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Abstract. We present a novel variational method for the simultaneous estimation
of dense scene �ow and structure from stereo sequences. In contrast to existing
approaches that rely on a fully calibrated camera setup, we assume thatonly the
intrinsic camera parameters are known. To couple the estimation of motion,struc-
ture and geometry, we propose a joint energy functional that integratesspatial and
temporal information from two subsequent image pairs subject to an unknown
stereo setup. We further introduce a normalisation of image and stereo constraints
such that deviations from model assumptions can be interpreted in a geometrical
way. Finally, we suggest a separate discontinuity-preserving regularisation to im-
prove the accuracy. Experiments on calibrated and uncalibrated data demonstrate
the excellent performance of our approach. We even outperform recent techniques
for the recti�ed case that make explicit use of the simpli�ed geometry.

1 Introduction

For many tasks in computer vision, such as vehicle navigation, motion capture and
dynamic rendering, it is essential to recover the three-dimensional displacement �eld
of a scene. This so calledscene �owrepresents the real 3D motion of objects – as
opposed to optical �ow that only describes the projection ofthis motion on the 2D
image plane [23]. Since depth information is required to determine 3D motion, scene
�ow can not be computed without estimating the scene structure as well. In contrast to
structure from motion, scene �ow does not relate to a static world. Instead, objects in
the scene are allowed to move freely and in a non-rigid fashion. Thus, for estimating
scene �ow, stereo sequences are required that provide two views per time instance.

Existing scene �ow algorithms often treat stereo and motionindependently. In
fact, most of them rely on a sequential computation of the scene �ow and structure
[23, 19, 26, 20, 24]. However, to improve the quality of the estimation it is important
that 3D motion and shape estimation are coupled. This can be achieved by exploiting
the spatial and temporal dependencies in the image sequence[26, 12, 4, 18, 6]. Among
those methods that solve for the scene �ow and structure simultaneously, variational ap-
proaches play a major role. Some of these techniques parameterise the problem directly
in 3D space [6]. Others are based on optical �ow computation [26, 12, 18] and have
consistently improved their results in the wake of increasing optical �ow accuracy.
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All of the afore mentioned methods have one aspect in common:they assume that the
cameras have been calibrated beforehand. However, in orderto deal with general stereo
setups without requiring an explicit calibration step, it would be desirable to jointly
estimate the scene �ow, the scene structureandthe stereo geometry.

In this paper we thus propose a variational scene �ow method foruncalibratedstereo
sequences. We do this by integrating the spatial and temporal information from two
stereo pairs in a global energy functional while simultaneously estimating the unknown
stereo geometry in consecutive time steps. Assuming that the internal camera parame-
ters are known, our method allows to recover the dense scene structure and the dense
scene �ow up to a scale factor. Apart from this novel generalised model, we make
two additional contributions: First, within the multiresolution framework required to
handle large displacements, we introduce a tensor-based notation for linearised con-
straints. This notation allows to normalise these constraints such that deviations from
the model can be interpreted as geometrical distances. Secondly, we propose a reg-
ularisation strategy that penalises discontinuities in the different displacement �elds
separately. This makes sense, since motion and depth continuities do not necessarily
coincide. Our experiments clearly demonstrate the bene�tsof both contributions and
show the favourable performance of our method compared to recent techniques for the
recti�ed case.

Related Work. In the context of scene �ow estimation, closely related to our work
are the methods [26, 12, 18], which jointly compute spatial and temporal motion �elds
by minimising a single energy. In particular the method of Huguet and Devernay [12]
uses similar data constraints as our approach. However, it applies a joint smoothness
term to all displacement �elds. A more adequate separate treatment of the smoothness
term is proposed by Wedelet al. [25] who decouple the estimation of structure and
motion to achieve real-time performance. However, in theircase, the separate smooth-
ness term does not yield more accurate results than their preceding work with joint
regularisation [24]. All of the previous approaches are based on recti�ed sequences and
do not consider a suitable constraint normalisation. Apartfrom these methods that pa-
rameterise the displacements in terms of image coordinates, there are also techniques
that work directly in 3D space. Such techniques include methods based on reprojection
errors [6], space carving and nonlinear optimisation [4], deformable meshes [9] and
Markov Random Fields [13]. Moreover, all these methods relyon a previous calibra-
tion step, since they involve the use of projection matrices.

In the context of optical �ow estimation, the work of Valgaertset al.[22] and Zimmer
et al. [27] are closest related to our approach. While the �rst one shows the bene�t of
jointly estimating dense displacements and the underlyingstereo geometry, the second
one proposes a normalisation of the data constraints to penalise a geometrically mean-
ingful distance. In our approach we extend both ideas to scene �ow and unify them by
normalising both data and stereo constraints.

Paper Organisation. In Sect. 2 we derive our variational model for the uncalibrated
case. Important issues like incremental computation and constraint normalisation are
then discussed in Sect. 3. While Sect. 4 is dedicated to the alternating minimisation
of the proposed energy, our results and a comparison to the literature are presented in
Sect. 5. The paper concludes with a summary in Sect. 6.
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2 A Scene Flow Model for Uncalibrated Stereo Sequences

In the following we consider the classical four-frame case depicted in Fig. 1. It consists
of two consecutive image pairs of a stereo sequence: the leftimageg1l (x ) and the right
imageg1r (x ) at timet and the left imageg2l (x ) and right imageg2r (x ) at timet + 1 .
Herex = ( x; y)> denotes the location in a rectangular image domain ½ R2 that
is assumed to be the same for all images. We furthermore assume that the sequence
has been recorded by a single �xed stereo rig, i.e. there exists a common fundamental
matrixF that describes the epipolar geometry [7] of the stereo pairsat timet andt + 1 .
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Fig. 1.The correspondences between the four frames of a binocular stereosequence.

In contrast to previous variational methods that start out from a recti�ed stereo se-
quence [24, 12], our method assumes a general stereo geometry with unknown fun-
damental matrix. As a consequence, the stereo correspondences do not take on the
form of a scalar valued disparity but of a 2-dimensional displacement �eld that we
will refer to asstereo �ow. In total, we consider four types of correspondences in our
model: two optical �ows between consecutive frames of the same camera (left, right)
and two stereo �ows between the left and right frame at the same time instance (t,
t + 1 ). Exploiting the dependencies in Fig. 1, these correspondences can be parame-
terised by six unknown functions with respect to the reference imageg1l (x ): the �rst
stereo �ow w st = ( ust ; vst )> , the left optical �ow w f = ( uf ; vf )> and the difference
�ow w d = ( ud ; vd )> that can be interpreted as a change in optical �ow or a change
in stereo �ow. Moreover, we have seven degrees of freedom from the fundamental ma-
trix F , which restricts points to lie on corresponding epipolar lines, as shown in Fig. 1.
These degrees of freedom arise from the fact thatF is a3 £ 3 matrix of rank 2 that is
de�ned up to a scale factor. For given intrinsic camera parameters, knowing the funda-
mental matrix is suf�cient to recover projection matrices(P1; P2) for the left and the
right image sequence [10]. Together with the stereo �oww st at timet, these matrices
allow to reconstruct a reference image point up to a scale in the camera coordinate sys-
tem. To obtain a reconstruction at timet + 1 and the scene �ow relative to the cameras,
the left optical �ow w f and the �ow changew d have to be known additionally.
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Since we are interested in a joint computation of the 3D motion, structure and geom-
etry, that are parameterised by(w f ; w st ; w d )> andF , we propose to minimise a global
energy functional that combines the spatial and temporal information of the different
views while imposing geometric consistency. This functional has the form

E =
Z


(ED + EE + ES) dx ; (1)

whereEd is the data term that models the assumption that certain image features remain
constant between the four frames,EE is the epipolar term that relates the stereo views
by the unknown epipolar geometry, andES is the smoothness term that assumes the
solution to be piecewise smooth. In the following we will detail on the different terms.

2.1 Data Constraints

Let us now derive the four constraints that model the relation between the four input
images w.r.t. the reference image. For simplicity, let us assume for the moment that
the brightness of corresponding image points remains constant between all frames [11].
Following the enumeration of constraints in Fig. 1 we obtainthe expressions

ED1 = ª
¡
jg2l (x + w f ) ¡ g1l (x )j2

¢
; (2)

ED2 = ª
¡
jg2r (x + w f + w st + w d ) ¡ g1r (x + w st )j2

¢
; (3)

ED3 = ª
¡
jg1r (x + w st ) ¡ g1l (x )j2

¢
; (4)

ED4 = ª
¡
jg2r (x + w f + w st + w d ) ¡ g2l (x + w f )j2

¢
: (5)

The �rst two terms correspond to an optical �ow constraint between two time instances,
while the last two terms arise from a stereo correspondence at consecutive time steps.
As in [12] we choose to penalise all constraints separately since outliers for optical
�ow and stereo do not necessarily occur in the same location.As penalty functionª
we choose the regularisedL 1 normª (s2) =

p
s2 + ²2 with ² = 0 :001as proposed e.g.

in [2]. In our �nal model we include the gradient constancy assumption to cope with
varying illumination and extend the expressions above to RGB colour images. Then the
�rst term (2) becomes

ED1 = ª

Ã
3X

i =1

³ ¯
¯gi

2l (x + w f ) ¡ gi
1l (x )

¯
¯2

+ °
¯
¯r gi

2l (x + w f ) ¡ r gi
1l (x )

¯
¯2

´
!

; (6)

where° ¸ 0 is a weighting factor, the symbolr = ( @x ; @y )> denotes the spatial
gradient operator, andg1, g2, andg3 represent the three RGB colour channels. The
constraintsED2 , ED3 andED4 are extended in the same way.

2.2 Occlusion Scores

In order to handle situations, where parts of the scene become occluded due to motion or
a change of camera viewpoint, we additionally introduce occlusion scores. For instance,
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the scoreo1r :  ! f 0; 1g takes on the value 1 for points in the reference image
g1l that are visible ing1r , and 0 otherwise. Once the fundamental matrix is known
and the projection matrices(P1; P2) have been computed, the values ofo1r can be
determined by projecting the reconstruction at timet back on the image plane using
P2. Of all the points that reproject onto the same location, theone that lies closest
to the optical centre ofP2 will be marked as visible. This technique is also known
asZ-buffering. The scoreso2l ando2r for the image pairs(g1l ; g2l ) and(g1l ; g2r ) are
determined analogously by reprojection on timet + 1 with P1 andP2, respectively.
The four data terms are multiplied by the occlusion scores toswitch them off where the
constancy assumptions can not be ful�lled. This yields the �nal data term

ED = o2l ED1 + o1r o2r ED2 + o1r ED3 + o2l o2r ED4 : (7)

Note that each term has to be multiplied by the occlusion scores of the images that
occur in the according data constraint, since the reappearance of points ing2r that are
occluded ing1r or g2l is not noticed by the reference image.

2.3 Epipolar Constraints

Let us now model the geometric relation between the left and right images of the stereo
pairs (g1l ; g1r ) and (g2l ; g2r ). To this end we introduce two terms that relate the un-
known �ows and the fundamental matrixF via the respective epipolar constraints [16]:

EE1 = ª
³ ¡

(x + w st )>
h F (x )h

¢2
´

, and (8)

EE2 = ª
³ ¡

(x + w f + w st + w d )>
h F (x + w f )h

¢2
´

: (9)

Here the subscript h denotes the use of homogeneous coordinates, i.e.(x )h = ( x; y; 1)> .
Both termsEE1 andEE2 are soft constraints that penalise deviations of a point from its
epipolar line. The use ofª increases the robustness of the estimation ofF with respect
to outliers. While the �rst epipolar term can be modelled completely in accordance
with [22], the second epipolar constraint is much more complicated: Although it is lin-
ear inw st andw d , it is quadratic with respect to the left optical �oww f . This makes the
minimisation of the corresponding energy dif�cult. To nevertheless obtain a linear ex-
pression in all �ows we thus propose to introduce an auxiliary variablew a = ( ua; va)> ,
which is assumed to be close tow f , and split up the epipolar constraint such thatw f

andw a take on symmetric roles. In this way we can approximate term (9) via

EE2 = ª
³

1
2

¡
(x + w f + w st + w d )>

h F (x + w a)h

¢2
(10)

+ 1
2

¡
(x + w a + w st + w d )>

h F (x + w f )h

¢2
´

+ ¹
¡
jw f ¡ w aj2

¢
;

where¹ is the weight of the additional similarity term that is required to couplew a and
w f . Introducing the weights̄1 and¯ 2 we obtain the �nal epipolar term

EE = ¯ 1 EE1 + ¯ 2 EE2 : (11)

To avoid the trivial solution we additionally impose the constraintkF k2
Frob = 1 on the

Frobenius norm of the fundamental matrixF as proposed in [14].
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2.4 Smoothness Constraints

Let us �nally detail on the design of the smoothness term. Itstask is to regularise the
problem in locations where the remaining terms do not guarantee a unique solution
(aperture problem) or to �ll in information in the presence of outliers, e.g. occlusions.
Because there often exists an overlap between the discontinuities ofw f , w st andw d ,
the authors of [12] suggested a joint piecewise smoothness assumption on all �ows.
With our method, however, we want to cover the general case where the �ow and stereo
discontinuities do not necessarily coincide, e.g. for different in-plane motions. There-
fore we propose a separate penalisation of the �ow gradients:

ES1 = ª
¡
jr w f j2

¢
, ES2 = ª

¡
jr w st j2

¢
, andES3 = ª

¡
jr w d j2

¢
; (12)

with jr w ¤ j2 := jr u¤ j2 + jr v¤ j2, where¤ stands for f, st or d. The penalisation via
the subquadratic functionª , as de�ned before, equals total variation (TV) regularisa-
tion [21]. This gives rise to the smoothness term

ES = ®1 ES1 + ®2 ES2 + ®3 ES3 ; (13)

where®1, ®2, ®3 are positive weights that balance the smoothness assumptions for the
three displacement �elds.

3 Linearisation and Normalisation

Substituting all data, epipolar and smoothness terms into (1) we obtain an energy func-
tional that is rather complicated. Moreover, it is non-convex, since the unknown �ows
appear implicitly in the arguments of the data term. A commonstrategy to resolve this
problem is to perform an incremental computation of the unknowns within a coarse-
to-�ne multiscale approach. This can either be done by a �xedpoint iteration on the
Euler-Lagrange equations [2] or by a series of energies thatapproximate the original
model on every resolution level [17]. In the following we stick to the second strategy
and discuss how the corresponding energy for each level can be derived. Assuming that
solutionsw f , w st , w d andw a are available from a coarser scale, we aim at expressing
the total energy in terms of the incrementsdw f = ( duf ; dvf ), dw st = ( dust ; dvst ),
dw d = ( dud ; dvd ), anddw a = ( dua; dva). This allows us to introduce a tensor nota-
tion which offers two advantages: (i) The convexity of the resulting energy functional
in the �ow increments becomes explicit, and (ii) a normalisation strategy can be applied
that makes deviations from the model assumptions interpretable in a geometric way.

3.1 Linearisation in the Data Term

Let us �rst discuss the differential form of the data term by the example of the simpli�ed
data constraint from expression (3). Using a �rst order Taylor expansion to linearise this
expression with respect to all increments we obtain the approximation

g2r (x + w f + dw f + w st + dw st + w d + dw d ) ¡ g1r (x + w st + dw st )

¼ g2r + @x g2r ¢(duf + dust + dud ) + @y g2r ¢(dvf + dvst + dvd )

¡ g1r ¡ @x g1r ¢(dust ) ¡ @y g1r ¢(dvst ) : (14)
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Rearranging the terms and using the following abbreviations

g2z = g2r (x + w f + w st + w d ) ¡ g1r (x + w st ) , (15)

g2rx = @x g2r (x + w f + w st + w d ) , g2xz = @x g2z , (16)

g2ry = @y g2r (x + w f + w st + w d ) , g2yz = @y g2z ; (17)

we can rewrite the linearised term in (14) as inner product

g>
2 d = g2rx duf + g2ry dvf + g2xz dust + g2yz dvst + g2rx dud + g2ry dvd + g2z ; (18)

where the two vectors are de�ned asg2 := ( g2rx ; g2ry ; g2xz ; g2yz ; g2rx ; g2ry ; g2z )> and
d := ( duf ; dvf ; dust ; dvst ; dud ; dvd ; 1)> . The equationg>

2 d = 0 can be seen as a
multidimensional extension of the classical optical �ow constraint [11]. Inserting it as
squared argument into the penaliserª yields the robusti�ed quadratic form

ED2 = ª
¡
(g>

2 d)2¢
= ª

¡
d> J2 d

¢
; (19)

whereJ2 = g2 g>
2 is a 7 £ 7 matrix that provides coupling between all increments.

By analogy to the motion tensor notation in optical �ow estimation [3], we denoteJ2

asscene �ow tensor. The linearisation of the three remaining data constraintsis carried
out accordingly, and results in the7 £ 7 scene �ow tensorsJ1, J3 and J4. Missing
dependencies between the variables give rise to zero tensorentries. Including the gra-
dient constancy assumption and extending it to RGB colour images as in equation (6)
is straightforward and leads to a weighted sum of the corresponding tensors [27].

3.2 Treatment of the Epipolar Term

The �rst epipolar term(x + w st + dw st )>
h F (x )h is already linear in the incrementdw st .

As in the case of the data terms we can thus de�ne the vectord1 = ( dust ; dvst ; 1)> and
write the argument of the �rst epipolar term (8) as a quadratic form

EE1 = ª
¡
d>

1 E1 d1

¢
: (20)

The corresponding epipolar tensorE1 of size3£ 3 is de�ned as(a1; b1; q1)> (a1; b1; q1),
wherea1 andb1 are the coef�cients of the epipolar linel = F (x )h , andq1 is the scaled
distance of the pointx to this line [22]. However, care has to be taken with respect to
symmetry when introducing the �ow increments in the second epipolar term (10). The
expanded differential variant of its argument reads

1
4

¡
(x + w f + dw f + w st + dw st + w d + dw d )>

h F (x + w a)h

¢2

+ 1
4

¡
(x + w a + dw a + w st + dw st + w d + dw d )>

h F (x + w f )h

¢2

+ 1
4

¡
(x + w a + dw a)>

h F > (x + w f + w st + w d )h

¢2

+ 1
4

¡
(x + w f + dw f )

>
h F > (x + w a + w st + w d )h

¢2
; (21)

where we have additionally included the last two terms with the transposed fundamental
matrix to ensure a symmetrical treatment of the left and right �ow increments. This is
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required since as opposed to the �rst epipolar constraint variations can occur in both
the left and the right image position. Since all terms of expression (21) are linear in the
increments, the second epipolar term can be written as

EE2 = ª
¡

1
4 d>

2 E2 d2 + 1
4 d>

3 E3 d3 + 1
4 d>

4 E4 d4 + 1
4 d>

5 E5 d5

¢

+ ¹ (jw f + dw f ¡ w a ¡ dw aj)2 ; (22)

where we have de�ned the following vectors:

d2 = ( duf + dust + dud ; dvf + dvst + dvd ; 1) , d3 = ( dua; dva; 1) , (23)

d4 = ( dua + dust + dud ; dva + dvst + dvd ; 1) , d5 = ( duf ; dvf ; 1) : (24)

As in the case of the �rst epipolar tensor, the entries of the other epipolar tensorsE i =
(ai ; bi ; qi )> (ai ; bi ; qi ), for 2· i · 5, are related to the coef�cients of the epipolar lines.

3.3 Constraint Normalisation

In [27] the authors demonstrate that the linearised brightness constancy assumption for
optical �ow can be interpreted geometrically as a weighted distance of the estimated
�ow to the line described by the optical �ow constraint. Equivalently, the multidimen-
sional brightness constancy constraint in (18) can be considered as the weighted dis-
tance of the scene �ow to the hyperplane described byg>

2 d = 0 . To obtain the actual
distance to the hyperplane we have to normalise the constraint by dividing it by the mag-
nitude of the hyperplane normal. Since the last entry ofd is constant, this normal vector
is given by the �rst six components ofg2, i.e.n = ( g2rx ; g2ry ; g2xz ; g2yz ; g2rx ; g2ry )> .
Now it becomes explicit why it is desirable to penalise the actual distance to the hy-
perplane: Unlike the original constraint this distance does not scale with the magnitude
of the derivatives contained ing2. This prevents overweighting at unreliable structures
such as noise or occlusions that typically manifest themselves in large image gradients.
The corresponding normalised quadratic form is given by

1
jn j2 + ³ 2 (g>

2 d)2 = d>

Ã
J2

P 6
i =1 (J2) ii + ³ 2

!

d = d> bJ2 d ; (25)

where³ = 0 :1 is a constant that avoids division by zero, andbJ2 denotes the normalised
version ofJ2. We apply the same normalisation strategy to the remaining data terms.
For the extension to the gradient constancy and colour images we refer to [27] .

Our normalisation idea is, however, not restricted to the scene �ow tensors only.
By normalising the epipolar tensors as well we obtain a widely used geometrical error
measure from computer vision: the distance to the epipolar lines [16]. Analogously to
(25), we can derive the normalisation factor for the epipolar tensors. It reads

jn i j2 + ³ 2 =
P 2

j =1 (E i ) jj + ³ 2 = a2
i + b2

i + ³ 2 : (26)

Division by this factor then results in the normalised epipolar tensorsbE i , for 1· i · 5.
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4 Minimisation and Numerical Solution

By combining all terms derived in Sect. 3, we obtain the following differential form of
our energy that has to be minimised at each level of the coarse-to-�ne approach:

E(dw f ; dw st ; dw d ; dw a; F ) =
Z



µ
o2l ª

³
d> bJ1 d

´
+ o1r o2r ª

³
d> bJ2 d

´
+ o1r ª

³
d> bJ3 d

´
+ o2l o2r ª

³
d> bJ4 d

´

+ ¯ 1 ª
³

d>
1

bE1 d1

´
+ ¯ 2 ª

³
1
4 d>

2
bE2 d2 + 1

4 d>
3

bE3 d3 + 1
4 d>

4
bE4 d4 + 1

4 d>
5

bE5 d5

´

+ ®1 ª
³

jr (w f + dw f )j
2
´

+ ®2 ª
³

jr (w st + dw st )j
2
´

+ ®3 ª
³

jr (w d + dw d )j2
´

+ ¯ 2 ¹
³

jw f + dw f ¡ w a ¡ dw aj2
´ ¶

dx , with kF k2
Frob = 1 . (27)

Note that this energy is convex in the �ow incrementsdw f , dw st , dw d and the auxiliary
variabledw a, since only squared arguments and convex penaliser functions are used.
In order to minimise it under the given constraintkF k2

Frob = 1 , we follow [22] and use
the method of the Lagrange multipliers. We thus obtain the Lagrangian

L (dw f ; dw st ; dw d ; dw a; F; ¸ ) = E(dw f ; dw st ; dw d ; dw a; F ) + ¸ (1 ¡ f > f ) ; (28)

where¸ is the Lagrangian multiplier, andf is a vector that contains all 9 entries ofF .
This formulation suggests an alternating minimisation with two steps:

(i) Minimising the Lagrangian with respect to the �ow increments leads to the corre-
sponding Euler-Lagrange equations. By discretising them via �nite difference approxi-
mations, one ends up with a nonlinear system of equations dueto the robust functionª .
To ensure fast convergence, we solve this system with a bidirectional multigrid frame-
work based on a nonlinear point coupled Gauß-Seidel solver [3]. In the coarse-to-�ne
pyramid we use a downsampling factor of´ = 0 :9, while the images are warped onto
the reference image using Coons patches based on bicubic interpolation [5].

(ii) Differentiation of the Lagrangian with respect to the fundamental matrix re-
sults in an eigenvalue problem [22] that is nonlinear due toª and the normalisation
weights (26). To solve this eigenvalue problem we apply a reweighted total least squares
method in which the weights and the arguments ofª are �xed iteratively. We would like
to point out that this step of the minimisation estimates thefundamental matrix from
thedensecorrespondences of both stereo pairs.

The alternating computation of the �ow increments and the fundamental matrix
works as follows: The Euler-Lagrange equations are solved with a current estimate
of the fundamental matrix. Using the newly computed �ows, the fundamental matrix
is updated by solving the eigenvalue problem. We extract a pair of camera matrices
and perform a dense scene reconstruction by triangulation [10]. After recomputing the
occlusion scores, the Euler-Lagrange equations are then solved again. This iterative
process is repeated until convergence. We initialise the occlusion scores with 1 and
compute the �rst iteration with disabled epipolar constraints.
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Table 1.Evaluation of different methods on the recti�ed sphere sequence. Runtime on Intel Core2
1.86 GHz:» 420 seconds. Parameters:®1 =2 , ®2 =1 :5, ®3 =0 :3, ¯ 1 = ¯ 2 =0 :1, ° =0 :1, ¹ =1 .

RMSE AAEMethod
(uf ; vf ; ud ; vd ) (uf ; vf ) (ust ; vst ) (uf ; vf )

Our method initialised with [8] 1.76 0.63 3.8 1.17
Our method 1.78 0.63 5.5 1.16
Wedelet al. [24] with ground truth 2.40 0.65 ¡ 1.40
Wedelet al. [24] (87%) 2.45 0.66 2.9 1.50
Huguet and Devernay [12] 2.51 0.69 3.8 1.75
Wedelet al. [24] (100%) 2.55 0.77 10.9 2.76

5 Experiments

We evaluate the performance of our method on synthetic stereo sequences with ground
truth and on real world images. To assess the quality we compute the root mean square
error RMSE of the scene �ow(uf ; vf ; ud ; vd ), the optical �ow (uf ; vf ) and the stereo
�ow (ust ; vst ), as well as the absolute angular error AAE of the optical �ow,see [24].
As a quality measure for the fundamental matrix we use the error dF according to [7].
It is determined by using the estimated fundamental matrix to randomly create a large
number (100,000) of correspondences and the ground truth fundamental matrix to es-
tablish their epipolar lines. After computing the average distance between all points and
lines, the roles of the matrices are reversed to obtain a symmetric measure in pixel units.

In a �rst experiment we consider the synthetic sphere sequence of Huguet and De-
vernay [12] (http://devernay.free.fr/vision/varscene�ow/), which is composed of four
512£ 512 images of a textured sphere with rotating hemispheres. Despite the fact that
this sequence is recti�ed, and thus constitutes a special case with vanishing vertical
components of the stereo �ow, it is a good benchmark for comparison against existing
techniques. Additionally it requires to estimate large stereo displacements which pose
a challenge to variational methods. In this context we follow the idea of [24] and [12],
and initialise(ust ; vst ) with a dedicated method for large displacements. To this end, we
use a variant of the recent optical �ow technique of [1] with constraint normalisation
and SIFT matches [15] as prior. For consistency we also included results for initiali-
sation with the belief propagation algorithm of [8], as usedby Huguet and Devernay.
However, this initialisation is only applicable for recti�ed images.

Table 1 compares our results with those of the variational methods of Huguet and
Devernay [12] and Wedelet al. [24] and lists the errors computed within the sphere.
With a substantial improvement in the RMSE for(uf ; vf ; ud ; vd ) and in the AAE we
consistently outperform the other approaches for the scene�ow, although these methods
are speci�cally tailored to the recti�ed case. The lower RMSE of the method of Wedel
et al. for (ust ; vst ) is due to the fact it uses sparse stereo correspondences thatdo not
provide results in occluded regions. However, the accuracyof their estimated scene �ow
is signi�cantly lower than ours. This even holds if they useground truthfor the stereo
correspondences. The good performance of our method is alsore�ected in the accurate
estimation of the stereo geometry: We obtain a subpixel precision ofdF = 0 :019.
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In a second experiment we evaluate the performance for a general stereo geometry.
To this end we generated a synthetic sequence of four frames with ground truth (avail-
able athttp://www.mia.uni-saarland.de/valgaerts/eccv10/scene�ow). It is similar to the
one of the previous experiment: A textured sphere with rotating hemispheres is posi-
tioned against a plane in the background as shown in Fig. 2. Todemonstrate the bene�ts
of the different design steps in our model we start from a variant that performs a joint
regularisation of the �ows as in [12] and does not include constraint normalisation. We
then re�ne the model by subsequently adding the normalisation and the separate regu-
lariser. Table 2 lists the progressively improving results. The errors are computed in the
non-occluded regions of the whole image domain. The AAE is not listed because it is
not de�ned for the zero �ow in the background. In Fig. 2 the computed �ow �elds are
shown together with the obtained occlusion scores, the 3D reconstruction and the scene
�ow. As one can see, the estimated displacements resemble the ground truth very well.
Again, this is con�rmed by a subpixel precision ofdF = 0 :021for the stereo geometry.

Fig. 2. Results for the general sphere sequence (image size 512£ 512).Top Row: (a) Left frame
at �rst time step.(b) + (c) + (d) Ground truth of left optical �ow, �rst stereo �ow and �ow
change. Colour encodes the direction, brightness the magnitude (see colour circle). Occlusions
are coloured pink.Middle Row: (e) Left frame at second time step.(f) + (g) + (h) Estimated
left optical �ow, �rst stereo �ow and �ow change.Bottom Row: (i) + (j) Estimated occlusion
scoreso1r ando2r . (k) Estimated scene reconstruction.(l) Estimated scene �ow. Runtime:» 420
seconds. Parameters:®1 =1 :5, ®2 =2 , ®3 =0 :8, ¯ 1 = ¯ 2 =0 :03, ° =0 :1, ¹ =1 .
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Table 2.Evaluation of different variants of our method on the general sphere sequence.

RMSEMethod
(uf ; vf ; ud ; vd ) (uf ; vf ) (ust ; vst )

joint regularisation 0.67 0.64 2.08
joint regularisation + normalisation 0.63 0.59 1.86
separate regularisation+ normalisation 0.61 0.59 1.61

Fig. 3. Results for real world sequences (image size 470£ 340).Top Row: (a) + (b) Smiling, left
frames at consecutive time steps.(c) + (d) Closing Mouth, left frames at consecutive time steps.
Bottom Row: (e) Reconstruction and overlayed scene �ow forSmiling. Increasing magnitude
from green to red.(f) Close-upSmiling. (g) Close-upClosing Mouth. Runtime:» 260 seconds.
Parameters:®1 =15 , ®2 =20 , ®3 =15 , ¯ 1 = ¯ 2 =0 :5, ° =30 , ¹ =1 .

For our last experiment we have recorded two uncalibrated stereo sequences to test
the performance of our method on real world data. The resultsare shown in Fig. 3 for the
sequencesSmilingandClosing Mouth. As one can verify in both cases the 3D structure
and the motion of the face are captured well and look very realistic. We emphasise that
these two results are obtained from only four frames. Additional real world results can
be found athttp://www.mia.uni-saarland.de/valgaerts/eccv10/scene�ow.
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6 Conclusions

We have presented a general approach for the dense estimation of scene �ow, scene
structure and geometry from uncalibrated stereo sequences. Our contributions are three-
fold: (i) We generalise the classical four-frame case to arbitrary stereo setups by em-
bedding epipolar constraints into a joint energy functional with data and smoothness
terms. (ii) We introduce a tensor notation which allows us tonormalise the data and
stereo constraints such that they become geometrically interpretable. (iii) We present a
separate robust�cation of the smoothness terms to handle scenarios where �ow discon-
tinuities do not coincide. Our evaluation has demonstratedthat the proposed approach is
not only more general than existing methods but also more accurate: Even without ex-
plicitly knowing the stereo geometry, we outperform recenttechniques that have been
speci�cally designed for the recti�ed case. Furthermore, the stereo geometry is esti-
mated with sub-pixel precision and reconstructions for real world data show that scene
structure and motion are determined with high quality. Thisclearly demonstrates the
bene�t of a joint computation of �ow, structure and geometry.
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