4.5 Termination

Termination problems:
Given a finite TRS R and a term ¢, are all R-reductions starting from ¢ terminating?

Given a finite TRS R, are all R-reductions terminating?
Proposition 4.17 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting
problems for TMs to the termination problems for TRSs. O

Consequence:

Decidable criteria for termination are not complete.

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules [ —
r € R, rather than at infinitely many possible replacement steps s —g s'.

A binary relation 1 over T (X) is called compatible with ¥-operations, if s 7 s’ implies
fltr, o8, ty) 3 f(t, ..., 8, ... t,) for all f € Qand s, s t; € Tg(X).

Lemma 4.18 The relation 3 is compatible with Y-operations, if and only if s 3 s
implies t[s], O t[s'], for all s,s',t € Ty(X) and p € pos(t).

Note: compatible with Y-operations = compatible with contexts.

A binary relation 1 over Tx(X) is called stable under substitutions, if s 3 s’ implies
so 1 s'o for all s,s" € Tx(X) and substitutions o.

A binary relation 1 is called a rewrite relation, if it is compatible with -operations and
stable under substitutions.

Example: If R is a TRS, then —p is a rewrite relation.
A strict partial ordering over Ty (X)) that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.
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Theorem 4.19 A TRS R terminates if and only if there exists a reduction ordering >
such that | > r for every rulel — r € R.

Proof. “if”: s —p ¢ if and only if s = t[lo],, ' = t[ro],. If [ > r, then lo > ro and
therefore t[lo], > t[ro],. This implies — C >. Since > is a well-founded ordering, —r
is terminating.

“only if”: Define »= = —%. If —p is terminating, then > is a reduction ordering. O

Two Different Scenarios

Depending on the application, the TRS whose termination we want to show can be

(i) fixed and known in advance, or

(ii) evolving (e.g., generated by some saturation process).

Methods for case (ii) are also usable for case (i).
Many methods for case (i) are not usable for case (ii).

We will first consider case (ii);
additional techniques for case (i) will be considered later.

The Interpretation Method

Proving termination by interpretation:
Let A be a Y-algebra; let = be a well-founded strict partial ordering on its universe.

Define the ordering > 4 over Tx;(X) by s >4 t iff A(5)(s) > A(5)(t) for all assignments
ﬁ X — UA.

Is >4 a reduction ordering?
Lemma 4.20 > 4 is stable under substitutions.

Proof. Let s =4 ¢, that is, A(8)(s) = A(5)(s") for all assignments 5 : X — Uy. Let
o be a substitution. We have to show that A(v)(so) = A(y)(s'c) for all assignments
v : X — Uy. Choose 3 =~ oo, then by the substitution lemma, A(y)(so) = A(5)(s) =
A(B)(s") = A(y)(s'0). Therefore so =4 s'o. O

A function f : U} — Uy, is called monotone (with respect to >), if a > o’ implies
f(br, .o ya,....b,) = f(by,...,d,... b,) for all a,a’,b; € Upg.
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Lemma 4.21 If the interpretation f4 of every function symbol f is monotone w.r. t. >,
then > 4 is compatible with »-operations.

Proof. Let s > &, that is, A(8)(s) = A(B)(s') for all 5: X — Uy. Let B: X — Uy be
an arbitrary assignment. Then

AB) (f(tr, -8 tn)) =

Therefore f(t1,...,8, ... tn) =a f(t1,.. .8, ... tn). O

Theorem 4.22 I[f the interpretation f 4 of every function symbol f is monotone w.r. t. >,
then > 4 is a reduction ordering.

Proof. By the previous two lemmas, >4 is a rewrite relation. If there were an infinite
chain s; >4 $2 >4 ..., then it would correspond to an infinite chain A(3)(s1) >
A(B)(s2) = ... (with 8 chosen arbitrarily). Thus >4 is well-founded. Irreflexivity and
transitivity are proved similarly. O

Polynomial Orderings

Polynomial orderings:
Instance of the interpretation method:
The carrier set Uy is N or some subset of N.

To every function symbol f with arity n we associate a polynomial Pr(X;y,...,X,) €
N[X3,. .., X,] with coefficients in N and indeterminates X, ..., X,,. Then we define
falay,...,a,) = Ps(as,...,ay,) for a; € Ug.

Requirement 1:

If aj,...,a, € Uy, then fy(ai,...,a,) € Uy. (Otherwise, A would not be a -
algebra.)

Requirement 2:

fa must be monotone (w.r.t. >).
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From now on:
Us={neN|n>1}.
If arity(f) = 0, then Py is a constant > 1.

If arity(f) = n > 1, then P is a polynomial P(Xj,...,X,), such that every X; occurs
in some monomial with exponent at least 1 and non-zero coefficient.

= Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to terms: A
term t containing the variables x,...,x, yields a polynomial P, with indeterminates
Xi,..., X, (where X; corresponds to ((z;)).

Example:

Q= {b/0, f/1, g/3}
Pb:37 Pf(Xl) :X12, Pg<X1,X2,X3) :X1—|—X2X3.

Let t = g(f(b), f(z),y), then P,(X,Y) =9+ X?Y.

If P, @ are polynomials in N[ X7, ..., X,|, we write P > Q if P(ay,...,a,) > Q(aq,...,a,)
for all aq,...,a, € Uy.

Clearly, I =4 r it P, > P, ifft P, — P, > 0.
Question: Can we check P, — P, > 0 automatically?

Hilbert’s 10th Problem:

Given a polynomial P € Z[Xq,..., X,] with integer coefficients, is P = 0 for some
n-tuple of natural numbers?

Theorem 4.23 Hilbert’s 10th Problem is undecidable.

Proposition 4.24 Given a polynomial interpretation and two terms [, r, it is undecid-
able whether P, > P,.

Proof. By reduction of Hilbert’s 10th Problem. O

One easy case:
If we restrict to linear polynomials, deciding whether P, — P. > 0 is trivial:
> kia; + k>0 for all a4, ...,a, > 1 if and only if
k; >0 forallie {1,...,n},
and > k;+k>0
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Another possible solution:
Test whether P(ay,...,a,) > P.(ai,...,a,) forall a;,...,a, e {z eR|z>1}.
This is decidable (but hard). Since U4 C {x € R | 2 > 1}, it implies P, > P,.
Alternatively:

Use fast overapproximations.

Simplification Orderings
The proper subterm ordering > is defined by s > t if and only if s/p = t for some
position p # € of s.

A rewrite ordering > over Ty (X) is called simplification ordering, if it has the subterm
property: s > t implies s = t for all s,t € Ty (X).

Example:

Let Remp be the rewrite system Ren, = { f(21,...,2,) — x; | f € Q1 <i<n=

arity(f) }-

Define ey, = — 5 and Doy, = —5 - (“homeomorphic embedding relation”).

>omb 18 @ simplification ordering.

Lemma 4.25 If > is a simplification ordering, then s ey, t implies s = t and s >y, t
implies s > t.

Proof. Since > is transitive and > is transitive and reflexive, it suffices to show that
s —ng,,, t implies s > t. By definition, s —pg_, t if and only if s = s[lo] and t = s[ro]
for some rule | — r € Reyy,. Obviously, [ > r for all rules in Rey,, hence [ > r. Since >
is a rewrite relation, s = sllo] > s[ro] =t. O

Goal:

Show that every simplification ordering is well-founded (and therefore a reduction
ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification orderings and the
definition of embedding have to be modified.

98



Theorem 4.26 (“Kruskal’s Theorem”) Let X be a finite signature, let X be a finite
set of variables. Then for every infinite sequence t,ts,ts, ... there are indices j > i such
that t; >emp ti. (Bemb is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, page 113-115. O

Theorem 4.27 (Dershowitz) If ¥ is a finite signature, then every simplification or-
dering >~ on Tx(X) is well-founded (and therefore a reduction ordering).

Proof. Suppose that ¢t; > t5 > t3 > ... is an infinite descending chain.

First assume that there is an © € var(t;;1) \ var(¢;). Let 0 = {x — ¢;}, then t;1,0 >
xo = t; and therefore t; = t;o > t; .10 = t;, contradicting reflexivity.

Consequently, var(t;) 2 var(t;11) and t; € Tyg(V) for all i, where V is the finite set
var(t;). By Kruskal’s Theorem, there are ¢ < j with ¢; <enp, t;. Hence ¢; < t;, contra-
dlCtlIlg t; > tj. O

There are reduction orderings that are not simplification orderings and terminating TRSs
that are not contained in any simplification ordering.

Example:

Let R ={f(f(x)) = f(g(f(x)))}.

R terminates and —F, is therefore a reduction ordering.

Assume that — g were contained in a simplification ordering >. Then f(f(z)) —r

f(g(f(x))) implies f(f(x)) — f(g(f(x))), and f(g(f(x))) Bemn f(f(x)) implies f(g(f(x))) =
f(f(x)), hence f(f(x)) = f(f(x)).

Path Orderings

Let ¥ = (2,1I) be a finite signature, let > be a strict partial ordering (“precedence”)
on (2.

The lexicographic path ordering >1,, on Tx(X) induced by > is defined by: s >0 t
iff

(1) t € var(s) and t # s, or
(2) § = f(sla"'asm)7 t :g(tl"“’tn)’ and

(a)
(b) f > gand s > t; for all j, or
)

(c

5; Z1po t for some i, or

[ =9,8>po t; forall j, and (s1,...,Sm) (&1po)iex (t15- -, tn).
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Lemma 4.28 s >, ¢ implies var(s) D var(t).
Proof. By induction on |s| + [¢| and case analysis. O
Theorem 4.29 >, is a simplification ordering on Ty (X).

Proof. Show transitivity, subterm property, stability under substitutions, compatibility
with Y-operations, and irreflexivity, usually by induction on the sum of the term sizes
and case analysis. Details: Baader and Nipkow, page 119/120. O

Theorem 4.30 If the precedence > is total, then the lexicographic path ordering >y,
is total on ground terms, i.e., for all s,t € Tx(0): s =150 t V1t >1po SV s =t.

Proof. By induction on |s| + |t| and case analysis. O

Recapitulation:

Let ¥ = (€, II) be a finite signature, let > be a strict partial ordering (“precedence”) on
(2. The lexicographic path ordering >,, on Tx(X) induced by > is defined by: s >0 t
iff

(1) t € var(s) and t # s, or

(2) s= f(s1,-+-y8m), t =g(t1,...,t,), and

(

a)
(b) f > gand s >, t; for all j, or
(C) f =9g,S >_1p0 t] for all j, and (31, Cey Sm) (>‘lpo)lex (th cee 7tn)

;i Z1po t for some i, or

There are several possibilities to compare subterms in (2)(c):

e compare list of subterms lexicographically left-to-right ( “lexicographic path order-
ing (Ipo)”, Kamin and Lévy)

e compare list of subterms lexicographically right-to-left (or according to some per-
mutation )

e compare multiset of subterms using the multiset extension ( “multiset path ordering
(mpo)”, Dershowitz)

e to each function symbol f with arity(n) > 1 associate a status € {mul} U {lex, |
m:{l,...,n} — {1,...,n} } and compare according to that status ( “recursive
path ordering (rpo) with status”)
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The Knuth-Bendix Ordering

Let ¥ = (2,1I) be a finite signature, let > be a strict partial ordering (“precedence”)
on Q, let w: QU X — RS be a weight function, such that the following admissibility
conditions are satisfied:

w(z) = wy € RY for all variables x € X; w(c) > wy for all constants ¢ € .
If w(f) =0 for some f € Q with arity(f) = 1, then f = g for all g € Q.

The weight function w can be extended to terms as follows:
w(t) =Y w@) @)+ ) wlf) - #(f.1).
zevar(t) fEQ

The Knuth-Bendix ordering iy, on T (X) induced by > and w is defined by: s >0 t
iff

(1) #(z,s) > #(z,t) for all variables x and w(s) > w(t), or
(2) #(x,s) > #(x,t) for all variables x, w(s) = w(t), and
(a) t=x, s = f"(x) for some n > 1, or
(b) s= f(s1,---,8m), t =g(t1,...,t,), and f = g, or
(€) s=f(s1,--y8m), t = f(t1,. .. tm), and (S1,.. ., Sm) (kbo)tex (L15 -+, tm).

Theorem 4.31 The Knuth-Bendix ordering induced by > and w is a simplification
ordering on Tx(X).

Proof. Baader and Nipkow, pages 125-129. O

Remark

If IT # (), then all the term orderings described in this section can also be used to compare
non-equational atoms by treating predicate symbols like function symbols.
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