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Abstract—By means of passive optical motion capture, real people can be authentically animated and photo-realistically textured. To

import real-world characters into virtual environments, however, surface reflectance properties must also be known. We describe a

video-based modeling approach that captures human shape and motion as well as reflectance characteristics from a handful of

synchronized video recordings. The presented method is able to recover spatially varying surface reflectance properties of clothes

from multiview video footage. The resulting model description enables us to realistically reproduce the appearance of animated virtual

actors under different lighting conditions, as well as to interchange surface attributes among different people, e.g., for virtual dressing.

Our contribution can be used to create 3D renditions of real-world people under arbitrary novel lighting conditions on standard graphics

hardware.

Index Terms—3D video, dynamic reflectometry, real-time rendering, relighting.
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1 INTRODUCTION

RECENT advances in graphics hardware and rendering
algorithms enable the creation of images of unprece-

dented realism in real-time. In order to capitalize on these
novel rendering possibilities, however, ever more detailed
and accurate scene descriptions must be available. The price
to be paid can be measured in working hours spent to create
detailed geometry meshes, complex textures, convincing
shaders, and authentic animations: Apparently, scene
modeling is becoming a limiting factor in realistic rendering.

One alternative to avoid excessive modeling times
consists of capturing suitable models directly from “the
real thing.” Image and video-based rendering (IBR/VBR)
approaches pursue this notion, aiming at automatically
generating visually authentic computer models from real-
world recorded objects and events [17]. Many of these
techniques show how to interactively render photo-realistic
views from real-world-captured, dynamic scenes (see also
Section 2). While the ability to realistically display dynamic
events from novel viewpoints by itself has a number of
intriguing applications, the next step is to use objects that
have been captured in the real world for augmenting virtual
scenes. To import a real-world object into surroundings
different from the recording environment, however, its
appearance must be adapted to the new illumination
situation. To do so, the bidirectional reflectance distribution
function (BRDF) must be known for all object surface
points. Data-driven [7], [26] as well as model-based [23],

[19] methods have been proposed to recover and represent
the BRDF of real-world materials. Unfortunately, these
methods cannot be directly applied to dynamic objects
exhibiting time-varying surface geometry and constantly
changing local illumination.

We present an approach that jointly captures the shape,
motion, and time-varying surface reflectance of people
(Fig. 1). An overview of our method is given in Section 3. As
input to our algorithm, we only require a handful of
calibrated and synchronized video recordings (Section 4).
The algorithm returns subject-adapted 3D geometry and
animation parameters by employing a markerless motion
capture method. In a preprocessing step, multiview texture
consistency is enhanced and a lateral shift of textiles is
detected (Section 5). From the video input, we estimate a
dynamic reflectance description comprising of a spatially-
varying BRDF and a dynamic surface normal field (Sec-
tion 6). PC graphics hardware-assisted rendering then
allows us to photo-realistically visualize recorded people
at interactive frame rates in changing lighting conditions
and from arbitrary perspective (Section 7). We validate our
algorithm (Section 8) and present results for several subjects
wearing different clothes made of non-Lambertian textiles
(Section 9). The paper concludes in Section 10.

The contributions of our paper are:

. an algorithm that warps input video images in order
to guarantee multiview photo-consistency in con-
junction with inexact object geometry,

. a method to detect and compensate for lateral
shifting of textiles,

. dynamic reflectometry from multiview video, i.e.,

– per-texel BRDF parameter estimation and
– reconstruction of time-varying normal maps to

capture the small, variable detail of surface
geometry (e.g., wrinkles in clothing), and

. the integration of the acquisition, estimation, and
rendering methods into a working system.
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The following section highlights related work on free-
viewpoint video and BRDF estimation.

2 RELATED WORK

We capitalize on previous research in many areas, but
primarily pick up ideas from the fields of free-viewpoint
video and image-based reflectance estimation.

Research in free-viewpoint video aims at developing
methods for photo-realistic, real-time rendering of pre-
viously captured real-world scenes. The goal is to give the
user the freedom to interactively navigate his or her
viewpoint freely through the rendered scene. Early research
that paved the way for free-viewpoint video was presented
in the field of image-based rendering (IBR). Shape-from-
silhouette methods reconstruct geometry models of a scene
from multiview silhouette images or video streams. Exam-
ples are image-based [25], [36] or polyhedral visual hull
methods [24], as well as approaches performing point-
based reconstruction [14]. The combination of stereo
reconstruction with visual hull rendering leads to a more
faithful reconstruction of surface concavities [21]. Stereo
methods have also been applied to reconstruct and render
dynamic scenes [42], [17], some of them employing active
illumination [34]. Alternatively, a complete parameterized
geometry model can be used to pursue a model-based
approach toward free-viewpoint video [6]. On the other
hand, light field rendering [20] is employed in the 3D TV
system [27] to enable simultaneous scene acquisition and
rendering in real-time.

IBR methods can visualize a recorded scene only for the
same illumination conditions that it was captured in. For
correct relighting, it is inevitable to recover complete
surface reflectance characteristics.

The estimation of reflection properties from still images
has been addressed in many different ways. Typically, a
single point light source is used to illuminate an object of
known 3D geometry consisting of only one material. One
common approach is to take HDR images of a curved
object, yielding a different incident and outgoing directions
per pixel and thus capturing a vast number of reflectance
samples in parallel. Often, the parameters of an analytic
BRDF model are fit to the measured data [33], [19] or a data-
driven model is used [26]. Zickler et al. [41] proposed a
scattered data interpolation method to reconstruct a

reflectance model. Reflectance measurements of scenes
with more complex incident illumination can be derived
by either a full-blown inverse global illumination approach
[37], [12], [4] or by representing the incident light field as an
environment map and solving for the direct illumination
component only [38], [31], [28]. In our approach, we will
approximate the incident illumination by multiple point
light sources and estimate BRDF model parameters taking
only direct illumination into account.

Reflection properties together with measured photo-
metric data can also be used to derive geometric informa-
tion of the original object [40]. Rushmeier et al. estimate
diffuse albedo and normal map from photographs with
varied incident light directions [32], [3]. A linear light
source is employed by Gardner et al. [10] to estimate BRDF
properties and surface normal. In [11], [13], reflectance and
the shape of static scenes are simultaneously refined using a
single light source in each photograph.

Instead of explicitly reconstructing a mathematical re-
flectance model, taking an image-based approach to relight-
ing has also been tried. In [16], a method to generate
animatable and relightable face models from images taken
with a special light stage is described. Wenger et al. [35]
extend the light stage device such that it enables the
capturing of dynamic reflectance fields. Their results are
impressive; however, it is not possible to change the
viewpoint in the scene. Einarsson et al. [8] extend it further
by using a large light stage, a treadmill where the person
walks, and light field rendering for the display. Human
performances can be rendered from novel perspectives and
relit. Unfortunately, their method can only process single
periodic motion, such as walking, and is only suitable for low
frequency relighting. For our 3D video scenario, we prefer a
more compact scene description based on parametric BRDFs
that can be reconstructed in a fairly simple acquisition facility
and that allows for arbitrary viewpoint changes.

Carceroni and Kutulakos present a volumetric method
for simultaneous motion and reflectance capture for
nonrigid objects [5]. They have shown nice results for
spatially confined 3D scenes where they used a coarse set of
surfels as shape primitives.

In this paper, we propose a model-based approach that
captures the shape, motion parameters, and dynamic sur-
face reflectance of the whole human body at high accuracy.
As input, we only expect a handful of synchronized video
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Fig. 1. Our method jointly estimates the shape, motion, and dynamic surface reflectance of (a) a human actor from input video. A dynamic scene

description based on (b) a template body model enables us to photo-realistically render moving actors from an arbitrary viewpoint and under both

(c) captured real-world and (d) artificial illumination.



streams showing arbitrary human motion. Our recon-
structed dynamic scene description enables us to render
virtual people in real time from arbitrary viewpoints and
under arbitrary lighting conditions.

3 OVERVIEW

Fig. 2 illustrates the workflow between the components of
our joint shape, motion, and reflectance capture approach.
The input to our system consists of multiview video
sequences that are recorded using eight synchronized color
video cameras (Section 4). The reflectance estimation
sequence (RES) is used to estimate surface reflectance
properties. Arbitrary human motion is captured in the
dynamic scene sequences (DSS) and it is these sequences
that are later visualized and relit. In both types of
sequences, the person wears identical clothes. The respec-
tive data paths for both input sequences are shown in Fig. 2.
A generic body model is adapted to match the shape and
proportions of the recorded person. Subsequently, human
pose parameters are computed for all time frames by means
of a silhouette-based marker-free motion capture approach
(Section 5.1). To store all per-surface element data needed
during reflectance estimation in texture space, we make use
of surface parameterization methods. Multiview video
(MVV) textures are generated by transforming each input
video image into the texture domain (Section 5.2). To correct
for photo-inconsistencies due to inexact body geometry, the
input images can be warp-corrected prior to MVV texture
generation (Section 5.3). Furthermore, texture registration
problems due to shifting of the apparel over the body
surface are prevented by means of an automatic cloth shift
detection procedure (Section 5.4). From the RES video data,
BRDF model parameter values are estimated for each
surface texture element (texel) of the geometry model
individually (Section 6.1). The recovered local reflectance
properties then allow us to estimate the time-varying
surface normal field in the DSS sequences (Section 6.2).
The moving body model, its spatially-varying reflectance,
and the time-varying normal field enable us to interactively
render and instantaneously relight the DSS sequences from
an arbitrary viewpoint and illumination direction (Section 7,
Section 8, and Section 9).

4 ACQUISITION

As input to our system, we record multiview video (MVV)
sequences. A multiview recording setup enables us to
capture a volume of approximately 4� 4� 3 m with eight

externally synchronized video cameras. Seven of the
cameras are placed in an approximately circular arrange-
ment around the center of the scene, the eighth camera
records the set from an overhead position. Since we
estimate both motion and reflectance properties, we have
strict requirements concerning the spatial, temporal, and
color resolution of our imaging devices. We employ Imperx
MDC-1004 cameras that feature a 1;004� 1;004 pixel CCD
sensor with linear 12 bits-per-pixel dynamic range provid-
ing a sustained frame rate of 25 fps. The captured video
data is streamed in real time to eight parallel RAID systems.
The cameras are calibrated and intercamera color-consis-
tency is ensured by applying a color-space transformation
to each camera stream.

The lighting conditions in our studio are fully control-
lable. No exterior light can enter the recording area, and the
influence of indirect illumination is minimized by covering
up all of the walls and the floor with black cloth and carpet.
We employ two K5600 Jokerbug 800 spot lights to
illuminate our scenes. They are placed in opposite corners
of our stage, and they are oriented toward the center of the
recording area (Fig. 3). During estimation, we approximate
the contribution of each spot light by a single point light
source. Light source positions, intensities, and color
response of the cameras are calibrated offline. Our flexible
approach can also handle more general setups comprised of
spot lights and diffuse illumination from the ceiling.

We successively record two MVV sequences for each
person and each type of apparel. The first sequence,
referred to as the reflectance estimation sequence (RES),
serves as input to the BRDF estimation algorithm. The
human subject performs, on the very spot, a simple
360 degree rotation around his vertical body axis which
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Fig. 2. The algorithmic workflow of our method.

Fig. 3. Illustration of camera and light source arrangement.



only takes a few seconds. The actor keeps the upper body in
a static initialization posture. This way, we can safely
assume that, for the duration of the RES, the apparel does
not shift over the body. Prior to reflectance estimation, we
fit our geometry model to each recorded body pose
(Section 5.1). For each point on the model’s surface, the
RES contains (in the best case) as many different appear-
ance samples as there are images depicting the respective
point. Over time, the surface element’s normal points in
various directions with respect to light sources and imaging
sensors. While surface normal orientation varies freely, our
static camera and lighting setup allows for only a limited
number of half vector directions ĥj ¼ l̂þ v̂j, i.e., angular
separations between spot light l̂ and camera directions v̂j.
By placing the eight cameras nonsymmetrically with
respect to the two spot lights, we gather samples for up
to 16 different light-to-camera angles, which we found
sufficient to robustly fit our isotropic BRDF models
(Section 6).

The second type of input video footage, the dynamic
scene sequences (DSS), capture the actor’s performances
from which the actual relightable 3D videos are to be
generated. From the DSS, we also reconstruct a time-
varying surface normal field (Section 6.2).

5 MOTION CAPTURE AND TEXTURE GENERATION

We use a model-based approach to represent the time-
varying geometry of the actor. To estimate our model’s

shape and motion parameters, we perform markerless
motion capture. In order to merge the video data from
multiple viewpoints, we compute static texture parameter-
izations, resample and align the input streams using a novel
warp-correction technique, and temporally register the
video streams by detecting shifting of the apparel.

5.1 Model-Based Motion Capture

To simultaneously recover dynamic 3D surface geometry
as well as animation parameters, we use an extended
version of the model-based, passive optical motion capture
approach proposed in [6]. A kinematic body model
consisting of 16 separate segments represented by indivi-
dual triangle meshes is used for automatic silhouette-based
motion estimation and shape customization. In a semi-
automatic procedure, the segmented model can be trans-
formed into a new model with closed single-skin surface
geometry (Fig. 1b). To do so, the triangle meshes of
adjacent segments are zippered and surface skinning
weights are assigned to correctly model motion-dependent
geometry deformation. While we use the segmented
version of the model for motion estimation and shape
individualization, we use the single-skin model for
reflectance estimation and later rendering.

5.2 Texture Parameterization

We jointly apply two different static surface parameteriza-
tions of the single-skin mesh over the planar domain based
on [39]. To this end, the mesh is cut along a predefined
path. Parameterization I leaves the mesh boundary free
and minimizes surface distortion (the left image in Fig. 5
shows a texture in parameterization I). We use it during
BRDF and normal estimation since it leads to a fairly
uniform distribution of samples on the model’s surface.
Parameterization II forces the boundary of the mesh to lie
on the border of a square (Fig. 4 shows two textures in
parameterization II). This causes larger distortion, but the
textures with fixed boundary are ideal for cloth shift
detection (Section 5.4).

Using our surface parameterizations, all data related to
surface elements (e.g., image samples, normals, visibility
information, light vectors) can be conveniently stored as
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Fig. 4. Detection of relative cloth shift between two subsequent

combined textures Ct and Ctþ1 (in parameterization II) by means of

optical flow. Areas where shifting textiles were found are marked in red

on the 3D model.

Fig. 5. MVV texture generation (parameterization I) for camera 0: The color information for each surface point on the body model is not looked up in

the original input video frame recorded from camera 0 (column with darker blue background). Instead, the texel color is taken from an image that has

been obtained by reprojecting the model that has been textured with camera image 0 into the camera view that sees the surface point most head-on

(second column of images). Given eight cameras, 56 warped reprojected images exist for one time step (image matrix in center).



textures. Throughout our experiments, we use 1;024�
1;024-texel texture maps. Before any further processing
commences, the graphics hardware is used to transform
each video camera image into the texture domain. For each
video time step, eight so-called multiview video textures
(MVV textures) are created for both of the two described
texture parameterizations.

5.3 Warp Correction

Although the body model initialization procedure yields a
faithful representation of the person’s true geometry, small
inaccuracies between the real human and its digital
counterpart are inevitable. Due to these geometry inaccura-
cies, pixels from different input views may get mapped to
the same texel position in different MVV textures, even
though they do not correspond to the same surface element
of the true body geometry.

One common strategy to enhance model-to-texture
consistency is to deform the geometry until an overall
photo-consistency measure is maximized. Geometry defor-
mation-based optimization, however, tends to give un-
stable results, in particular due to nonlinear optimizations
that are normally required. We take an alternative
approach. Instead of moving surface elements to their
correct locations in 3D, we move the image pixels within
the 2D input image planes until they all become photo-
consistent given the available geometry. The following
example illustrates our modified MVV texture generation
scheme (see Fig. 5 and video in [1]).

Let us assume we want to assemble an MVV texture
from the video image IjðtÞ seen by camera j at time t. For
texel k in the MVV texture, we find out which camera sees it
best by searching for the minimal deviation between camera
viewing vectors and the surface element normal. If the
camera that sees the surface point best is j, the texel color is
taken from IjðtÞ. In case camera i 6¼ j sees the point best and
it is not occluded, we regard the video image IiðtÞ as the
reference image. The model at time t is projectively textured
with IjðtÞ and rendered into camera view i. The image of
the reprojected textured model is warped such that it is
optimally aligned with the reference image. The color of k is
taken from the warped image. This way, all texel color
values stem from the same physical camera image. The
texel color, however, is always taken from a version of that
camera image that has been optimally aligned with the
camera view that sees the corresponding surface element
most head-on.

Warped images are precomputed for all 56 possible
combinations of i and j at every time step (Fig. 5). To
establish per-pixel correspondences, the warping operation
itself is based on the optical flow [22] between the reference
image and the image of the reprojected textured model. A
regular 2D triangle mesh is superimposed on the repro-
jected model image, per-vertex displacements are derived
from the optical flow values, and the mesh is deformed
accordingly via thin-plate spline interpolation [9]. Finally,
the warped reprojected image is created on the GPU.

Optical flow is based on the assumption that all surfaces
in the scene are diffuse. For reflectance estimation, though,
we deliberately generate specular highlights on surfaces in
the scene. Experiments show that our method nonetheless

produces good results since, for the majority of garments,
diffuse reflectance is the predominant contribution.

5.4 Cloth Shift Detection

Our BRDF estimation procedure (Section 6.1) yields a fixed
assignment of BRDF parameter values to individual body
surface locations which it stores as static textures. During
dynamic normal estimation (Section 6.2) and rendering
(Section 7), however, this rigid attribution of reflectance
properties may not hold since, in a DSS, in contrast to the
RES, it is likely that textiles undergo transversal shift over
the body surface. It is thus necessary to detect cloth shifting
and to take it into account for these two steps. We have
developed the following procedure: For each time step of a
DSS and the last time step of the corresponding RES, all
MVV textures in parameterization II are weightedly
blended into combined textures. Each combined texture
describes the complete surface appearance of the person in
a single square image (Fig. 4). The combined texture of the
single RES time step is regarded as the reference texture
since it captures the surface appearance from which BRDF
parameters are estimated. Cloth shift in 3D corresponds to
image motion in the texture domain, which we compute via
optical flow (Section 5.3). For each time step of a DSS, we
need to compute the motion of each texel with respect to its
position in the BRDF parameter textures. Due to lighting
changes, this absolute shift-motion cannot be computed by
direct comparison to the reference texture. Instead, we first
compute the relative shift-motion between all subsequent
combined textures Ct and Ctþ1 (Fig. 4). The motion between
the reference texture and C0 is also computed. The absolute
shift-motion of a texel in Ct is the sum of all its shift
motions that have been detected at previous time steps. We
use the GPU to render a texture-space representation of
absolute shift-motion of each texel at each time step. To this
end, we use the mesh-based warping technique described
in Section 5.3 to warp the color-coded BRDF texture
coordinates in parameterization II according to the absolute
shift-motion.

6 DYNAMIC REFLECTOMETRY

Our reflectance estimation approach consists of two steps.
In the first step, we determine BRDF parameter values per
pixel from the reflectance estimation sequence. An iterative
estimation process enables us to handle geometry incon-
sistencies between the real object and the much smoother
human body model. In the second step, we compute even
time-varying normal maps per frame to capture surface
detail such as wrinkles in clothing whose shape and extent
depend on the current pose of the person. The underlying
technique is similar to [19], which we have extended in
order to cope with multiple light sources, time-varying
data, and interframe consistency.

6.1 BRDF Estimation

We estimate a set of spatially-varying BRDFs for each
person and each outfit from the respective reflectance
estimation sequence (RES) explained in Section 4. The pose
parameters for the RES have been determined beforehand.
For each surface element, the BRDF representation consists
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of an individual diffuse color component that is specific to
the surface point and a set of specular parameters that are
shared by all surface points belonging to the same material.
Our framework is flexible enough to incorporate any
parametric reflectance model. However, in the majority of
our experiments, we employ the parametric BRDF model
proposed by Phong [29]. We have also tested our method
with the model proposed by Lafortune et al. [18] using two
specular lobes.

In general, our estimation of BRDF parameters and, later,
the estimation of the time-varying normals, is based on
minimizing for each surface point ~x the error Eð~x; �ð~xÞÞ
between the current model �ð~xÞ and the measurements for
this point from all cameras i at all time steps t:

Eð~x; �ð~xÞÞ ¼
XN
t

X8

i

�iðtÞ
�
SiðtÞ �

�XJ
j

�jðtÞðfrðl̂ðtÞ; v̂iðtÞ; �ð~xÞÞ

� Ijðn̂ðtÞ � l̂ðtÞÞÞ
��2

:

ð1Þ

The term is evaluated separately in the red, green, and blue

color channel. SiðtÞ denotes the measured color samples at ~x

from camera i and Ij denotes the intensity of light source j.

The viewing directions v̂iðtÞ and light source directions l̂jðtÞ
are expressed in the point’s local coordinate frame based on

the surface normal n̂ðtÞ. The visibility of the surface point

with respect to each camera is given by �iðtÞ and with

respect to the light sources by �jðtÞ, both being either 0 or 1.

fr finally evaluates the BRDF. All information that is

relevant for one texel can thus be grouped into an implicit

data structure we call dynamic texel or dyxel.
Using nonlinear optimization, this formula can in

principle be used to determine a full BRDF and the surface
normal at the same time. However, we apply an iterative
approach. We carefully designed the reflectance estimation
sequence to obtain a much more stable optimization. The
subsequent steps of our iterative BRDF estimation scheme
are material clustering, first BRDF estimation, normal estima-
tion, and refined BRDF estimation, Fig. 6.

Instead of determining the specular part of the BRDF per
pixel, we assume that there is only very little variation of
the specular part within the same material, e.g., skin, hair,
or the different fabrics. By combining the measurements of
multiple surface points exhibiting the same material, we
increase the number of samples and, more importantly, the
variation in viewing and lighting directions in order to
obtain a more faithful specular estimate. Please note that
there are no specific requirements concerning the spatial

layout and coherence of surface areas made of similar
material. Although none of our test subjects wore strongly
textured apparel, we believe that our approach can also
handle surfaces with a lot of fine detail as long as the
camera resolution is sufficient to capture the spatial
frequency. The clustering step determines to what material
a surface element, i.e., each texel in the texture maps,
belongs. The number of materials is preset a priori. We
employ a straightforward color-based clustering approach
that considers the raw texel color values.

During the first BRDF estimation pass, an optimal set of
per-texel BRDF parameters is determined using the normals
of the default geometry. The estimation itself consists of a
nonlinear minimization of (1) in the BRDF parameters. For
optimization, we make use of a Levenberg-Marquardt
minimization scheme [30] in the same manner as [19]. First,
we find an optimal set of parameter values for each material
cluster of texels. To quantify the estimation error per
material cluster, we sum the error term in (1) for all surface
elements that belong to the cluster. Given the average BRDF
for each material, we can render the model by applying
only average specular reflectances. By subtracting this
specular component from each sample, we generate new
dynamic texels that contain purely diffuse reflectance
samples. Using these purely diffuse samples, an individual
diffuse component is estimated for each surface element
(texel) by minimizing (1) over the diffuse color parameter.
The output of the first BRDF estimation is then a set of
spatially-varying BRDF parameters �first.

The default normals of the human body model cannot
represent subtle details in surface geometry, such as
wrinkles in clothing. In a normal estimation step, we make
use of the first set of estimated BRDF parameters �first in
order to reconstruct a refined normal field via photometric
stereo. Please note that our algorithm is not photometric
stereo in the classical sense since the viewing directions
vary. However, we will continue to use this term for our
algorithm and ask the reader to keep that difference in
mind. In order to make this reconstruction tractable, we
implicitly assume that the local normal directions do not
change while the person is rotating in place. During normal
estimation, we minimize the following extended version of
the energy functional (1) in the local surface normal
direction n̂ð~xÞ of each surface point ~x:

Enormalð~x; n̂ð~xÞÞ ¼ �Eð~x; �ð~xÞÞ þ ��ðn̂ð~xÞÞ�: ð2Þ

The additional regularization term �ðn̂ð~xÞÞ penalizes
angular deviation from the default normal of the body
model. This way, we also enforce convergence to a plausible
local minimum of the nonconvex energy functional. The
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Fig. 6. Subsequent steps to estimate per-texel BRDFs.



coefficients � and � are weighting factors summing to one
and the exponent � controls the penalty impact. Appro-
priate values are found through experiments. Normal
estimation robustness is further improved if only those
color samples in a dyxel are used that come from the two
best camera views. In the second BRDF estimation, we
capitalize on the refined surface normals and compute a
more accurate set of BRDF parameters, �final. As output, we
generate one floating-point texture for each BRDF model
parameter. Through visual inspection, we found out that
the BRDF estimation result that was obtained after one
iteration does not change noticeably anymore in further
iterations. Thus, it is safe to run just one iteration and, by
this means, keep processing times as short as possible.

6.2 Estimation of Time-Varying Normals

The BRDF reconstructed in the previous step enables us to
relight any dynamic scene in which the person wears the
same apparel as in the respective RES. To generate a
visually compelling rendition, however, we found that we
need not only accurate reflectance, but also a representation
of the small surface geometry details that appear and
disappear while a person is moving. We are able to capture
these geometry details by estimating a time-varying surface
normal field for each DSS via photometric stereo.

Motion parameters for the DSS are found by means of
our silhouette-based tracking approach (Section 5). The
time-varying normal direction is estimated for each surface
point individually. The estimation procedure is a nonlinear
minimization of the regularized energy function (2) in the
normal direction. Our cloth shift detection method (Sec-
tion 5.4) has stored information about potential temporal
displacement of textiles as a stream of warped BRDF texture
coordinates. We account for this by performing BRDF
parameter lookups using these temporally varying texture
coordinates. In order to robustly perform photometric
stereo and to minimize the influence of measurement noise,
a sufficient number of samples has to be collected for each
surface point. To achieve this purpose, we assume that
changes in local normal direction within a short window in
time can be neglected. The input sequence is split into
subsequent chunks of frames (typically of length 5). For
every point ~x on the body surface, we fit an optimal
normal n̂ to each chunk of video individually. After the
time-varying normals have been estimated at this coarse
scale, the normal directions between subsequent chunks are
interpolated via spherical linear interpolation (Fig. 7). For
some sequences, we are able to correct undersampling
problems by adaptively enforcing consistency with the
template model. To this end, in those surface areas
exhibiting a high fitting error, we rerun the normal
estimation with a higher influence of the penalty term in
(2). This way, we obtain a normal field that is smooth in the
temporal domain and faithfully models subtle dynamic
details in surface geometry.

7 RENDERING

Our approach outputs a relightable dynamic object descrip-
tion that consists of the animated geometry and the
reconstructed material properties. The material properties

consist of the time-independent BRDF textures, the
dynamic normal maps, and a sequence of warped BRDF
texture coordinates modeling cloth shifting.

During real-time playback, our renderer Arena displays
the single-skin body model in the smoothly interpolated
sequence of captured body poses. The final appearance of
the body surface is determined on the GPU by BRDF shader
programs implemented in Nvidia’s Cg language. We can
currently demonstrate Phong and Lafortune shader im-
plementations. Due to limited camera resolution, changing
facial expressions cannot be faithfully captured by our
dynamic reflectance representation. We therefore do not
compute full BRDF lighting in the face, but only simulate
diffuse surface appearance. To this end, we use the
fragment colors from the weightedly blended input video
streams as diffuse reflectance components. Our real-time
renderer can illuminate the dynamic scene from multiple
point or directional light sources with activated shadow
mapping. Relighting from static environment maps that are
approximated by discrete directional light sources via
importance sampling is also feasible. On a 3.0 GHz
Pentium4, we achieve 19 fps sustained rendering frame
rate if a model with 90,000 triangles and four point lights
with activated shadow mapping are applied. Using an
environment map for relighting, we can still render the
scene at 6 fps if 16 approximating lights are employed.

8 VALIDATION AND DISCUSSION

We have validated our approach by visual inspection and
quantitative evaluation. In total, we have processed
15 different input sequences using Phong and Lafortune
BRDFs. They cover three different human subjects, six
different types of apparel, and comprise 150 to 350 frames
each. For numerical verifications, we restrict ourselves to
Phong sequences.

Warp correction (Section 5.3) leads to an average
reduction in absolute image difference between reference
and reprojected image in the range of 6 percent. These pair-
wise registration enhancements result in improvements in
multiview texture-to-model consistency; see Fig. 8.

Cloth shift compensation also contributes to more
realistic renditions, especially since the positions of seams
of pieces of apparel are more reliably captured; see Fig. 9.
Although both of these methods lead to visual improve-
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Fig. 7. Two-dimensional illustration of robust time-varying normal map
estimation. (a) The sequence subdivided into short chunks. For each
chunk, one best-matching normal is derived per texel which is assigned
to the chunk’s center time step (white). (b) Intermediate time steps are
interpolated.



ments in locally confined surface areas, they have a very
noticeable positive influence on the overall visual quality.

We have also measured the average peak-signal-to-
noise-ratio with respect to one input video stream not used
for reconstruction. By employing warp correction, we
obtain a PSNR improvement of 0.2 dB. Cloth shift
compensation typically accounts for an additional gain of
0.1-0.2 dB. This numerically confirms the achieved recon-
struction improvements. However, the global quality
measure does not do full justice to the perceivable local
visual improvements that we achieve.

For our captured test persons, we neither have ground
truth BRDF parameters nor ground truth normal maps at
our disposition. We therefore assess the quality of the
reconstructed dynamic reflectance models by visual com-
parison to the input video footage. Our approach captures
dynamic scene geometry reliably and jointly estimates
dynamic surface reflectance of different materials (Fig. 12).
Diffuse and specular reflectances are faithfully discrimi-
nated. The realistically reproduced specular reflection of the
trousers of a male test subject is shown in the accompanying

video that can be downloaded from [1]. Subtle details like
time-varying wrinkles in clothing are faithfully captured in
normal maps, Fig. 12a, and realistically relit under varying
illumination conditions, Fig. 12b.

To get as-good-as-possible reflectance data for one RES,
we generated a high-quality surface mesh using a laser
range scanner and rotated the person on a turntable. We
compared BRDF parameters and normal maps computed
with our model to the ones obtained with the scanned
model. The per-material BRDF parameters found with our
approximate geometry only deviate minimally; see Table 1.
Our surface normals nicely capture surface details, most
importantly, wrinkles and seams of pieces of apparel. In
some places, our normal field even exceeds the resolution of
the scan (see Fig. 10).

To verify the rendering quality under novel lighting
conditions, we have recorded one of our male test subjects
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Fig. 8. (a) Result without warp-correction prior to reflectance estimation
—ghosting due to misalignments along the stripes of the trousers are
visible. (b) Result with warp-correction—ghosting artifacts have been
significantly reduced due to better multiview consistency. Block artifacts
are due to limited texture resolution.

Fig. 9. Zoom-in on renditions of the t-shirt’s waist seam. Block artifacts
are due to limited texture resolution. (a) shows the model textured with
the blended input camera views as reference. (b) shows the appearance
of the rendered seam if cloth shift detection has not been used during
reconstruction. Parts of the trousers are erroneously displayed in orange
color. In contrast, (c) shows the correctly rendered seam if textile motion
has been considered during the estimation. Although the shift detection
is not pixel-accurate, it still leads to a more realistic reproduction of the
true appearance of the actor’s apparel.

TABLE 1
Comparison of the Estimated Average Diffuse and
Specular Phong BRDF Parameters that Have Been

Estimated Using the Scanned and the Template Mesh
(Values Are Given for Three of the Surface Materials)

Fig. 10. (a) Color-coded surface normals of a laser-scan of a person in
shorts, (b) the normal field estimated with our method, and (c) the
surface normals of our the template model. The three coordinates of the
surface normal vectors in world space are encoded in the three RGB
color channels. One has to note that our laser-scanner is not well-suited
to full-body scanning and, thus, exact geometry of the head, the hands,
and the feet could not be reconstructed. Furthermore, due to resolution
limitations, geometry details were smoothed out and subtle wrinkles
were not captured. Even though one can see that (b) our estimated
normal field nicely reproduces the wrinkles that have been captured in
the scan, these geometry features are not present in (c) the smooth
template geometry. One can even see that our image-based approach
does not smooth out details like the seam of the t-shirt and the seam of
the shorts. Instead, it captures them accurately.



under two different calibrated lighting setups, henceforth
termed LC A and LC B. In each of the lighting setups, just
one of the spot lights has been employed. The positions of
the light sources in LC A and LC B are (angularly)
approximately 45 degrees apart with respect to the center
of the scene. We reconstructed the BRDF of the test subject
using lighting setup LC A. Subsequently, we compared the
ground truth images of the person illuminated by setup
LC B, Fig. 11a, to the renderings of the person under LC B,
Fig. 11b. This comparison illustrates that our method
realistically reproduces the true appearance of even subtle
surface details under incident illumination that is different
from the lighting conditions used during reconstruction.

Our approach is subject to a couple of limitations:
Reflectance estimation is impossible if the shape estimation
using the marker-less motion capture method already fails.
There are certainly extreme postures, such as the fetal
position, which could not be faithfully captured. However,
we have already shown in [6] that our markerless motion
estimation method can capture fairly complex motion, such
as ballet dance, and can also handle poses were the arms
come close to the body. In our test sequences, we show
fairly general everyday motion, such as walking and a
simple dance. Please note that, in theses sequences, people
are holding their arms away from the body in order to
expose the otherwise occluded torso areas to the viewer.
This way, we demonstrate that we can actually capture the
appearance of areas possibly occluded to some cameras or
light sources. It is thus not due to a limited operational
range of our algorithm that these body poses were chosen.
We believe that we can also handle faster and more
complex motion in the same way.

Another limitation is that the single-skin surface model is
generated in an interactive procedure. However, this is not a
principal limitation of our method since model generation
could be fully automated by a method similar to [2].
Furthermore, although we can handle normal everyday
apparel, we cannot account for loose apparel, where surfaces
can deviate almost arbitrarily from the body model.

Although cloth shift compensation and warp correction
lead to visual improvements in the majority of cases,
isolated local deteriorations are still possible. Cloth shift
detection, for example, sometimes erroneously classifies
evolving wrinkles as shifting of apparel. Also, in case of
strongly incorrect body geometry, warp correction may
induce noticeable discontinuities on the surface, e.g., due to
changing reference cameras or visibility boundaries. Luck-
ily, for the types of scene we intend to handle, body shape is
already so close to the true geometry that these disconti-
nuities play no significant role. We nonetheless leave the
decision if either of the two methods are used to the user.

Moreover, we currently neglect interreflections on the
body. In the RES, they potentially play a role between the
wrinkles in clothing. To prevent this effect from degrading
the estimation accuracy, we have taken care to minimize the
number of wrinkles in the RES.

Sometimes we observe small rendering artifacts due to
undersampling (e.g., on the underneath of the arms).
However, since we decouple the BRDF estimation from
the dynamic normal map estimation, we can reduce
undersampling problems significantly. First, undersampled
areas during BRDF estimation can be minimized by
recording an RES sequence showing several rotation
motions with different body postures. If, even in this
extended RES, a pixel is never seen by any of the cameras,
we fill in reflectance properties from neighboring regions in
texture space. This still leaves the possibility that, during
dynamic normal estimation, a surface point is not exposed
to any camera. In this case, we have to resort to the normal
coming from the template model since no other evidence is
available. We would like to point out that all of these
undersampling issues are general problems of any passive
vision system and not specific to our approach.

Finally, our current face rendering technique is a
compromise that produces visually compelling but not
physically correct results. Capturing the reflectance of the
face separately with a more closely spaced camera setup
would permit full BRDF relighting.

Despite these limitations, our method is an effective
combination of algorithmic tools that allows for the creation
of realistic relightable dynamic scene descriptions.

9 RESULTS

In the previous section, we have given evidence of the
performance of individual algorithmic components of our
joint motion and reflectance estimation scheme. In this
section, we show that the interplay of these algorithmic
ingredients enables the authentic rendition of moving real-
world people in real-time. Our dynamic scene description
allows us to photo-realistically render human actors under
both the artificial, Fig. 1d, and real-world illumination that
has been captured in high-dynamic range environment
maps, Fig. 1c. We can also implant actors into virtual
environments as they are commonly used in computer
games, such as a little pavilion, Fig. 12c, or a pool house,
Fig. 12d. Here, our dynamic surface reflectance description
even enables the realistic display of the person’s reflection
in the mirroring floor and the water surface. Relightable 3D
videos can be displayed from arbitrary viewpoints and even
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Fig. 11. Rendering under novel calibrated lighting conditions: (a) shows
the ground-truth (recorded) appearance of the actor from one input view
under calibrated lighting condition LC B. (b) shows the rendered model
under LC B from the same viewpoint. For BRDF reconstruction, a
different calibrated lighting condition LC A was used. The comparison
shows that we are able to reproduce the true appearance of the actor
even under novel lighting conditions.



real-world lighting environments can be rotated interac-

tively, see Figs. 12e, 12f, 12g, 12h, 12i, and the accompany-

ing video (that can be downloaded from [1]).
Once we have estimated the BRDF for one type of

clothing, we can also use the surface appearance description

to change the apparel of a person even for motion

sequences in which the person was originally dressed

differently (see video).
The motion estimation process takes around 3 s per time

step. Reflectance estimation takes at most 1 hour for the

RES. Normal estimation takes approximately 50 s per time

step, and it can be parallelized to bring the computation

time down.
Optional input frame warping takes around 10 s for one

pair of reference image and reprojected image. Cloth shift

compensation accounts for an additional 35 s of computa-

tion time for one time step of video.
Even with the relighting option, our final data format is

more compact than the traditional 3D video format [6],

which is comprised of eight raw video streams for projective
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Fig. 12. (a) Input video frame (left) and color-coded rendition of estimated normal map (right). In the color-coded rendition, the three world-space
coordinates of each surface normal have been used as RGB color components. Note that wrinkles are faithfully captured in the normal field.
(b) Under varying incident illumination conditions, the wrinkles are authentically relit. (c) Actor dancing in a pavilion while being illuminated by white
spot lights. Note the physically correct reflection in the mirroring floor. (d) In a scene that could be taken from a future computer game, the actor
moves in a pool house lit by purple light sources. Humans also appear photo-realistically under captured real-world illumination, such as (e), (g), and
(h), the St Peter’s Basilica environment map, and (f) and (i), the Grace Cathedral environment map provided by Paul Debevec. Both viewpoint and
environment lighting can be freely rotated in real time.



texturing and the moving model. As an example, for a
330 frame sequence, the data size of the complete relightable
video (moving geometryþ BRDFþ normal maps) is 528 MB,
whereas the total size of the raw input frames is 1,452 MB.

Our results demonstrate that we have developed an
effective novel method for simultaneous capture of dy-
namic scene geometry, per-texel BRDFs, and time-varying
normal maps from multiview video. The acquired scene
description enables realistic real-time rendition of relight-
able 3D videos.

10 CONCLUSION

Our video-based modeling approach jointly captures shape,
motion, and surface reflectance of a person. From eight
synchronized multivideo streams, we recover all informa-
tion necessary to photo-realistically render a recorded
person from an arbitrary viewpoint and in arbitrary
illumination. The ability to perform convincing relighting
enables us to implant real-world, animated people into
virtual surroundings. The abstract description of people’s
appearance in terms of geometry, animation, and surface
reflectance further allows us to separate surface appearance
from geometry. This way, we can interchange surface
attributes among different people, e.g., for dressing one
person with another person’s clothes. Moreover, we employ
a compact data format for our scene description that can be
acquired with only a handful of imaging sensors.

Joint shape, motion, and reflectance capture can not only
be applied to humans, but to any dynamic object whose
motion can be described by a kinematic chain and for which
a suitably parameterized geometry model is available. For
BRDF parameter recovery, the proposed algorithm cur-
rently assumes that the subject is illuminated by a small
number of spot lights. Our approach, however, can be
extended to use more general lighting configurations, such
as the light stage device [35].
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Lighting Variation to Bump Map Capture,” Proc. Eurographics
Workshop Rendering, pp. 35-44, June 1997.

[33] Y. Sato, M.D. Wheeler, and K. Ikeuchi, “Object Shape and
Reflectance Modeling from Observation,” Proc. ACM SIGGRAPH
’97, pp. 379-388, 1997.
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