Assignment 1 (Propositional Logic)

Let $F[G \wedge H]$ be a propositional formula that contains $G \wedge H$ as a subformula (where G and H are also propositional formulas). Prove: If $F[G \wedge H]$ is valid, then $G \to F[H]$ is valid.

Assignment 2 (Resolution)

(8 + 8 = 16 points)

(2)

(10 points)

Let $\Sigma = (\{a/0, b/0, f/1, g/1\}, \{P/2, Q/1, R/1, S/1\});$ let N be the following set of clauses over Σ :

$\neg Q(y) \lor S(x) \lor P(x,x) \lor P(y,g(y)) $ (1)

- $\neg P(z, g(a)) \lor R(z)$
- $\neg S(a) \lor \neg S(f(b)) \tag{3}$
- $S(f(y)) \lor S(y) \tag{4}$

Part (a)

Suppose that the atom ordering \succ is an LPO with the precedence P > Q > R > S > f > g > a > b. Compute all ordered resulution inferences between the clauses (1)–(4) with respect to \succ . (Compute only inferences between the clauses given here, not between derived clauses. Do not compute any inferences that violate the ordering conditions of ordered resolution.)

Part (b)

If a selection function is defined appropriately, the set N is saturated under ordered resolution with selection (w.r.t. the ordering \succ from Part (a)). Which literals have to be selected?

Assignment 3 (Tableaux)

(10 points)

Use semantic tableaux to show that the following set of formulas over $\Sigma = (\{b/0, f/1\}, \{P/2\})$ is unsatisfiable:

$$\forall y \ \forall x \ \left(P(x,y) \to P(f(x), f(y)) \right) \\ \exists w \ P(b,w) \\ \forall z \neg P(f(f(b)), z)$$

Use exactly the expansion rules given in the lecture; do not use shortcuts.

Assignment 4 (E-Algebras)

(6 + 8 + 6 = 20 points)

Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{a/0, b/0, f/1\}$; let *E* be the set of equations $\{a \approx b, f(b) \approx f(f(b))\}$.

Part (a)

Show that $f(a) \leftrightarrow_E^* f(f(f(a)))$.

Part (b)

How many elements does the universe of the quotient algebra $T_{\Sigma}(\emptyset)/E$ have?

Part (c)

Give an example of a (quantified) equation $\forall \vec{x} \ (t \approx t')$ such that $t \leftrightarrow_E^* t'$ does not hold, but $T_{\Sigma}(\emptyset)/E \models \forall \vec{x} \ (t \approx t')$.

Assignment 5 (Reduction Orderings) (8 + 8 = 16 points)

For a signature Σ we define T_x^1 as the set of all Σ -terms that contain exactly one occurrence of the variable x and no other variables.

Part (a)

Prove: If all function symbols in Σ have arity 1, then a Knuth-Bendix ordering \succ with a total precedence is total on T_x^1 .

Part (b)

Prove: If Σ contains a binary function symbol and a constant function symbol, then there exists no reduction ordering that is total on T_x^1 .

Assignment 6 (Feature Vector Indexing) (8 points)

Decide for each of the following numbers whether or not it could be used as a feature in a feature vector index:

- (1) the number of ground arguments of predicate symbols in a clause,
- (2) the number of variable occurrences in a clause,
- (3) the number of constant symbols occurring in positive literals in a clause,
- (4) the absolute value of the difference between the number of positive and the number of negative literals in a clause.

(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least three correct answers in this assignment to get any points. Missing answers count like false answers.)