Let $\Pi=\{P, Q\}$ be a set of propositional variables; let $P<Q$ be an ordering over Π. Give two Π-formulas F and G and the reduced OBDDs for F, G, $F \wedge G$ and $F \vee G$, such that the reduced OBDDs for F and G have exactly two interior nodes, and the reduced OBDDs for $F \wedge G$ and $F \vee G$ have less than two interior nodes. (interior node $=$ non-leaf node)

Problem 2 (Algebras and semantics)
Let $\Sigma=(\Omega, \Pi)$ be a signature. For every Σ-formula F without equality let $\operatorname{aneg}(F)$ be the formula that one obtains from F by replacing every atom $p\left(t_{1}, \ldots, t_{n}\right)$ in $F(p / n \in \Pi)$ by its negation $\neg p\left(t_{1}, \ldots, t_{n}\right)$. Prove: If F is satisfiable, then $\operatorname{aneg}(F)$ is satisfiable.

Problem 3 (Resolution)
Use the resolution calculus to prove the validity of the following formula:

$$
\forall x \exists y(p(f(f(x)), y) \wedge \forall z(p(f(x), z) \rightarrow p(x, g(x, z)))) \rightarrow \forall x \exists y p(x, y)
$$

Problem 4 (Tableaux)

$$
(7+7=14 \text { points })
$$

Check the satisfiability or unsatisfiability of the following formulas by using semantic tableaux. (Use exactly the expansion rules given in the lecture; do not use shortcuts.)

Part (a)

$$
\neg((Q \vee \neg P) \rightarrow((Q \vee P) \rightarrow Q))
$$

Part (b)

$$
(\neg Q \rightarrow(P \wedge R)) \wedge \neg((P \vee R) \rightarrow Q)
$$

Problem 5 (Orderings, redundancy)
Let N be the following set of ground clauses:

$$
\begin{gather*}
\neg P_{3} \vee P_{1} \vee P_{1} \tag{1}\\
\neg P_{2} \vee P_{1} \tag{2}\\
P_{4} \vee P_{4} \tag{3}\\
P_{3} \vee \neg P_{2} \tag{4}\\
P_{4} \vee P_{3} \tag{5}
\end{gather*}
$$

Part (a)

Let the ordering on atoms be defined by $P_{4} \succ P_{3} \succ P_{2} \succ P_{1}$. Sort the clauses in N with respect to \succ_{C}.

Part (b)
Compute the candidate model I_{N}^{\succ} for N as described in Section 2.10 of the lecture.

Part (c)

Find another total atom ordering \succ^{\prime} such that both clause (2) and clause (5) are redundant in N with respect to $\succ_{\mathrm{C}}^{\prime}$.

Problem 6 (Herbrand interpretations)

$$
(6+6+6=18 \text { points })
$$

Let $\Sigma=(\Omega, \Pi)$ with $\Omega=\{b / 0, f / 1\}$ and $\Pi=\{p / 1\}$.
Part (a)
How many different Herbrand interpretations over Σ do exist? Explain briefly.
Part (b)
How many different Herbrand models over Σ does the formula

$$
\begin{equation*}
p(f(f(b))) \wedge \forall x(p(x) \rightarrow p(f(x))) \tag{1}
\end{equation*}
$$

have? Explain briefly.
Part (c)
Every Herbrand model over Σ of (1) is also a model of

$$
\begin{equation*}
\forall x p(f(f(x))) \tag{2}
\end{equation*}
$$

Give an example of an algebra that is a model of (1) but not a model of (2).

