Problem 1 (DPLL)

_

Prove the (un-)satisfiability of the following set of propositional clauses using the Davis-Putnam-Logemann-Loveland procedure. What is the minimal number of branching steps that is required by the DPLL procedure for this input?

P_1	V	$\neg P_2$	\vee	P_3	\vee	$\neg P_4$	\vee	$\neg P_5$	(1)
P_1			\vee	P_3	\vee	P_4	V	P_5	(1	2)
P_1			\vee	$\neg P_3$	\vee	P_4			(3	3)
P_1			\vee	P_3	\vee	$\neg P_4$	\vee	P_5	(+	4)
P_1			\vee	$\neg P_3$	\vee	$\neg P_4$			(.	5)
$\neg P_1$	V	$\neg P_2$							()	6)
		P_2							(7)
		$\neg P_2$	\vee	P_3	\vee	P_4	\vee	$\neg P_5$	(3	8)

Problem 2 (Semantics) (10 + 10 = 20 points)

Let Σ be a signature containing at least one constant symbol, let F be a Σ -formula such that x is the only free variable in F.

Part (a)

Prove: If $\exists x \ F$ is valid, then there exists a ground Σ -term t such that F[t/x] is satisfiable.

Part (b)

Refute: If $\exists x \ F$ is valid, then there exists a ground Σ -term t such that F[t/x] is valid. (Hint: F may contain quantifiers and/or equations.)

Problem 3 (Rewrite systems)

(10 points)

Is the rewrite system

$$\{f(a) \to f(b), f(b) \to f(c), f(c) \to f(a), f(x) \to x\}$$

(i) terminating, (ii) normalizing, (iii) locally confluent, (iv) confluent? Give a brief explanation.

2

Problem 4 (Termination, critical pairs)

Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{a/0, b/0, f/2, g/1, h/2\}$ and let R be the following rewrite system:

$f(x, f(a, x)) \to h(x, b)$	(1)
f(b,y) o g(y)	(2)
$h(x,x) \to g(f(a,x))$	(3)

Part (a)

Prove the termination of R using a suitable polynomial ordering \succ with the carrier set $\{n \in \mathbb{N} \mid n \geq 2\}$ and polynomial coefficients in \mathbb{N} .

Part (b)

Compute all critical pairs between rules in R and check whether they are joinable in R.

Problem 5 (Reduction orderings)

Let \succ be a reduction ordering over $T_{\Sigma}(X)$ and let R be a finite set of rewrite rules such that $l \succ r$ holds for each $l \rightarrow r \in R$. Prove: For every term $s \in T_{\Sigma}(X)$ the set $\{t \in T_{\Sigma}(X) \mid s \rightarrow_{R}^{*} t\}$ is finite.

Problem 6 (LPO)

Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{a/0, b/0, c/0, f/1\}$, let X be a countably infinite set of variables, and let \succ be the LPO with precedence c > f > b > a. What can be said about the cardinalities of the following sets of terms?

$$M_1 = \{ t \in \mathcal{T}_{\Sigma}(X) \mid t \prec f(f(a)) \}$$
$$M_2 = \{ t \in \mathcal{T}_{\Sigma}(X) \mid t \prec f(f(c)) \}$$
$$M_3 = \{ t \in \mathcal{T}_{\Sigma}(X) \mid t \prec f(f(x)) \}$$

Give a brief explanation.

(10 + 10 = 20 points)

(10 points)

(10 points)