridge: A Challenge for ILP 87

De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1-27. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78652-8_1

Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining
Knowl. Discov. 3(1), 7-36 (1999)

Frank, I., Basin, D., Bundy, A.: Combining knowledge and search to solve single-
suit bridge. In: Proceedings of AAAI/TAAI, pp. 195-200 (2000)

Ginsberg, M.L.: GIB: imperfect information in a computationally challenging
game. J. Artif. Intell. Res. 14, 303-358 (2001)

Ho, C.-Y., Lin, H.-T.: Contract bridge bidding by learning. In: Proceedings of
Workshop on Computer Poker and Imperfect Information at AAAI Conference on
Artificial Intelligence (2015)

Jamroga, W.: Modelling artificial intelligence on a case of bridge card play bid-
ding. In: Proceedings of the 8th International Workshop on Intelligent Information
Systems, pp. 267-277 (1999)

Kazemi, S.M., Poole, D.: ReINN: a deep neural model for relational learning. In:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Kok, S., Domingos, P.M.: Statistical predicate invention. In: Proceedings of the
Twenty-Fourth International Conference on Machine Learning, ICML 2007, pp.
433-440 (2007)

Mahmood, Z., Grant, A., Sharif, O.: Bridge for Beginners: A Complete Course.
Pavilion Books, London (2014)

Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247),
335-341 (1949)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.: Scikit-learn:
machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830 (2011)

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., et al.: Mastering the
game of go with deep neural networks and tree search. Nature 529(7587), 484-489
(2016)

Srinivasan, A.: The aleph manual (1999). http://www.comlab.ox.ac.uk/oucl/
research/areas/machlearn/Aleph/

Ventos, V., Costel, Y., Teytaud, O., Ventos, S.T.: Boosting a bridge artificial intel-
ligence. In: Proceedings of International Conference on Tools with Artificial Intel-
ligence (ICTAI), pp. 1280-1287. IEEE (2017)

Ventos, V., Teytaud, O.: Le bridge, nouveau défi de 'intelligence artificielle? Revue
d’Intelligence Artificielle 31(3), 249-279 (2017)

Yeh, C.-K., Lin, H.-T.: Automatic bridge bidding using deep reinforcement learn-
ing. In: Proceedings of the 22nd ECAI, pp. 1362-1369 (2016)

https://doi.org/10.1007/978-3-540-78652-8_1
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

	The Game of Bridge: A Challenge for ILP
	1 Introduction
	2 Description of the Bridge Problem
	2.1 Opening Bid Problem

	3 Learning Problem and First Model
	3.1 DataSets
	3.2 Propositional Representation of Examples
	3.3 Binary Classification Using SVM

	4 Building Rule Sets with ILP Systems
	4.1 Relational Representation
	4.2 Aleph and Tilde Settings

	5 Experiments
	5.1 First Experiments
	5.2 Performance in Function of the Training Set Size

	6 Expert Validation
	7 Conclusions
	References

