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Abstract. Learning the dynamics of systems, the task of interest in this
paper, is a problem to which artificial neural networks (NN) are natu-
rally suited. However, for a non-expert, a NN is not a convenient tool.
There are two reasons for this. First, the creation of an accurate NN re-
quires fine-tuning its architecture and training parameters. Second, even
the most accurate NN prediction gives no insight on the rules governing
the system. These two issues are addressed in this paper, that presents a
method to automatically fine-tune a NN to accurately predict the evolu-
tion of a dynamical system and to extract human-understandable rules
from it. Experimental results on Boolean systems are presented. They
show the relevance of this approach and open the way to many exten-
sions naturally supported by NNs, such as the handling of noisy data,
continuous variables or time delayed systems.

1 Introduction

Artificial neural networks (NNs) have been successfully applied to solve a large
variety of predictive learning and function approximation problems [1]. Often,
the motivation behind their use is their inherent ability to generalize observations
and to handle noisy data [2]. As such, it is no wonder that the NN community has
been actively researching means of understanding what happens inside NNs since
nearly as long as NNs have existed [3]. To do so, the usual method is to extract
a symbolic reasoning system from the NN, which can be made of, e.g., logic
rules [4,5,6,7,8] or decision trees [9]. To render this extraction possible a method
to build a NN with a specific architecture is usually devised first [4,5,8] but
standalone extraction methods from trained NN have also been studied [10,7].
Such techniques are not only profitable to NN researchers seeking to understand
what is captured by their NNs, but also for people in the field of Inductive Logic
Programming (ILP) [11], aiming at constructing logic programs generalizing the
observed behavior of systems given in a background theory.



This paper presents a method named NN-LFIT that uses NNs in an ILP
learning context. It differs from the neural-symbolic approaches previously men-
tioned in that it is applied not to a standard classification problem but to the
modeling of the relational dynamics of a system, i.e., of logic rules that describe
the evolution of the system through time, and in that it builds NNs and rules
using only the measures of the system. Examples of application include cellular
automata studied by physicians and several AI sub-domains such as planning
(e.g., discovering action rules), multi-agent systems (e.g., studying social net-
works evolutions) and systems biology [12,13] (e.g., understanding gene-protein
interactions, a key component in the design of better drugs). This work is of
interest to the NN community because on the one hand it enhances the meth-
ods of automatic generation and tuning of feed-forward NNs for classification
tasks from [14,6] in order to deal with dynamical systems in the case of Boolean
inputs and on the other hand it gives an explicit method relying on a state-of-
the-art symbolic reasoning tool for the extraction of easy-to-understand rules
from NNs. Moreover, the experimental results show the relevance of the neural
approach which, thanks to the generalization power of NNs, is more accurate
than its purely symbolic counterpart LFIT [15]. This suggests extensions such
as the handling of continuous data and delayed effects that are very costly for
symbolic systems like LFIT but naturally suited to NNs.

In Section 2, we present a formal description of the problem. In Section 3, the
NN-LFIT algorithm is detailed. Section 4 contains the experimental results and
their analysis and Section 5 concludes this paper. A short version of this article
was presented at ILP 2016 [16] but not included in the formal proceedings.

2 Problem Description

We adopt the representation of dynamical systems used in [15]. The standard
terminology and notations of propositional logic (PL) are used1, e.g., when refer-
ring to literals (variables or negation of variables), terms (conjunctions of literals)
and formulæ. We are especially concerned with formulæ in disjunctive normal
form (DNF), i.e., disjunctions of terms. In this framework a dynamical system
is a finite state vector evolving through time x(t) = (x1(t), x2(t), ..., xnvar

(t))
where each xi(t) is a Boolean variable. In systems biology these variables can
represent, e.g., the presence or absence of some genes or proteins inside a cell.
The aim of NN-LFIT is to output a normal logic program P that satisfies the
condition x(t+ 1) = TP (x(t)) for any t, where TP is the immediate consequence
operator for P [15]. The rules of P are of the form ∀t, xi(t+ 1)← F (x(t)) for all
i in {1 . . . , nvar} where F is a Boolean formula in DNF. Note that this formal-
ism allows us to describe only the simplest of dynamical systems, meaning those
purely Boolean and without delays i.e. where x(t + 1) depends only of x(t).

Example 1. Figure 1 is an example of application of NN-LFIT. On the left-hand
side is the input problem, made of a set of observed transitions of the system.

1 An introduction to logic is available in, e.g., [17].



Input Output
transitions: logic program:
(p(t), q(t), r(t))→ (p(t + 1), q(t + 1), r(t + 1))

p(t + 1)← q(t)
(1, 1, 1)→ (1, 1, 1) | (1, 0, 1)→ (0, 0, 1) q(t + 1)←
(0, 1, 1)→ (1, 0, 0) | (0, 0, 1)→ (0, 0, 0)

NN−LFIT−−−−−−−→ (p(t) ∧ ¬r(t))
(1, 1, 0)→ (1, 1, 1) | (0, 1, 0)→ (1, 0, 0) ∨(p(t) ∧ q(t))
(1, 0, 0)→ (0, 1, 1) | (0, 0, 0)→ (0, 0, 0) r(t + 1)← p(t)

Fig. 1: An application of NN-LFIT

...

... ...

x1(t)

x2(t)

xnvar (t)

i1

i2

invar

h1

hnhid

o1

o2

onvar

x1(t + 1)

x2(t + 1)

xn(t + 1)

w1,1,1

w1,2,1

w1,nvar,nhid

w2,1,1

w2,1,2

w2,nhid,nvar

Input layer Hidden layer Output layer

Fig. 2: NN architecture and notations used in NN-LFIT

For example, the transition (1, 0, 1)→ (0, 0, 1) indicates that if at time t, p = 1,
q = 0 and r = 1, then at time t + 1, p = 0, q = 0 and r = 1. On the right-hand
side is the logic program outputed by NN-LFIT. For instance, the first rule of
this program mean that p is true at time t + 1 iff q is true at time t and the
second rule means that q is true at time t+ 1 iff either p is true and r is false at
time t or p and q are true at time t.

The type of NN used in NN-LFIT reflects the simplicity of the systems con-
sidered. We use feed-forward NNs [2] and we furthermore restrict ourselves to
using only one hidden layer, i.e. a total of three layers, because it simplifies a lot
the architecture of the NN and its treatment. This does not limit the accuracy
of the NN as long as there are enough neurons in the hidden layer [18]. The user
is assumed to be familiar with the notion of feed-forward NN, and the notations
used in this paper are introduced in Fig. 2. The state vector x(t) describing the
dynamical system is directly fed to the input layer and the output layer predicts
the values of the next state x(t + 1). This fixes the the number of neurons on
the input and output layer to the number of variables in the system. The ac-
tivation function of the neurons is a sigmoid and the training method used is
standard: backward propagation with an adaptive rule on the gradient step and
L2 regularization to avoid over-fitting the training data. The errors made by the
trained NN on the training, validation2 and test sets are written respectively

2 Note that, as is usual, the validation set is made of 20% of the training set



by Etrain, Eval, and Etest and denote as usual the ratio of incorrect predictions
made by each output neuron averaged on all output neurons. The only param-
eter remaining to choose is the number of neurons on the hidden layer nhid,
which is automatically tuned by NN-LFIT to suit each problem as described in
the following section.

3 The NN-LFIT Algorithm

This section introduces the details of the NN-LFIT algorithm. This algorithm
automatically constructs a model of a system from the observation of its state
transitions and generate transition rules which describe the dynamic of the sys-
tem. The main steps of NN-LFIT are listed bellow:

Step 1: Create the model of the system.
1. Choose the number of hidden neurons nhid and train the NN.

(a) Initialize nhid with a trial and error algorithm.
(b) Refine nhid with a basic constructive algorithm.

2. Simplify the NN by pruning useless links.
Step 2: Extract the rules

1. Extract logical rules in DNF by querying the NN.
2. Simplify the logical rules into DNF with an external tool.

Step 1 is based on a dynamic node creation algorithm, which was originally
proposed in [14] and has been used in the REANN algorithm [6] for classification
tasks with a small number of output classes. Major differences between this work
and REANN are explicitly indicated in the following description. Step 2 is an
original contribution.

Step 1 - Creation of the model. The first building step is to generate a
fully connected NN with a well fitted architecture to learn the dynamics of the
observed system. We first use an initialization algorithm and then we refine the
architecture with a constructive algorithm.

Initialization algorithm The initial number of neurons on the hidden layer nhid

is chosen using a simple trial and error algorithm. It consists in training the
NN using several architectures with an incremental initial number of hidden
neurons starting from one and stopping when Eval no longer decreases after
a few tries. Every time we try a new architecture, we randomly initialize all
the weights. In REANN, this step is skipped. The constructive algorithm
is directly used on a randomly initialized NN with only one neuron in the
hidden layer. For real problems, one or two hidden neurons are unlikely to
be enough. Thus the initialization algorithm speeds up the training process
by identifying roughly the number of neurons needed before the constructive
algorithm, of which the training converges more slowly, fixes this number.

Constructive algorithm The architecture is improved by using a basic construc-
tive algorithm. It uses the same principle as the initialization algorithm ex-
cept that every time a hidden neuron is added, the trained weights attached
to the other neurons are left unchanged.



Pruning algorithm The purpose of this step is to remove useless links. To do
so we introduce the notion of link efficiency. To compute the efficiency of
a specific link, we multiply its weight by the weights of every other link
starting from (or ending to) the same hidden neuron it ends to (or starts
from). In other words, the efficiency of a link quantifies the best contribution
among all the paths going through this link. It is therefore logical to remove
links with low efficiency because they have less effects on the predictions
compared to others. We use a simple dichotomous search to remove as many
links as possible without increasing Etrain. After the pruning algorithm has
been run, if some hidden neurons have lost all their links to the output layer
or all their links from the input layer, they can be removed. Due to the
presence of biases in the neurons activation functions, it is not possible to
simply delete unreachable hidden neurons, because even without inputs they
can still influence the output neurons they are connected to. To remove an
unreachable hidden neuron h with a bias bh, it is thus necessary to update
the bias of each of the output neurons under its influence by adding to it the
product of its output value (computed from bh alone) with the weight linking
the two neurons before deleting the hidden neuron. On the contrary, hidden
neurons with no connection to the output layer can be removed without care
since they do not influence the output of the NN.

The REANN algorithm, that handles non-Boolean inputs, includes a dis-
cretization step which is unneeded here.

Example 2. Figure 3 shows the NNs obtained after applying each sub-step of
Step 1 on the system described in Ex. 1. The weights are omitted to improve
the readability. The error rate on the validation set is given at each step.

Step 2 - Extraction of the rules. To extract the rules underlying the tran-
sition system from the NN, each output neuron oi is considered independently.
First the sub-NN Ni , made of oi plus all the input and hidden neurons that
can reach oi and their connections to each other, is extracted from the main
NN. Then, Ni is used as a black box to construct the rules. All possible input
vectors are fed to Ni and only those that activate oi are kept. The union of these
vectors is converted into a DNF formula F that is then simplified by computing
a prime implicant cover of it using a tool called primer [19]. Formally, a prime
implicant of F is a term D such that D |= F and for any D′ such that D′ |= F ,
if D |= D′ then D′ |= D. This means that if a term D′′ is such that D′′ ⊆ D
and D′′ = D then D′′ 6|= F . The notion of a prime implicate is dual to that of
a prime implicant. It is a clause C such that F |= C and if there exists another
clause C ′ such that F |= C ′ and C |= C ′ then C ′ |= C.

Intuitively, prime implicants and prime implicates can be seen respectively
as the most specific conditions and the most general consequences of a formula.
When handling a formula in DNF, a formula syntactically simpler than but se-
mantically equivalent is obtained by replacing each term of the formula by a
prime implicant that subsumes it. To simplify F , we rely on primer to com-
pute a prime implicate cover of the CNF formula F̃ that is called the dual of
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(b) Initialized NN (after Step 1:1.(a))
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(c) Constructed NN (after Step 1:1.(b))
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Fig. 3: Step 1 of NN-LFIT

F . It is obtained by swapping conjunctions and disjunctions in formulæ, hence
transforming DNFs in CNFs and vice versa. This is done because primer only
accepts CNF inputs. A prime implicant cover of F is then generated by duality
from the prime implicate cover of F̃ generated by primer.

Example 3. Let us consider the neuron o1 of the NN drawn in Fig. 3d that
represents the system of Ex. 1. Due to the simplification of the network, o1 only
depends on i1 and i2. Then using N1 as a black box, we query all the different
combinations of (i1, i2) inputs, keeping only the ones that activate o2. In this
example, o1 is activated only in the following cases:

– i1 is off and i2 is on;
– i1 is on and i2 is on.

Then o1 can be represented by the formula: F1 = (¬i1∧i2)∨(i1∧i2). Finally, the
simplification of the formula F1 is done by computing a prime implicant cover of
F1 as explained previously, resulting in the creation of the formula F ′

1 = i2. Note
how the term of F ′

1 subsumes the two terms of F1 making F ′
1 equivalent to F1.

Going back to the original transition system, the rule describing the evolution
of p extracted from the NN is thus: p(t + 1)← q(t).

Now let us consider the neuron o2 which, this time, depends on all the inputs
i1, i2 and i3. Then using N2 as a black box, we query all the different combina-
tions of (i1, i2, i3) inputs, keeping only the ones that activate o2. In this example,
o2 is activated only in the following cases:



– i1 is on, i2 and i3 are off;
– i1 and i2 are on and i3 is off;
– i1 ,i2 and i3 are on.

Then o2 can be represented by the formula: F2 = (i1 ∧ ¬i2 ∧ ¬i3) ∨ (i1 ∧ i2 ∧
¬i3) ∨ (i1 ∧ i2 ∧ i3). Finally, the simplification of the formula F2 is done by
computing a prime implicant cover of F2 as explained previously, resulting in
the creation of the formula F ′

2 = (i1 ∧¬i4)∨ (i1 ∧ i2). Note how the first term of
F ′
2 subsumes the two first terms of F2 and the second one subsumes the two last

ones of F2 , making F ′
2 equivalent to F2 . Going back to the original transition

system, the rule describing the evolution of q extracted from the NN is thus:
q(t + 1)← (p(t) ∧ ¬r(t)) ∨ (p(t) ∧ q(t))

Finally, the neuron o3 only depends on i1. Then using N3 as a black box, we
query the two different combinations of i1. o3 is activated only when i1 is on.
Then o3 can be represented by the formula: F3 = i1. The only term is already a
prime implicant of F3 , the rule describing the evolution of q extracted from the
NN is thus: r(t + 1)← p(t).

Note that extracting rules from the fully connected NN right after the steps
1.(a) and 1.(b) using the exact same method is possible. However, as shown in
the experimental results, the performances of the NN are better after all the
steps. In addition, thanks to the pruning (step 1.2), the rule extraction process
is less time consuming because the number of input variables to consider for
each output can be significantly smaller than before the pruning.

4 Experimental Results

The benchmarks used in the experiments are three Boolean networks from [20]
also used for evaluating LFIT in [15]. They respectively describe the cell cycle
regulation of budding yeast, fission yeast and mammalians. We randomly assign
the 2nvar transitions describing these networks into the test set and training set
(that includes the validation set). Although it is standard to put around 80% of
the available data in the training set, we want to simulate the fact that real world
data are often incomplete especially in biology, hence we start by analyzing the
influence of the size of the training set on the accuracy of the NN (see Fig. 4)3. It
is measured by Etest and averaged over 30 random allocations of the data in the
different sets. We observe that each successive sub-step of NN-LFIT improves
the accuracy of the model and that, as expected, Etest decreases when the size
of the training set increases. It reaches an error rate of only 1% while training
only on 15% of the data and becomes negligible when the training covers 50% of
the data. In comparison, LFIT [15] has a nearly constant error rate on the test
set (resp. 36% and 33% on the mammalian and fission benchmarks) for all sizes
of the training set. Obviously the accuracy of the NN varies depending on the
system it models but still these results show that the generalization power of NNs

3 The results for the budding benchmark are omitted due to space limitations.



(a) mammalian benchmark (b) fission benchmark

Fig. 4: Influence of the train size on Etest for every step of NN-LFIT.

is a real advantage over a purely symbolic approach. The following experiments
are conducted allocating 15% of the data to the training set and the results are
also averaged over 30 random allocations.

Table 1 shows the parameters of the NN architectures produced by NN-
LFIT and their corresponding Etest as well as the error rate of LFIT on the test
set, already mentioned in the previous experiment. The numbers of neurons and
links decrease significantly during the pruning step (16% less hidden neurons and
65% less links) along with Etest (29% reduction) showing that the simplification
step not only reduces the complexity of the NN but also improves the model
performances through an efficient generalization. In addition, the accuracy of
NN-LFIT clearly outperforms that of LFIT.

Mammalian, nvar = 10 Fission, nvar = 10 Budding, nvar = 12

Architecture Neurons Links Etest(%) Neurons Links Etest(%) Neurons Links Etest(%)

Initial 7.10 142 3.19 9.07 181 2.23 11.4 273 0.313

Constructed 13.5 270 1.92 13.73 275 1.61 14.4 346 0.237

Pruned 11.2 98.6 1.37 11.7 97.8 1.21 12.2 91 0.156

LFIT - - 36 - - 33 - - -

Table 1: Architecture and test error evolution during NN-LFIT steps.

Finally we evaluate the correctness and simplicity of the rules learned by NN-
LFIT. For each variable xi, we identify three categories: true positives, i.e. valid
rules that output the same result as the original ones; false positives, i.e. wrong
rules that contradict the original ones; and false negatives, i.e. missing rules that
appear in the original model but are not present in the reconstructed one. Fig.
5 shows the distribution of these categories after the construction and pruning
steps of NN-LFIT for each variable4. The pruning step reduces the number of
terms (true and false positives) in almost all the rules which means they are

4 Note that a rule of a logic program as defined in [15] is a term here, except for
constant rules, e.g., x1 in Fig. 5b which is always false and thus contains no term.



(a) mammalian benchmark (b) fission benchmark

Fig. 5: Distributions of the categories of term on each variables.

simpler. Moreover the proportion of false positives and negatives diminishes
after the pruning, reflecting the increase of the accuracy of the rules observed
on Tab. 1.

5 Conclusion

In this paper, we present NN-LFIT, a method using feed-forward NNs to extract
a logic program describing a dynamical system from the observation of its evo-
lution. It includes a method to automatically tune a feed-forward NN to predict
the evolution of the considered Boolean system and an original mechanism for
the extraction of human-understandable rules from the NN. Experimental results
indicate good overall performances in term of correctness and simplicity of the
obtained rules, even when handling only as little as 15% of the data. Extensions
of NN-LFIT exploiting more capacities of NNs are planned. One possibility is to
extract the rules using a decompositional approach as in, e.g., [10] which details
a sound but incomplete extraction algorithm improving the complexity×quality
trade-off. Other extensions include the handling of noisy data and systems with
continuous variables which can be naturally handled by feed-forward NNs. We
are also considering how to use deep NNs to model systems with delays where
x(t) depends not only on x(t− 1) but also on some x(t− k) for k greater than
one.
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