Problem 1 (Semantics)

Show that the following inference rule is sound:

$$\frac{D \lor f(s) \approx s' \qquad C \lor f(t) \approx t'}{D \lor C \lor s \not\approx t \lor s' \approx t'}$$

where the premises and conclusions are (implicitly universally quantified) equational clauses and the two premises have no common variables.

Problem 2 (Ordered resolution with selection) (10 points)

Let $\Sigma = (\Omega, \Pi)$ be a signature with $\Omega = \{a/0, b/0, f/1, g/1\}$ and $\Pi = \{p/1, q/1, r/2\}$. Let N be the following set of clauses:

$$\neg p(g(a)) \tag{1}$$

 $q(f(x)) \tag{2}$

 $r(x,x) \tag{3}$

$$\neg q(g(x)) \lor p(g(x)) \tag{4}$$

$$\neg r(a,z) \lor q(a) \lor p(f(z)) \tag{5}$$

$$\neg r(f(y), y) \lor \neg q(y) \lor \neg p(f(f(y)))$$
(6)

Suppose that an ordering \succ on ground atoms is defined in such a way that $p(\ldots) \succ q(\ldots) \succ r(\ldots)$. Which literals in which clauses must be selected by a selection function S such that N is saturated under $\operatorname{Res}_{S}^{\succ}$?

Problem 3 (Tableaux)

Use semantic tableaux to show that the following set of formulas is unsatisfiable:

$$\forall x \left(\exists y \ p(x, y) \to \exists z \ p(f(x), z) \right)$$
$$p(a, a)$$
$$\neg \exists x \ p(f(f(a)), x)$$

(Note: Quantifiers extend over the shortest following subformula, or in other words, $\exists y \ F \to \exists z \ G \ \text{means} \ (\exists y \ F) \to (\exists z \ G).)$

1

(16 points)

(14 points)

Problem 4 (*E*-algebras)

(8 + 8 = 16 points)

Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{a/0, b/0, f/1\}$; let E be the set of (implicitly universally quantified) equations $\{f(f(x)) \approx a\}$.

Part (a)

Give one possible derivation for the statement $E \vdash f(a) \approx a$.

Part (b)

Is the universe of the initial *E*-algebra $T_{\Sigma}(\emptyset)/E$ finite or infinite? If it is finite, how many elements does it have?

Problem 5 (Reduction orderings) (10 points)

Let Σ be an arbitrary first-order signature. Define the ordering \succ on $T_{\Sigma}(X)$ by

$$s \succ s'$$
 if and only if $|s| > |s'|$

where |t| is the size of t, that is, the cardinality of pos(t). Is \succ a reduction ordering? Give a proof or a counterexample.

Problem 6 (Knuth-Bendix completion) (14 points)

Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{a/0, b/0, f/1, g/2, h/1\}$, let \succ be the LPO with precedence h > g > f > b > a, and let E be the following set of equations:

$$f(x) \approx g(h(x), x)$$
(1)

$$g(a, b) \approx b$$
(2)

$$h(b) \approx a$$
(3)

Use Knuth-Bendix completion to transform E into an equivalent convergent set R of rewrite rules such that $\rightarrow_R \subseteq \succ$.