Prove the (un-)satisfiability of the following set of propositional clauses using the Davis-Putnam-Logemann-Loveland procedure. What is the minimal number of branching steps that is required by the DPLL procedure for this input?

$$
\begin{array}{rlrrrrrrr}
P_{1} & \vee & \neg P_{2} & \vee & P_{3} & \vee & \neg P_{4} & \vee & \neg P_{5} \tag{1}\\
P_{1} & & & \vee & P_{3} & \vee & P_{4} & \vee & P_{5} \\
P_{1} & & & \vee & \neg P_{3} & \vee & P_{4} & & \\
P_{1} & & & \vee & P_{3} & \vee & \neg P_{4} & \vee & P_{5} \\
P_{1} & & & & \vee & \neg P_{3} & \vee & \neg P_{4} & \\
\neg P_{1} & \vee & \neg P_{2} & & & & & &
\end{array}
$$

Problem 2 (Semantics)
$(10+10=20$ points $)$
Let Σ be a signature containing at least one constant symbol, let F be a Σ-formula such that x is the only free variable in F.

Part (a)
Prove: If $\exists x F$ is valid, then there exists a ground Σ-term t such that $F[t / x]$ is satisfiable.

Part (b)

Refute: If $\exists x F$ is valid, then there exists a ground Σ-term t such that $F[t / x]$ is valid. (Hint: F may contain quantifiers and/or equations.)

Problem 3 (Rewrite systems)
Is the rewrite system

$$
\{f(a) \rightarrow f(b), f(b) \rightarrow f(c), f(c) \rightarrow f(a), f(x) \rightarrow x\}
$$

(i) terminating, (ii) normalizing, (iii) locally confluent, (iv) confluent? Give a brief explanation.

Problem 4 (Termination, critical pairs)
$(10+10=20$ points $)$
Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{a / 0, b / 0, f / 2, g / 1, h / 2\}$ and let R be the following rewrite system:

$$
\begin{align*}
f(x, f(a, x)) & \rightarrow h(x, b) \tag{1}\\
f(b, y) & \rightarrow g(y) \tag{2}\\
h(x, x) & \rightarrow g(f(a, x)) \tag{3}
\end{align*}
$$

Part (a)

Prove the termination of R using a suitable polynomial ordering \succ with the carrier set $\{n \in \mathbb{N} \mid n \geq 2\}$ and polynomial coefficients in \mathbb{N}.

Part (b)
Compute all critical pairs between rules in R and check whether they are joinable in R.

Problem 5 (Reduction orderings)
Let \succ be a reduction ordering over $\mathrm{T}_{\Sigma}(X)$ and let R be a finite set of rewrite rules such that $l \succ r$ holds for each $l \rightarrow r \in R$. Prove: For every term $s \in \mathrm{~T}_{\Sigma}(X)$ the set $\left\{t \in \mathrm{~T}_{\Sigma}(X) \mid s \rightarrow_{R}^{*} t\right\}$ is finite.

Problem 6 (LPO)
(10 points)
Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{a / 0, b / 0, c / 0, f / 1\}$, let X be a countably infinite set of variables, and let \succ be the LPO with precedence $c>f>b>a$. What can be said about the cardinalities of the following sets of terms?

$$
\begin{aligned}
& M_{1}=\left\{t \in \mathrm{~T}_{\Sigma}(X) \mid t \prec f(f(a))\right\} \\
& M_{2}=\left\{t \in \mathrm{~T}_{\Sigma}(X) \mid t \prec f(f(c))\right\} \\
& M_{3}=\left\{t \in \mathrm{~T}_{\Sigma}(X) \mid t \prec f(f(x))\right\}
\end{aligned}
$$

Give a brief explanation.

