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Abstract

This paper describes a new approach to fitting a
kinematic model to human motion data which is
a component of a marker-free optical human mo-
tion capture system. Efficient vision-based fea-
ture tracking and volume reconstruction by shape-
from-silhouette are applied to raw image data ob-
tained from several synchronized cameras in real-
time. The combination of both sources of informa-
tion enables the application of a new method for fit-
ting a sophisticated multi-layer humanoid skeleton.
We present results with real video data that demon-
strate that our system runs at 1-2 fps.

1 Introduction

The field of human motion capture is an example for
the coalescence of computer vision and computer
graphics. The acquisition of human motion data is a
prerequisite for the control of artificial characters in
Virtual Reality and Augmented Reality applications
as well as in computer animation and video games.
The analysis of human motion, e.g. gesture recog-
nition, can be used for intelligent user interfaces and
automatic monitoring applications [5]. For anima-
tion, detailed skeletal body models are commonly
applied. Existing optical motion capture systems
using such models only work in a very constrained
scene setup which makes necessary optical markers
or similar scene-intrusive devices [7, 9]. Increasing
computing power of off-the shelf computing hard-
ware makes possible the first marker free vision-
based motion capture systems. Previous approaches
in this field [10, 6, 19] use features extracted from
video frames to fit simple kinematic skeleton mod-
els to human body poses. The simultaneous recov-
ery of pose and body shape from video streams [17]

has also been considered. Optical flow and prob-
abilistic body part models were used to fit a hier-
archical skeleton to walking sequences [2]. None
of the above approaches runs in real-time or comes
close to interactive performance, however. If real-
time performance is to be achieved, comparably
simple models, such as probabilistic region repre-
sentations and probabilistic filters for tracking [24],
or the combination of feature tracking and dynamic
appearance models [8] are used. Unfortunately,
these approaches fail to support sophisticated body
models.

New methods for the acquisition and efficient
rendering of volumetric scene representations ob-
tained from multiple camera views, known as shape
from silhouette or the visual hull [12, 20, 18, 4],
have been presented. Recent research shows that it
is possible to acquire and render polyhedral visual
hulls in real-time [15]. An image-based approach
to visual hull construction samples and textures vi-
sual hulls along a discrete set of viewing rays [16].
State-of-the-art graphics hardware can be used to
render acquired volume data interactively [13].

Only recently, new methods have been presented
that use shape-from-silhouette to capture human
motion. These approaches reconstruct the volume
of a moving person at interactive frame rates and fit
a comparably simple ellipsoid model to the volumes
[3], or compute the motion parameters for a kine-
matic structure by means of a force-field exerted by
the volume elements [14]. In [23], an iterative clos-
est point method is used to fit a human model to
volume data.

In previous work, efficient optical feature track-
ing and volume reconstruction were hardly consid-
ered simultaneously for the acquisition of human
motion. In this paper we present a new method
for marker-free motion capture which uses efficient
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Figure 1: Online system architecture

color-based feature tracking to determine the 3D lo-
cations of salient body features over time. At the
same time, a voxel-based reconstruction of the per-
son’s visual hull from multiple camera views is per-
formed. The combination of both sources of in-
formation enables fitting of a multi-layer kinematic
skeleton to the acquired motion data.

Section 2 gives an overview of the complete mo-
tion capture system architecture described in de-
tail in [21]. The algorithms which are part of the
real-time component are described in sections 4 to
6. The focus of this paper, the actual fitting of the
skeleton, is described in Sect. 7. Results with real
video streams are presented in Sect. 8. The paper
concludes with a summary and the presentation of
future work in Sect. 9

2 System Overview

The person to be tracked moves in a confined vol-
ume of space and is observed from multiple syn-
chronized and calibrated cameras. Currently up to 6
Sony™ DFW-V500 IEEE1394 can record the scene
in color mode and at a resolution of 320x 240 pix-
els. Two cameras at a time are connected to one PC.
On each PC a client application is running which
performs a background segmentation and a volume
reconstruction of the moving subject for the two
connected camera views. In addition, the PC con-
trolling the two front camera views tracks the lo-
cations of hands, head and feet and computes their
3D locations via triangulation. The so-constructed
partial visual hulls are compressed and transferred
to a sever PC which reconstructs the complete vol-
ume and displays it. These steps can be performed
in real-time (see Fig. 1).
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The saved volumes and 3D feature locations are
used to fit a multi-layer skeleton model to the mo-
tion data in a separate step (Fig. 4). The software ar-
chitecture is modular and enables easy extension of
the approach to an arbitrary number of cameras us-
ing a hierarchical structure of the client-server net-
work. For development efficiency reasons, the vol-
ume reconstruction and model-fitting components
were implemented separately. The results, however,
clearly show that an integrated system runs at near
interactive frame rates.

3 Initialization

The cameras are calibrated in a common global co-
ordinate system using Tsai’s method [22]. In the
first frame, the person is supposed to stand in an
initialization position, facing the two front cameras,
with both legs next to each other and spreading
the arms horizontally away to the side at maximal
extent. The person moves barefooted and needs
to face these cameras allowing finite rotation and
bending of the upper body part. For acquisition of a
background several video frames without a moving
subject are recorded with each camera.

4 Segmentation

The person’s silhouette has to be separated from the
background in each camera perspective and for each
video frame. Additionally, the silhouettes showing
the person in the initialization position seen from
the front cameras is subdivided to find the initial
image plane locations of head, hands and feet.

The separation of the moving person from the
background is done by means of a statistical back-
ground model based on the color distribution of
each pixel in the static background scene.

Figure 2: Video frame after background subtraction
(). GVD segmentation of silhouette in initialization
position (r)



The method proposed in [3] is adapted which en-
ables robust elimination of shadows cast by the per-
son on the floor and the walls [21]. This way, a
binary image for each camera is computed.

To identify the initial locations of head, hands
and feet, the two front view silhouettes of the per-
son in the initialization position are subdivided by
means of a Generalized Voronoi Diagram (GVD)
decomposition. Often used in motion planning
for mobile robots [11], the Generalized Voronoi
Diagram is the set of all points in the silhouette
which is equidistant to at least two silhouette
boundary points.

The GVD point set can be used to segment
the silhouette into distinct regions by searching
for points locally minimizing the clearance to the
silhouette boundary. Lines are constructed through
these points to separate neighboring regions. The
boundaries to the head, hands and feet regions in
the silhouettes are marked by constrictions. Fig. 2
shows a silhouette decomposed by this algorithm.

A graph encoding the connectivity between
neighboring regions is built whose terminating
nodes correspond to the searched feature locations
(see [21] for details).

5 Tracking head, handsand feet

The client controlling the front views tracks the lo-
cations of hand, head and feet over time in both
cameras. Several continuously adaptable mean shift
trackers are used which follow the mean of dynam-
ically changing pixel color probability distributions
[1]. From the segmentation step, the initial loca-
tions and regional extents of the head, the hands and
the feet regions in both front camera perspectives
are known. The HSV mean colors of human skin
are computed for each of these regions. Color in-
tervals around these mean colors are defined. For
every tracked feature in each video frame, pixel-
wise region membership probabilities are approx-
imated by color histogram back-projection. A sep-
arate continuously adaptable mean-shift tracker is
used for each of the five body parts in each front
camera view. Within a limited search window, ev-
ery tracker uses gradient information for conver-
gence to the mean of the region-membership prob-
ability distribution (see [1] for details). The whole
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procedure is run for each video frame acquired from
the two front view cameras.

The 3D positions of the tracked body parts are
computed by triangulation using the recovered 2D
image plane locations in each front camera view
[21].

6 Volume Reconstruction

Figure 3: Example volume back-projected into 2
camera views

The visual hull of the moving subject is recon-
structed in real-time using a shape-from-silhouette
method comparable to those presented in [3] and
[14]. The confined volume of space in which the
person is allowed to move is regularly subdivided
into volume elements (voxels).

Each client (Fig. 1) projects every volume ele-
ment back into the silhouette images of both con-
trolled camera views. If a voxel back-projects into
the silhouette of the person in both views, it is clas-
sified as occupied space. The clients run-length-
encode their partial visual hulls and transfer them
to the server via LAN. The server reconstructs the
complete visual hull by forming the intersection
of the partial hulls from each client. A consider-
able speedup is achieved by precomputing the im-
age plane coordinates of each re-projected voxel in
every static camera view. Two example visual hulls
reconstructed from four camera views can be seen
in Fig. 3.

7 Skeleton Fitting

The skeleton fitting algorithm estimates the joint
parameters of a multi-layer kinematic model for
each time step ¢ of a recorded motion sequence.



It uses the stored volume models and 3D location
data of head, hands and feet from the online system
(Fig. 1), as well as the model parameters in the pre-
vious time step ¢ — 1 as input (Fig. 4). The joint
parameters for time ¢t = 0 are known since the per-
son is required to stand in an initialization position.

The dimensions of the body model are adjusted
to the dimensions of the moving person. This
is either done by manually measuring the limb
lengths and loading them into the application or by
interactively marking shoulder, hip, elbow and knee
locations in the two front camera views showing
the person in initialization position. The lengths
of all body segments can then be automatically
derived. The thicknesses of the volumes attached
to arms and legs are set by the user.

The human body is modeled as a 2-layer kine-
matic skeleton. The first layer of the model con-
sists of a structure of 10 bone segments and 7 joints.
Each joint spans a local coordinate frame which is
defined by a rotation matrix R and a translation vec-
tor £ relative to the preceding joint in the skeleton
hierarchy.

The second layer refines the layer-1 structure by
upper arm and forearm segments, as well as thigh
and lower leg segments (Fig. 5). The volumet-
ric extents of the corresponding limbs are modeled
by means of point samples taken from cylindrical
volumes centered around the segments, henceforth
called cylinder samples (Fig. 5). Every pair of these
new segments is connected via a 1-DOF revolute
joint which serves as a simplified model of the el-
bow or knee joint. The lengths of the additional
layer-2 segments are constant and known from ini-
tialization. Together with the corresponding layer-
1 leg and arm segments, triangles are formed in
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Figure 4: Skeleton fitting overview
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Figure 5: Skeleton layer 1 (1), Skeleton layer 2 (r)

which the lengths of the first layer bones vary dur-
ing model fitting. The bending angles of the elbow
and knee (henceforth denoted by ¢) at each time
step ¢ are fully determined by the cosine theorem
(see Sect. 7.2). The additional rotational degree of
freedom (henceforth denoted by p) of the layer-2
arm and leg constructions around the correspond-
ing layer-1 segment in each time step ¢ is found us-
ing the cylinder samples and the visual hull voxels
(Sect. 7.3).

The layer-1 model has 24 degrees of freedom in
total. Layer 2 extends this by 4 degrees of freedom.

7.1 Finding the torso orientation

Pure optical tracking of the shoulder positions is
difficult due to the lack of detectable salient fea-
tures. However, the reconstructed volume can be
used to find the shoulder position and torso orien-
tation. The voxel positions are interpreted as a 3-
dimensional data set with coordinate origin in its
center of gravity. For this set a 3 x 3 covariance ma-
trix C is computed. The 3 eigenvectors of the sym-
metric matrix C, the principal components (PCs),
denote the directions of strongest variance in the
data and are mutually orthogonal. If the data is lim-
ited to the voxels corresponding to the torso of the
person, the first principal component lies along the
spine segment direction, the second along the con-
nection between the shoulders, and the third is or-
thogonal to these two (see Fig. 6). For segmenting
out the torso voxels, we make use of the skeleton
model. A cylindrical volume around the spine axis
(Fig. 6) is used to constrain the PC computation to
the torso part. The algorithm to find the upper body
orientation makes use of temporal coherence :



The parameterization of the skeleton model is
known from the previous time step t — 1. Assum-
ing that the change in body orientation is small from
time ¢t — 1 to time ¢, the position and orientation of
the cylindrical volume at time ¢ — 1 are used to sep-
arate the torso part from the complete visual hull at
time step ¢. The principal components of the torso
volume at time ¢ can now be computed.

Figure 6: torso search volume (I) and the principal
components of all the voxels inside the torso (r)

7.2 Fitting the first skeleton layer

head

Y
neck joint

left shoulder joint
“>sx.arm in initial orientation

< fitting
- rotation

left hand

Figure 7: Fitting layer-1 arm segment

The skeleton dimensions are obtained from the
initialization (Sect. 5). From feature tracking, the
3D locations of the head, the hands and the feet are
known at each time step. Together with the torso
orientation (Sect. 7.1), this enables fitting the layer-
1 skeleton. The root of the model (located at the
head) is translated to the known 3D head position.
The neck bone is upright with respect to the global
coordinate system at all times, hence the relative po-
sition of head joint center to neck joint center in
world coordinates is fixed. The principal compo-
nents from the torso orientation computation define
the goal orientation for the neck joint local coordi-
nate system at time step ¢. The corresponding neck
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joint rotation for time ¢ is directly available by using
the PC vectors as the column vectors of the rotation
matrix Rpeck(t). To keep the hip bones parallel
to the floor level, the pelvis joint rotation is set to
the inverse neck rotation. This constrains the set

Figure 8: Torso aligned with principal component
orientation

of allowed motions but enables quick model fitting
which proves to be sufficient in all our experiments.

Now, the locations of the shoulder and hip joint
are known for time step ¢. The distances between
shoulders and wrists, as well as between the hips
and the ankles are computed, and the lengths of the
corresponding layer-1 segments are appropriately
rescaled. Knowing the positions of the hands in the
shoulder coordinate systems and the feet in the hip
coordinate systems, the correct shoulder and hip ro-
tations are straightforward to compute (Fig. 7). Fit-
ting the layer-1 skeleton to the video footage is per-
formed in real-time (Sect. 8).

7.3 Fitting the second skeleton layer

The volume data is used to find the values of the
four additional degrees of freedom in layer 2. By
means of the cosine theorem the elbow and knee an-
gles of the second layer (¢) are directly determined.
The lengths of the layer-2 arm and leg segments are
constants. The distances of shoulders and hands, as
well as of hips and feet at time ¢ are obtained from
the layer-1 skeleton. As an example, the distance
d between shoulder and hand is depicted in Fig. 9.
In order to find the additional rotation angle of the
layer-1 arm and leg segments (p in Fig. 9), a maxi-
mal overlap of the visual hull and the layer-2 cylin-
der samples is computed. This is done only if there
is a noticeable bending of elbows and knees, i.e., ifa
layer-1 segment is significantly shorter than the sum



of the attached layer-2 segment lengths. Otherwise,
p(t — 1) is passed on.

The shapes of the arms and legs on layer 2 are
modeled using point samples taken from cylindri-
cal volumes centered around the layer-2 arm and
leg segments (Fig. 5). The computation of the best
layer-2 rotation p(t) is a problem of optimally reg-
istering a set of these cylinder samples against the
voxels in the visual hull volume. This is done by
transforming the problem into searching a maxi-
mum of a goodness-of-fit function. For a given ro-
tation p, let n be the number of cylinder samples
that lie inside visual hull voxels. The goodness-
of-fit function is defined as match(p) = n*. It
is sampled for v equally spaced rotation angles
& (1 =0,...,v— 1) which are taken from an in-
terval [p(t — 1) — s, p(t — 1) + s] centered around
p(t — 1), where s determines the interval size. This
is based on the assumption that the change of p is
only small from ¢ — 1 to ¢.

The final rotation p(t) of the arm segment is
found by

. r
v~ match(&)

1=0 Ma

v—1
Z & x match(&;).

=0

pt) =

This particular match function is a heuristic
which exaggerates good overlap scores. The
method quickly converges towards good regis-
trations at sub-voxel resolution, overcoming the
quantization inaccuracy of the visual hull volume.

shoulder

hand (wrist)

Figure 9: (L) Testing rotations between bounds of
search interval. Small spheres represent visual hull
voxels, cylinder samples are not drawn.

The model fitting routine reports the correct ro-
tations for each model joint at time step ¢. Cur-
rently, this is done in form of a rotation matrix R
for each joint. In addition, the elbow and knee an-
gles, layer-2 rotation angles and the correct model
root translation are reported for each time ¢. The
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accumulation of model fitting errors on layer 2 is
prevented by searching for the best fit in a search
interval at every time step. This way, false estimates
of the magnitude of the search interval size can be
corrected. The parameterization of arms and legs
on two different layers cannot directly be applied
to standard skeletons used in animation systems(e.g
HAnim models). If the presented method is to be
used to control virtual characters, an additional step
has to be taken. The rotation matrices defined by
the shoulder and hip joints have to be multiplied by
matrices rotating the layer-1 arm and leg segments
onto the corresponding upper arm and leg segments
in the local coordinate system. This transform is
straightforward to compute.

8 Reaults
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Figure 10: rotation angles for layer-2 arm segment
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Figure 11: rotation angles for layer-2 leg segments
while prostrating

The model fitting quality of the presented method
is evaluated using test sequences obtained with our
motion capture setup. The complete online system
performing background subtraction, visual hull re-
construction, feature tracking and visual hull ren-
dering can run at approximately 6-7 fps for a 64°



PCA computation 4ms
Torso segmentation 5.5ms
Layer-1 fitting 16 ms
Fitting 1 layer-2 segment | 211 ms

Table 1: Timing results

voxel volume (see [21]). Fig. 12 shows the layer-2
skeleton fitted to two body poses of a motion se-
quence. Our algorithm correctly recovers the skele-
ton configuration, in particular the torso orientation.
In Table 1 the performance of each part of the algo-
rithm is summarized. The values are obtained from
experiments on a 1 GHz Athlon PC. The volume
size is 643, and 64 cylindrical volume samples are
attached to each layer-2 arm and leg structure. With
the current implementation, the recovery of a single
arm or leg segment rotation (last row in Table 1) is
by far the most computationally expensive step. For
an average motion sequence, a fitting frame rate of
1-2 fps is achieved.

Figure 12: Layer-2 skeletons fitted to visual hulls.
Red spheres mark tracked feature locations

A series of captured layer-2 arm segment rota-
tions (p, see Sect. 7.3) for 153 consecutive time
steps is shown in Fig. 10. A smooth sequence of an-
gles is obtained even with a coarsely sampled voxel
volume. Fig. 11 shows the change of angle p over
time for both layer-2 leg segments while the ob-
served person is prostrating. Since during this mo-
tion the knees are slightly moved outwards in op-
posite directions, the plot is symmetric. Flat parts
in both plots mark the steps where no rotation an-
gle computation for a layer-2 segment is performed
since the limbs are almost fully stretched. A com-

mon problem in shape-from-silhouette approaches
are shadow artifacts which arise if certain parts of
the volume cannot be carved away since they are
occluded in all camera views. When reconstructing
human visual hulls, these artifacts typically exist in
the form of overly voluminous arms and legs. Our
approach can still recover the correct arm and leg
configurations even in the presence of such recon-
struction errors. A camera looking at the scene from
the top is not required, and even with only 4 cam-
eras looking from the side, robust fitting is possi-
ble. Further results can be found at http://www.mpi-
sb.mpg.de/~theobalt/VisualHull Tracking.

9 Conclusion and futurework

This paper presents a method to robustly fit a multi-
layer kinematic skeleton to human motion simulta-
neously recorded from multiple camera views. The
joint use of 3D feature tracking and shape-from-
silhouette enables reliable fitting of a kinematic
skeleton. The special multi-layer parameterization
of this skeleton enables the use of an efficient fitting
strategy based on volume registration. This method
can correctly recover the arm and leg configurations
even with only a few cameras and at a coarse voxel
density in the visual hull. The feature tracking in the
online system and constraints in the model param-
eterization currently limit the range of movements
which can be captured. The fitting method itself,
however, allows arbitrary rotations of the human ac-
tor around the vertical body axis.

Alternative registration techniques will be tested,
and further improvement of the online system’s
tracking component will be considered. In the near
future, the system will evolve into a real-time mo-
tion capture and character control application.
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