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Abstract. We present a novel variational method for the simultaneous estimation
of dense scene ow and structure from stereo sequences. In sbtdrexisting
approaches that rely on a fully calibrated camera setup, we assununipéte
intrinsic camera parameters are known. To couple the estimation of msitioo;
ture and geometry, we propose a joint energy functional that integzpaeial and
temporal information from two subsequent image pairs subject to anowrk
stereo setup. We further introduce a normalisation of image and stanstaats
such that deviations from model assumptions can be interpreted in segézah
way. Finally, we suggest a separate discontinuity-preserving recatiarigo im-
prove the accuracy. Experiments on calibrated and uncalibrated datamdeate
the excellent performance of our approach. We even outperfaremtéechniques
for the recti ed case that make explicit use of the simpli ed geometry.

1 Introduction

For many tasks in computer vision, such as vehicle navigatiwotion capture and
dynamic rendering, it is essential to recover the threeedsional displacement eld
of a scene. This so callestene owrepresents the real 3D motion of objects — as
opposed to optical ow that only describes the projectionttié motion on the 2D
image plane [23]. Since depth information is required tedatne 3D motion, scene
ow can not be computed without estimating the scene stinecas well. In contrast to
structure from motion, scene ow does not relate to a staticlav Instead, objects in
the scene are allowed to move freely and in a non-rigid fashidwus, for estimating
scene ow, stereo sequences are required that provide tawesvper time instance.
Existing scene ow algorithms often treat stereo and motiodependently. In
fact, most of them rely on a sequential computation of theescew and structure
[23, 19, 26, 20, 24]. However, to improve the quality of théireation it is important
that 3D motion and shape estimation are coupled. This carlieveed by exploiting
the spatial and temporal dependencies in the image seq{2hde?, 4, 18, 6]. Among
those methods that solve for the scene ow and structurelsameously, variational ap-
proaches play a major role. Some of these techniques paraseethe problem directly
in 3D space [6]. Others are based on optical ow computata®, 2, 18] and have
consistently improved their results in the wake of incnaggiptical ow accuracy.



All of the afore mentioned methods have one aspect in comthepassume that the
cameras have been calibrated beforehand. However, intordeal with general stereo
setups without requiring an explicit calibration step, ibwld be desirable to jointly
estimate the scene ow, the scene structame the stereo geometry.

In this paper we thus propose a variational scene ow metbodricalibratedstereo
sequences. We do this by integrating the spatial and terhpdoamation from two
stereo pairs in a global energy functional while simultarspestimating the unknown
stereo geometry in consecutive time steps. Assuming teantbrnal camera parame-
ters are known, our method allows to recover the dense s¢rmuse and the dense
scene ow up to a scale factor. Apart from this novel geneedi model, we make
two additional contributions: First, within the multirdation framework required to
handle large displacements, we introduce a tensor-bagetiarofor linearised con-
straints. This notation allows to normalise these constsasuch that deviations from
the model can be interpreted as geometrical distancesn8gcaove propose a reg-
ularisation strategy that penalises discontinuities m different displacement elds
separately. This makes sense, since motion and depth citigindo not necessarily
coincide. Our experiments clearly demonstrate the ben#f tisoth contributions and
show the favourable performance of our method compareccenteechniques for the
recti ed case.

Related Work. In the context of scene ow estimation, closely related to aork
are the methods [26, 12, 18], which jointly compute spatia semporal motion elds
by minimising a single energy. In particular the method ofyHet and Devernay [12]
uses similar data constraints as our approach. Howeverpltes a joint smoothness
term to all displacement elds. A more adequate separagdrtrent of the smoothness
term is proposed by Wedelt al. [25] who decouple the estimation of structure and
motion to achieve real-time performance. However, in thase, the separate smooth-
ness term does not yield more accurate results than theiegirey work with joint
regularisation [24]. All of the previous approaches aresdam recti ed sequences and
do not consider a suitable constraint normalisation. Afsarh these methods that pa-
rameterise the displacements in terms of image coordintitee are also techniques
that work directly in 3D space. Such techniques include otbased on reprojection
errors [6], space carving and nonlinear optimisation [4fodmable meshes [9] and
Markov Random Fields [13]. Moreover, all these methods oglya previous calibra-
tion step, since they involve the use of projection matrices

In the context of optical ow estimation, the work of Valgaeet al.[22] and Zimmer
et al.[27] are closest related to our approach. While the rst onenshthe bene t of
jointly estimating dense displacements and the underlgiageo geometry, the second
one proposes a hormalisation of the data constraints tdiper@ageometrically mean-
ingful distance. In our approach we extend both ideas toesaam and unify them by
normalising both data and stereo constraints.

Paper Organisation. In Sect. 2 we derive our variational model for the uncalibdat
case. Important issues like incremental computation amdtcaint normalisation are
then discussed in Sect. 3. While Sect. 4 is dedicated to thenating minimisation
of the proposed energy, our results and a comparison tottratlire are presented in
Sect. 5. The paper concludes with a summary in Sect. 6.



2 A Scene Flow Model for Uncalibrated Stereo Sequences

In the following we consider the classical four-frame caspicted in Fig. 1. It consists
of two consecutive image pairs of a stereo sequence: thienafteg;, (x) and the right
imageg;,(x) at timet and the left image (x) and right imagey,, (x) at timet + 1.
Herex = (x;y)> denotes the location in a rectangular image domaif: R? that
is assumed to be the same for all images. We furthermore asthahthe sequence
has been recorded by a single xed stereo rig, i.e. theraegisommon fundamental
matrix F that describes the epipolar geometry [7] of the stereo paiimet andt +1.
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Fig. 1. The correspondences between the four frames of a binocular segaence.

In contrast to previous variational methods that start ounfa recti ed stereo se-
quence [24,12], our method assumes a general stereo ggomigtrunknown fun-
damental matrix. As a consequence, the stereo correspoeslelo not take on the
form of a scalar valued disparity but of a 2-dimensional dispment eld that we
will refer to asstereo ow In total, we consider four types of correspondences in our
model: two optical ows between consecutive frames of thmesaamera (left, right)
and two stereo ows between the left and right frame at theeséime instancet(

t + 1). Exploiting the dependencies in Fig. 1, these correspaceke can be parame-
terised by six unknown functions with respect to the refeeeimageg, (x): the rst
stereo owwg = (Ugt;Vst)~ , the left optical oww; = (uf;v¢)” and the difference
ow wWqg = (Ug;Vvq)” that can be interpreted as a change in optical ow or a change
in stereo ow. Moreover, we have seven degrees of freedom fitte fundamental ma-
trix F, which restricts points to lie on corresponding epipolae$, as shown in Fig. 1.
These degrees of freedom arise from the factha& a3 £ 3 matrix of rank 2 that is
de ned up to a scale factor. For given intrinsic camera patans, knowing the funda-
mental matrix is suf cient to recover projection matricg®,; P,) for the left and the
right image sequence [10]. Together with the stereo ww at timet, these matrices
allow to reconstruct a reference image point up to a scaledrtamera coordinate sys-
tem. To obtain a reconstruction at tirne 1 and the scene ow relative to the cameras,
the left optical oww;¢ and the ow changevy have to be known additionally.



Since we are interested in a joint computation of the 3D nmpstructure and geom-
etry, that are parameterised py;; Wg; Wqg)~ andF, we propose to minimise a global
energy functional that combines the spatial and tempofafimation of the different
views while imposing geometric consistency. This funciidmas the form

Z

E= (B +E+Es)dx; (1)

wherek; is the data term that models the assumption that certaindrfeggures remain
constant between the four framé&s, is the epipolar term that relates the stereo views
by the unknown epipolar geometry, aig is the smoothness term that assumes the
solution to be piecewise smooth. In the following we willaiébn the different terms.

2.1 Data Constraints

Let us now derive the four constraints that model the refakietween the four input
images w.r.t. the reference image. For simplicity, let usuage for the moment that
the brightness of corresponding image points remains anhbetween all frames [11].
Following the enumeration of constraints in Fig. 1 we obthimexpressions

Bor = 2 oo (X + Wi) | 91|(X)12¢ ; ¢ )
Ep, = 2 !jga(x + Wi+ Wee + Wa)i G (X + We)j® 3)
Eos = 2 'jou (X + W) i Gu(x)i? ¢ 4)
Boa = 2 'joor (X + Wi+ Wer + Wa) i Goi(X + We)j? ()

The rst two terms correspond to an optical ow constraintieen two time instances,
while the last two terms arise from a stereo correspondencersecutive time steps.
As in [12] we choose to penalise all constraints separatelgesoutliers for optical
ow and stereo do not necessarily occurFiJn the same locatdanpenalty functior?
we choose the regulariséd norm? (s?) = = s2 + 22 with 2 = 0:001as proposed e.g.
in [2]. In our nal model we include the gradient constancysamption to cope with
varying illumination and extend the expressions above tBR&8our images. Then the
rst term (2) becomes

!
A)<3 o

3 — — — —

Epy = ° G W) i Gu(X) T+ T dy(x+wir gy(x) ;i (6)
i=1
where® | 0 is a weighting factor, the symbol = (@;@)” denotes the spatial

gradient operator, ang', g%, andg® represent the three RGB colour channels. The
constraintdp, , Epz andEp, are extended in the same way.

2.2 Occlusion Scores

In order to handle situations, where parts of the scene becaaiuded due to motion or
a change of camera viewpoint, we additionally introducdusion scores. For instance,



the scoreoy; : - ! f 0;1g takes on the value 1 for points in the reference image
gy that are visible ing;,, and 0 otherwise. Once the fundamental matrix is known
and the projection matrice®y; P,) have been computed, the valuesof can be
determined by projecting the reconstruction at titeack on the image plane using
P 2. Of all the points that reproject onto the same location,dhe that lies closest
to the optical centre oP 2 will be marked as visible. This technique is also known
asZ-buffering The scores, ando,, for the image pairggui; gz) and(gy; g2r) are
determined analogously by reprojection on time 1 with P; and P,, respectively.
The four data terms are multiplied by the occlusion scoresvitch them off where the
constancy assumptions can not be ful lled. This yields thal data term

Ep = 0p Ep1 + 017 Opr Epz + 017 Epg + 021 0o Eps - (7)

Note that each term has to be multiplied by the occlusionescof the images that
occur in the according data constraint, since the reappearaf points ingy, that are
occluded ing;, or gy is not noticed by the reference image.

2.3 Epipolar Constraints

Let us now model the geometric relation between the left gid images of the stereo

pairs(gu; dir) and(dy; g2r). To this end we introduce two terms that relate the un-

known ows and the fundamental matrix via the respective epipolar constraints [16]:
3 ,

Bep =2 i(X + W)y F (X)h¢2 ,and 8

3 .
Egp =2 |(X"' wi + Wst"‘Wd);':(x"'Wf)hq;2 : %)

Here the subscript h denotes the use of homogeneous comslina(x), = (x;y; 1)” .
Both termsEg; andEg; are soft constraints that penalise deviations of a poimhfits
epipolar line. The use &f increases the robustness of the estimatioR @fith respect
to outliers. While the rst epipolar term can be modelled cdetgly in accordance
with [22], the second epipolar constraint is much more cacaptd: Although it is lin-
ear inwg andw g, it is quadratic with respect to the left optical ows. This makes the
minimisation of the corresponding energy dif cult. To netreeless obtain a linear ex-
pression in all ows we thus propose to introduce an auxjliariablew , = (ua;Vva)~,
which is assumed to be closewq, and split up the epipolar constraint such that
andw , take on symmetric roles. In this way we can approximate t&ywia

3

— a 1i > ¢2
Eer = 5 (X + Wi+ Wg + Wg)p F (X + Wa)y ) (10)
1i > ¢2 1 | i .2¢ .
+5 (X + Wa+ Wg + Wg)p F (X + wy), + 1w Wyj ;

where! is the weight of the additional similarity term that is respd to couplev , and
ws. Introducing the weights; and , we obtain the nal epipolar term

Ee= 1B+ 2B (11)

To avoid the trivial solution we additionally impose the straintkF k%, =1 on the
Frobenius norm of the fundamental matfixas proposed in [14].



2.4 Smoothness Constraints

Let us nally detail on the design of the smoothness termtdtk is to regularise the
problem in locations where the remaining terms do not guaeaa unique solution
(aperture problem) or to Il in information in the presenckeautliers, e.g. occlusions.
Because there often exists an overlap between the disodr@sofw;, wg andwy,
the authors of [12] suggested a joint piecewise smoothnessngtion on all ows.
With our method, however, we want to cover the general casgemhe ow and stereo
discontinuities do not necessarily coincide, e.g. foradéht in-plane motions. There-
fore we propose a separate penalisation of the ow gradients

Eor= 2 r wii?' Esp= 2 ' wai? ,andEss= 2 jr w2 : (12
S1 jr wij© ,Es2 jr wetj© , andEss irwaic 5 (12)

with jr waj? = jr uaj? + jr vaj?, wheren stands for f, st or d. The penalisation via
the subquadratic functioh, as de ned before, equals total variation (TV) regularisa-
tion [21]. This gives rise to the smoothness term

Es= ® Es; + ® Esp + ®;Es3 ; (13)

where®y, ®,, ®; are positive weights that balance the smoothness assumafitiothe
three displacement elds.

3 Linearisation and Normalisation

Substituting all data, epipolar and smoothness terms ijtavé obtain an energy func-
tional that is rather complicated. Moreover, it is non-aawsince the unknown ows
appear implicitly in the arguments of the data term. A comrswategy to resolve this
problem is to perform an incremental computation of the wmkms within a coarse-
to- ne multiscale approach. This can either be done by a y&iht iteration on the
Euler-Lagrange equations [2] or by a series of energiesapptoximate the original
model on every resolution level [17]. In the following wecétito the second strategy
and discuss how the corresponding energy for each leveledafived. Assuming that
solutionswy¢, wgt, Wq andw , are available from a coarser scale, we aim at expressing
the total energy in terms of the incrementss = (dus; dvs), dwg = (dug; dvst),
dwy = (dug;dvyg), anddw, = (dug; dvy). This allows us to introduce a tensor nota-
tion which offers two advantages: (i) The convexity of theuléing energy functional
in the ow increments becomes explicit, and (ii) a nhormdiisa strategy can be applied
that makes deviations from the model assumptions intexplein a geometric way.

3.1 Linearisation in the Data Term

Letus rstdiscuss the differential form of the data term hg £xample of the simpli ed
data constraint from expression (3). Using a rst order dagxpansion to linearise this
expression with respect to all increments we obtain theamation
ng(X + Wi+ dwi + We + dWg + Wg + de) i glr(x T Wt + dWst)
Ya Or + @gzr ¢(de + dust + dud) + @QZr ¢(de + stt + dVd)
i Ouri @i ¢(dust) i @glr ¢(dvst) - (14)



Rearranging the terms and using the following abbreviation

Oz = Oar(X + W+ Wgr + W) i Qur(X + W), (15)
Oorx = @Or(X + Wi+ Wet + Wq), Oz = @02z, (16)
Qory = @QZr(X + Wi+ Wg + Wy) , Qoyz = @922 ; (17)

we can rewrite the linearised term in (14) as inner product
QZ d = Qorxdur + Qory OVt + Oox, dust + oy, AVt + QorxdUug + orydvy + Qo ; (18)

where the two vectors are de ned @s := ( Gzrx; Gory; Ooxz ; O2yz 5 G2rx; Gory; O22)” and

d := (duf; dvs; dug; dve; dug; dvg; 1) . The equatiomg; d = O can be seen as a
multidimensional extension of the classical optical ownstraint [11]. Inserting it as
squared argument into the penalideyields the robusti ed quadratic form

Calp 2¢:ai R ¢
Ep2 (92 d) dJ,d (19)

whereJ, = g,9; is a7 £ 7 matrix that provides coupling between all increments.
By analogy to the motion tensor notation in optical ow estition [3], we denote,
asscene ow tensarThe linearisation of the three remaining data constrasntarried
out accordingly, and results in the£ 7 scene ow tensorsl;, J3 andJ,. Missing
dependencies between the variables give rise to zero tensiies. Including the gra-
dient constancy assumption and extending it to RGB coloagigs as in equation (6)
is straightforward and leads to a weighted sum of the coomdipg tensors [27].

3.2 Treatment of the Epipolar Term

The rstepipolar term(x + wg + dws; )7 F (X),, is already linear in the incremediv ; .
As in the case of the data terms we can thus de ne the veigter ( dug;; dvs;; 1)” and
write the argument of the rst epipolar term (8) as a quadr&irm

EE_aid>Ed¢' 20
1= 1E10; (20)

The corresponding epipolar tend®y of size3£ 3isde ned agas; by;q1)” (ag; by ),
wherea; andby, are the coef cients of the epipolar lile= F (x)n, andq; is the scaled
distance of the point to this line [22]. However, care has to be taken with respact t
symmetry when introducing the ow increments in the secopipelar term (10). The
expanded differential variant of its argument reads

%| (X + W+ dws + W + AW + Wy + dwg), F (X + W,),
+%' (X + Wa+ dWa + We + dWg + Wq + dwg), F (X + i), 2
+%' (X + Wa+ dwa), F™ (X + Wi+ We + Wg),
+1(x+ wp o+ dw)) F7 (X + Wat We + W)y, - (21)

where we have additionally included the last two terms withttansposed fundamental
matrix to ensure a symmetrical treatment of the left andtrigiv increments. This is



required since as opposed to the rst epipolar constrainatians can occur in both
the left and the right image position. Since all terms of eggion (21) are linear in the
increments, the second epipolar term can be written as

. ¢
Eeo= 2 l%dZEzdz"' 703Esdg+ 7d7E,dy+ Fd3ESds

1 (wr+ dwr i Wa i dwaj)? (22)
where we have de ned the following vectors:

dz = (dus + dug + dug; dvs + dvg; + dvg; 1), dz =(dug;dva;1), (23)
ds = (dua + dug + dug; dva + dvg + dvg; 1),  ds = (dus;dve;1) @ (24)

As in the case of the rst epipolar tensor, the entries of ttieenepipolar tensorf§; =
(a;b;g) (a;hb;q), for2. i- 5, are related to the coef cients of the epipolar lines.

3.3 Constraint Normalisation

In [27] the authors demonstrate that the linearised brigggrconstancy assumption for
optical ow can be interpreted geometrically as a weightéstathce of the estimated
ow to the line described by the optical ow constraint. Egalently, the multidimen-
sional brightness constancy constraint in (18) can be densil as the weighted dis-
tance of the scene ow to the hyperplane describedibg = 0. To obtain the actual
distance to the hyperplane we have to normalise the consinadividing it by the mag-
nitude of the hyperplane normal. Since the last entny sfconstant, this normal vector
is given by the rst six components @2, ie.n = ( Oorx s Gory s O2xz 5 Q2yz 5 Q2rx g2ry)> .
Now it becomes explicit why it is desirable to penalise theuakdistance to the hy-
perplane: Unlike the original constraint this distancedoet scale with the magnitude
of the derivatives contained ip. This prevents overweighting at unreliable structures
such as noise or occlusions that typically manifest thevasah large image gradients.
The corresponding normalised quadratic form is given by

A !
1 Jo
—— (g d)? = d pr—="— d=d Rd; 25
JnJ2+ 32 (92 ) i5:l (Jz)ii + 32 j)Z ( )

where® = 0:1is a constant that avoids division by zero, aijenotes the normalised
version ofJ,. We apply the same normalisation strategy to the remainatg tbrms.
For the extension to the gradient constancy and colour imagerefer to [27] .

Our normalisation idea is, however, not restricted to thenec ow tensors only.
By normalising the epipolar tensors as well we obtain a widsled geometrical error
measure from computer vision: the distance to the epipolas|[16]. Analogously to
(25), we can derive the normalisation factor for the epiptdasors. It reads

- P
NP+ = P (B +3% = @3 (26)

Division by this factor then results in the normalised epipdnensor@i ,forl- i- 5.



4 Minimisation and Numerical Solution

By combining all terms derived in Sect. 3, we obtain the folltg differential form of
our energy that has to be minimised at each level of the cdarsee approach:

E(dwy; dwt; dwg; dwa; F) =
Z M 3 . 3 .
02 d>Bd +oy0x2 d”Hd + 00

3 4 3 -
d>Rd +oy0,2 d>Hd
3 4 3 7

+ 712 diBd, + 2 1diB,d+ 1diR,d+ 1di R, d,+ 2dZ B ds

3 4 3 . 3
+ @2 r (Wit dwp)i® + @2 jr (We + dwg)i® + @2 jr (Wg + dwg)j?

3 -1
+ 21 jwi+ dw Wai dwaj®  dx , with kFkEy, =1 . 27)

Note that this energy is convex in the ow incremedts;, dw ¢, dw 4 and the auxiliary
variabledw 5, since only squared arguments and convex penaliser funsciice used.
In order to minimise it under the given constrakitkZ, = 1, we follow [22] and use
the method of the Lagrange multipliers. We thus obtain thgrémagian

L(dws; dwg;dwg; dwa; F;, ) = E(dws;dwe;dwg;dwa; F)+ , (1i f7F) ; (28)

where, is the Lagrangian multiplier, and is a vector that contains all 9 entriesfof
This formulation suggests an alternating minimisatiorhvito steps:

(i) Minimising the Lagrangian with respect to the ow incremts leads to the corre-
sponding Euler-Lagrange equations. By discretising themnite difference approxi-
mations, one ends up with a nonlinear system of equationtodtie robust functios .
To ensure fast convergence, we solve this system with aglstitinal multigrid frame-
work based on a nonlinear point coupled Gaul3-Seidel soBjetr] the coarse-to- ne
pyramid we use a downsampling factor'of 0:9, while the images are warped onto
the reference image using Coons patches based on bicudripadtdtion [5].

(ii) Differentiation of the Lagrangian with respect to thenflamental matrix re-
sults in an eigenvalue problem [22] that is nonlinear du@ tand the normalisation
weights (26). To solve this eigenvalue problem we apply arghted total least squares
method in which the weights and the argument afre xed iteratively. We would like
to point out that this step of the minimisation estimatesftirelamental matrix from
thedensecorrespondences of both stereo pairs.

The alternating computation of the ow increments and thedamental matrix
works as follows: The Euler-Lagrange equations are solvd & current estimate
of the fundamental matrix. Using the newly computed ows fandamental matrix
is updated by solving the eigenvalue problem. We extractiagiacamera matrices
and perform a dense scene reconstruction by triangulati@h After recomputing the
occlusion scores, the Euler-Lagrange equations are tHeadsagain. This iterative
process is repeated until convergence. We initialise tlodusion scores with 1 and
compute the rst iteration with disabled epipolar consttai
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Table 1.Evaluation of different methods on the recti ed sphere sequencdiReon Intel Core2
1.86 GHz:» 420 seconds. Paramete®:=2,®,=1:5,®=0:3," 1= »,=0:1,°=0:1,1 =1.

RMSE AAE
Method (Ur; Vs Ua;va)  (Us;ve)  (Uste;Vst) | (Ut ve)
Our method initialised with [8] 1.76 0.63 3.8 1.17
Our method 1.78 0.63 55 1.16
Wedelet al.[24] with ground truth 2.40 0.65 i 1.40
Wedelet al.[24] (87%) 2.45 0.66 2.9 1.50
Huguet and Devernay [12] 251 0.69 3.8 1.75
Wedelet al.[24] (100%) 2.55 0.77 10.9 2.76

5 Experiments

We evaluate the performance of our method on syntheticsssrguences with ground
truth and on real world images. To assess the quality we ctartha root mean square
error RMSE of the scene owjus; vs; Uqg; Vq), the optical ow (uf;v¢) and the stereo
ow (ug; Vst), as well as the absolute angular error AAE of the optical eee [24].
As a quality measure for the fundamental matrix we use thar dpr according to [7].

It is determined by using the estimated fundamental matrbabhdomly create a large
number (100,000) of correspondences and the ground trattafuental matrix to es-
tablish their epipolar lines. After computing the averaggtahce between all points and
lines, the roles of the matrices are reversed to obtain a gtnimmeasure in pixel units.

In a rst experiment we consider the synthetic sphere secg@f Huguet and De-
vernay [12] fttp://devernay.free.frivision/varscene gwivhich is composed of four
512£ 512 images of a textured sphere with rotating hemispherespiie the fact that
this sequence is recti ed, and thus constitutes a specie @dth vanishing vertical
components of the stereo ow, it is a good benchmark for caiispa against existing
techniques. Additionally it requires to estimate largeestedisplacements which pose
a challenge to variational methods. In this context we foltbe idea of [24] and [12],
and initialise(ust ; vst) with a dedicated method for large displacements. To thiswad
use a variant of the recent optical ow technique of [1] withnstraint normalisation
and SIFT matches [15] as prior. For consistency we also deduresults for initiali-
sation with the belief propagation algorithm of [8], as usgydHuguet and Devernay.
However, this initialisation is only applicable for reotid images.

Table 1 compares our results with those of the variationahots of Huguet and
Devernay [12] and Wedaedt al. [24] and lists the errors computed within the sphere.
With a substantial improvement in the RMSE fax; vs; ug; vq) and in the AAE we
consistently outperform the other approaches for the scenalthough these methods
are speci cally tailored to the recti ed case. The lower RE8f the method of Wedel
et al. for (ug; Vst) is due to the fact it uses sparse stereo correspondencesotinat
provide results in occluded regions. However, the accunétlyeir estimated scene ow
is signi cantly lower than ours. This even holds if they ug®und truthfor the stereo
correspondences. The good performance of our method iseatszied in the accurate
estimation of the stereo geometry: We obtain a subpixeligigtofd: = 0:019
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In a second experiment we evaluate the performance for agestereo geometry.
To this end we generated a synthetic sequence of four frartlegmund truth (avail-
able athttp://www.mia.uni-saarland.de/valgaerts/eccv10fezew). It is similar to the
one of the previous experiment: A textured sphere with mogathemispheres is posi-
tioned against a plane in the background as shown in Fig. @efitonstrate the bene ts
of the different design steps in our model we start from aardrthat performs a joint
regularisation of the ows as in [12] and does not include stoaint normalisation. We
then re ne the model by subsequently adding the normatisadind the separate regu-
lariser. Table 2 lists the progressively improving resulise errors are computed in the
non-occluded regions of the whole image domain. The AAE idiated because it is
not de ned for the zero ow in the background. In Fig. 2 the qomted ow elds are
shown together with the obtained occlusion scores, the 8&nsruction and the scene
ow. As one can see, the estimated displacements resemblgrtund truth very well.
Again, this is con rmed by a subpixel precisiond¢ = 0:021for the stereo geometry.

Fig. 2. Results for the general sphere sequence (image sizZeHl12). Top Row: (a) Left frame

at rst time step.(b) + (¢) + (d) Ground truth of left optical ow, rst stereo ow and ow

change. Colour encodes the direction, brightness the magnitude (see ciecle). Occlusions
are coloured pinkMiddle Row: (e) Left frame at second time steff) + (g) + (h) Estimated
left optical ow, rst stereo ow and ow change.Bottom Row: (i) + (j) Estimated occlusion
score;; andoy . (k) Estimated scene reconstructidh).Estimated scene ow. Runtime: 420

seconds. Paramete®; =1:5, ® =2,®=0:8, 1= »,=0:03,°=0:1,t =1.
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Table 2. Evaluation of different variants of our method on the general splegreence.

RMSE
Method (us; Ve Ud;va)  (ur;ve) (Ust; Vst)
joint regularisation 0.67 0.64 2.08
joint regularisation  + normalisation| 0.63 0.59 1.86
separate regularisation normalisation 0.61 0.59 1.61

Fig. 3. Results for real world sequences (image sizefA340). Top Row: (a) + (b) Smiling left
frames at consecutive time stefs) + (d) Closing Mouth left frames at consecutive time steps.
Bottom Row: (e) Reconstruction and overlayed scene ow f8miling Increasing magnitude
from green to red(f) Close-upSmiling (g) Close-upClosing Mouth Runtime:» 260 seconds.
Parameters®; =15, ®, =20, ® =15, 1= ,=0:5,°=30,1 =1.

For our last experiment we have recorded two uncalibrag@stsequences to test
the performance of our method on real world data. The reatdgtshown in Fig. 3 for the
sequenceSmilingandClosing Mouth As one can verify in both cases the 3D structure
and the motion of the face are captured well and look verystalWe emphasise that
these two results are obtained from only four frames. Addél real world results can
be found athttp://www.mia.uni-saarland.de/valgaerts/eccv10/scew.
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6 Conclusions

We have presented a general approach for the dense estinohtazene ow, scene
structure and geometry from uncalibrated stereo seque@cesontributions are three-
fold: (i) We generalise the classical four-frame case tatiaty stereo setups by em-
bedding epipolar constraints into a joint energy functlomith data and smoothness
terms. (ii) We introduce a tensor notation which allows usiéomalise the data and
stereo constraints such that they become geometricadlyprdtable. (i) We present a
separate robust cation of the smoothness terms to handleesios where ow discon-
tinuities do not coincide. Our evaluation has demonstrtitatthe proposed approach is
not only more general than existing methods but also morerate Even without ex-
plicitly knowing the stereo geometry, we outperform redeechniques that have been
speci cally designed for the recti ed case. Furthermoree tstereo geometry is esti-
mated with sub-pixel precision and reconstructions folweald data show that scene
structure and motion are determined with high quality. Thiésarly demonstrates the
bene t of a joint computation of ow, structure and geometry
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