
Learning Logic Program Representation for
Delayed Systems With Limited Training Data

Yin Jun Phua1, Tony Ribeiro3, Sophie Tourret2, and Katsumi Inoue2,1

1 Tokyo Institute of Technology, Japan
{phua,inoue}@il.c.titech.ac.jp

2 National Institute of Informatics, Japan
{tourret,inoue}@nii.ac.jp

3 Laboratoire des Sciences du Numrique de Nantes, France
tony.ribeiro@ls2n.fr

Abstract. Understanding the influences between components of dy-
namical systems such as biological networks, cellular automata and social
systems provides insights to their dynamics. Such influences of dynamical
systems are represented by logic programs with delays. In this paper, we
present a method for representation learning to distinguish different dy-
namical systems with delays based on Recurrent Neural Network (RNN).
This method relies on Long Short-Term Memory (LSTM) to extract and
encode features from input sequences of time series data. We show that
the produced high dimensional encoding can be used to distinguish dif-
ferent dynamical systems and reproduce their specific behaviors.

Keywords: dynamical systems, Boolean networks, attractors, learning
from interpretation transition, delayed systems

1 Introduction

Learning from Interpretation Transition (LFIT) [6] is an unsupervised learning
algorithm which learns the dynamics of an environment just by observing state
transitions. Applications for such learning algorithms can range from multi-agent
systems, where learning other agents’ behavior can be crucial for decision mak-
ing, to systems biology, where knowing the interaction between genes can greatly
help in the creation of drugs to treat sickness [10]. This paper introduces an al-
gorithm based on Recurrent Neural Network (RNN) that performs LFIT. The
proposed approach outputs high dimensional matrix representation of logic pro-
grams that describe the dynamics of various Boolean systems. In this paper, we
show that the learned matrix representation is equivalent to the Normal Logic
Program (NLP) that can be used to describe these dynamics. This paper ex-
tends an ongoing work [7] with new experimental results. By relying on neural
networks, we are able to perform LFIT on noisy and continuous data, where
traditional approaches [8] cannot be applied with the exception of [11]. Previous
approaches involving neural networks with logic programming [3, 2] attempts
to construct neural networks in a way that logical semantics can be mapped



into the network. However these approaches cannot be applied in a dynami-
cal environment. Another approach on using neural networks in inductive logic
programming [4] involved training the neural network to model the dynamics
of systems from a sufficient amount of measurements. In most practical cases,
especially in biological systems, sufficient training data cannot be obtained to
rely on these methods. Thus, having a method that achieves high performance
with a small amount of training data is of great importance. This is made pos-
sible because the neural network used in this paper is not trained to model the
dynamical system, but rather to output a classification of different systems and
can be trained on artificial data before being used on the real data.

The rest of the paper is organized as follows. We first cover the logical and
neural background that is required to understand this paper. Then we present
the RNN-LFIT approach. We pursue by presenting an experimental evaluation
demonstrating the validity of an approach before concluding the paper.

2 Background

The main goal of LFIT is to learn a normal logic program (NLP) describing the
dynamics of the observed system. Most existing approaches are purely logical.
Some can learn systems with delays (LFkT) [9]. Only one of the past LFIT
approaches, not handling delays, relies on a neural network [4]. In all cases, the
usual terminology is used to refer to normal logic programs (NLP). The rules
in the NLP are of the form R = A ← A1 ∧ · · · ∧ Am ∧ Am+1 · · · ∧ An where
0 ≤ m ≤ n. The inputs are transitions x(t)→ x(t+ 1) from a given time step t
to the following one where x is a vector containing all the observed variables of
the system. In the case of Markov(k) systems (i.e. systems with delayed effects
of at most k time steps), the inputs are sequences x(t− k), . . . , x(t)→ x(t+ 1).
The focus of this paper is the learning of Markov(k) systems.

The neural network that we use to learn the system’s dynamics is Long
Short-Term Memory (LSTM). LSTM is a form of Recurrent Neural Network
(RNN) that, contrary to earlier RNNs, can learn long term dependencies and
do not suffer from the vanishing gradient problem. It has been popular in many
sequence to sequence mapping application such as machine translation [12]. An
LSTM consists of a memory cell for each time step, and each memory cell has
an input gate it, an output gate ot and a forget gate ft. When a sequence of
nX time steps X = {x1, x2, . . . , xnX

} is given as input, LSTM calculates the
following for each time step:


it
ft
ot
lt

 =


σ
σ
σ

tanh

W ·
(
ht−1

xt

)
ct = ft · ct−1 + it · lt
ht = ot · ct

where W is a weight matrix, ht is the
output of each memory cell, ct is the
hidden state of each memory cell and
lt is the input to each memory cell. σ
is the sigmoid function.



(a) An LSTM memory cell

...

(b) Unfolding of an LSTM network for BPTT training

Fig. 1: Long Short Term Memory

The input gate decides how much of the input influences the hidden state.
The forget gate decides how much of the past hidden state influences the current
hidden state. The output gate is responsbile for deciding how much of the cur-
rent hidden state influences the output. A visual illustration of a single LSTM
memory cell is shown in Figure 1(a).

LSTM networks can be trained by using backpropagation through time (BPTT)
[5]. In BPTT, the LSTM is trained by unfolding across time steps, and then per-
forming gradient descent to update the weights, as illustrated in Figure 1(b).

3 Model

In this section, we propose an architecture for performing LFIT. It consists
of an encoder and decoder for the state transitions, and a neural network for
performing LFIT. A visualization of the architecture is shown in Figure 2.

The autoencoder for the input sequences is responsible for encoding discrete
time series into a feature vector that can later be manipulated by the neural
network. This sequence of vectors is then encoded into one feature vector of
dimension 2 × k × l, where k denotes the number of memory cell units in the
autoencoder LSTM, l denotes the number of LSTM layers, and this amount is
doubled because both c and h, which represents the state of the memory cell,
are considered.

The LSTM network performs LFIT, meaning that it takes as input the state
transitions and an initial program encoding and outputs a program encoding that
is consistent with the observations. The produced output is the representation
of the normal logic program. The observations are the same input sequence as
that given to the autoencoder, and in this work, the initial program is always
set to ∅ and the LSTM network is trained to produce the complete normal logic
program representation.

The goal of the architecture is to produce an encoding of past states, and
an encoding of a normal logic program, that can then be multiplied together
to predict the next state transition. This multiplication is a matrix × vector
multiplication and produces a vector of Rn where n is the number of features in



x1
x2

...

xt

...

...

p0

×

xt+1

Logic Program Representation

Encoded Past States

State decoding MLP

LSTM

LSTM

Fig. 2: A visualization of the proposed neural network models.

the logic program representation. This can be thought of as performing the Tp
operator within linear geometric space. A multi-layered perceptron (MLP) then
decodes this vector into the desired boolean state vector.

With the encoding of the state transition and an initial program, the LFIT
network learns to produce an encoded program based on the observed state
transitions. This encoded program can then be used for prediction, and in future
work we plan to decode it into a normal logic programs thus making it possible
to reason with it.

4 Evaluation

We applied our model to learn the dynamics of Boolean networks from contin-
uous time series (please refer to the Appendix for more details). The Boolean
network used in this experiments is taken from Dubrova and Teslenko [1] and
represent the cell cycle regulation of mammalians. The Boolean network is first
encoded as a logic program. Each dataset represents a time series generated from
an initial state vector of continuous values. This initial state vector is generated
by giving each of the 10 variables a random value between 0 and 1. Generated
states are then mapped back to real values: 0 becomes 0.25 + ε and 1 becomes
0.75 + ε, where ε simulates the measurement noise. The time series generated
are then used to test the predictions of the proposed model. Table 1 shows the
accuracy of the prediction made by this model. The accuracy is taken by calcu-
lating the mean-squared error (MSE) between the predicted state and the true
subsequent state.

Figure 3 shows the graph of the learned representation for different NLPs
based on principal component analysis (PCA). PCA is a popular technique for



Dataset MSE (Original) MSE (Noisy)
1 0.14 0.20
2 0.19 0.20
3 0.20 0.15
4 0.19 0.14
5 0.19 0.20

Table 1: Results of the MSE of the prediction made by the proposed model on
various datasets

Fig. 3: PCA plot of the learned representation for NLPs based on input time
series

visualizing high dimensional embeddings. The logic representation obtained from
our model is a 4× 128 matrix, by using PCA and extracting 3 of the dimensions
that separate the data the most, we can obtain the graph shown in the figure.
Each dot in the graph are representations learned separately from various state
transitions from the logic program. Note that learned representations that are
from different logic programs are clearly separated, and those that are from the
same logic programs converge to a single dot.

We observed that the model was very good at identifying the dynamics of
the system based only on a sequence of state transitions, however more work has
to be done on the prediction.

5 Conclusion and Future Work

In this paper we propose a method for learning a matrix representation of dy-
namical systems with delays. One of the interesting aspects of this work is that
we produced a logic program representation in matrix form, which when multi-
plied with a feature vector of the past states, is able to produce a vector that



represents the predicted state. This could lead to future works such as reasoning
and performing induction purely in the algebraic space.

The main contribution of this work is to devise a method of modeling sys-
tems where only limited amounts of data can be collected. Without sufficient
amount of data, purely logical methods cannot provide useful information, and
attempts at training neural networks to model the system will result in over-
fitting. Therefore we speculate that generating artificial data in order to train
a more generalized neural network may be a more successful approach in such
cases.

We are also planning to decode the NLP representation into logical form to
allow humans to reason with it. Also, providing a partial program as background
knowledge to the network is left for future work.

References

1. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB) 8(5), 1393–1399 (2011)

2. d’Avila Garcez, A.S., Broda, K., Gabbay, D.M.: Symbolic knowledge extraction
from trained neural networks: A sound approach. Artificial Intelligence 125(1),
155–207 (2001)

3. d’Avila Garcez, A.S., Zaverucha, G.: The connectionist inductive learning and logic
programming system. Applied Intelligence 11(1), 59–77 (1999)

4. Gentet, E., Tourret, S., Inoue, K.: Learning from interpretation transition using
feed-forward neural network. In: ILP 2016. pp. 27–33 (2016)

5. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural Networks 18(5), 602–610
(2005)

6. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Ma-
chine Learning 94(1), 51–79 (2014)

7. Phua, Y.J., Tourret, S., Katsumi, I.: Learning logic program representation from
delayed interpretation transition using recurrent neural networks. In: SNL 2017
(2017)

8. Ribeiro, T., Inoue, K., Sakama, C.: A BDD-based algorithm for learning from
interpretation transition. In: ILP 2013. pp. 47–63. Springer (2013)

9. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of
biological systems. Frontiers in Bioengineering and Biotechnology 2, 81 (2015)

10. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning multi-valued biological
models with delayed influence from time-series observations. In: 14th IEEE Inter-
national Conference on Machine Learning and Applications, ICMLA 2015, Miami,
FL, USA, December 9-11, 2015. pp. 25–31 (2015)

11. Ribeiro, T., Tourret, S., Folschette, M., Magnin, M., Borzacchiello, D., Chinesta,
F., Roux, O., Inoue, K.: Inductive learning from state transitions over continuous
domains. In: Proceedings of ILP 2017, to appear. Springer (2017)

12. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in neural information processing systems. pp. 3104–3112
(2014)



A Appendix

A.1 Model details

In this section we provide the parameters and details of the neural network
model that we used to perform the experiments. See the main text for high-level
summary of all model components.

Autoencoder model The state transition autoencoder takes a series of 10
state transitions, where each state is a 10 dimensional vector which represents
the state of each variables within the system. The autoencoder LSTM model
we trained have 2 layers, each with 512 memory cell units. The produced state
representation is then multiplied by a (2 × 2 × 512, 128) matrix, to produce a
128 dimension feature vector that represents the series of state transitions.

LFIT model The LFIT model takes the same input as the encoder model, but
the LSTM model have 4 layers, which is the dimension of the resulting feature
vector for the predicted state, and has 1,024 hidden units which is twice the
number of hidden units of the autoencoder model. The produced logic program
representation is then transformed into (4, 128) matrix by multiplying with a
(2× 4× 1024, 4× 128) matrix and then reshaping.

Decoder model The decoder model takes the resulting feature vector for the
predicted state, which is a vector of 4 dimension, and outputs a vector of 10
dimension with each dimension representing the state of the variables. The de-
coder model consists of a MLP with 2 hidden layers, and each layer has 32 hidden
units. Each hidden layer is activated by ReLU (Rectified Linear Unit), which is
a function that outputs 0 for all input less than 0, and is linear when the input
is larger than 0.

A.2 Training details

We used the following training parameters for our experiment:

– Training steps: 104

– Batch size: 2
– Gradient descent optimizer: Adam, learning rate and various other parame-

ters are left with the defaults for Tensorflow r1.2
– Dropout: probability of 0.3 per training step


