Show that the following inference rule is sound:

$$
\frac{D \vee f(s) \approx s^{\prime} \quad C \vee f(t) \approx t^{\prime}}{D \vee C \vee s \not \approx t \vee s^{\prime} \approx t^{\prime}}
$$

where the premises and conclusions are (implicitly universally quantified) equational clauses and the two premises have no common variables.

Problem 2 (Ordered resolution with selection)
Let $\Sigma=(\Omega, \Pi)$ be a signature with $\Omega=\{a / 0, b / 0, f / 1, g / 1\}$ and $\Pi=$ $\{p / 1, q / 1, r / 2\}$. Let N be the following set of clauses:

$$
\begin{gather*}
\neg p(g(a)) \tag{1}\\
q(f(x)) \tag{2}\\
r(x, x) \tag{3}\\
\neg q(g(x)) \vee p(g(x)) \tag{4}\\
\neg r(a, z) \vee q(a) \vee p(f(z)) \tag{5}\\
\neg r(f(y), y) \vee \neg q(y) \vee \neg p(f(f(y))) \tag{6}
\end{gather*}
$$

Suppose that an ordering \succ on ground atoms is defined in such a way that $p(\ldots) \succ q(\ldots) \succ r(\ldots)$. Which literals in which clauses must be selected by a selection function S such that N is saturated under $R e s{ }_{S}^{\succ}$?

Problem 3 (Tableaux)

Use semantic tableaux to show that the following set of formulas is unsatisfiable:

$$
\begin{gathered}
\forall x(\exists y p(x, y) \rightarrow \exists z p(f(x), z)) \\
p(a, a) \\
\neg \exists x p(f(f(a)), x)
\end{gathered}
$$

(Note: Quantifiers extend over the shortest following subformula, or in other words, $\exists y F \rightarrow \exists z G$ means $(\exists y F) \rightarrow(\exists z G)$.)

$$
(8+8=16 \text { points })
$$

Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{a / 0, b / 0, f / 1\}$; let E be the set of (implicitly universally quantified) equations $\{f(f(x)) \approx a\}$.

Part (a)

Give one possible derivation for the statement $E \vdash f(a) \approx a$.

Part (b)

Is the universe of the initial E-algebra $\mathrm{T}_{\Sigma}(\emptyset) / E$ finite or infinite? If it is finite, how many elements does it have?

Problem 5 (Reduction orderings)
Let Σ be an arbitrary first-order signature. Define the ordering \succ on $\mathrm{T}_{\Sigma}(X)$ by

$$
s \succ s^{\prime} \text { if and only if }|s|>\left|s^{\prime}\right|
$$

where $|t|$ is the size of t, that is, the cardinality of $\operatorname{pos}(t)$. Is \succ a reduction ordering? Give a proof or a counterexample.

Problem 6 (Knuth-Bendix completion)
Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{a / 0, b / 0, f / 1, g / 2, h / 1\}$, let \succ be the LPO with precedence $h>g>f>b>a$, and let E be the following set of equations:

$$
\begin{align*}
f(x) & \approx g(h(x), x) \tag{1}\\
g(a, b) & \approx b \tag{2}\\
h(b) & \approx a \tag{3}
\end{align*}
$$

Use Knuth-Bendix completion to transform E into an equivalent convergent set R of rewrite rules such that $\rightarrow_{R} \subseteq \succ$.

