Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e.g., resolution theorem provers.

Equality is theoretically difficult:
First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.
3.1 Handling Equality Naively

Proposition 3.1:
Let F be a closed first-order formula with equality. Let $\not\in \Pi$ be a new predicate symbol. The set $Eq(\Sigma)$ contains the formulas

$$\forall x (x \sim x)$$
$$\forall x, y (x \sim y \rightarrow y \sim x)$$
$$\forall x, y, z (x \sim y \land y \sim z \rightarrow x \sim z)$$
$$\forall \vec{x}, \vec{y} (x_1 \sim y_1 \land \cdots \land x_n \sim y_n \rightarrow f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n))$$
$$\forall \vec{x}, \vec{y} (x_1 \sim y_1 \land \cdots \land x_n \sim y_n \land p(x_1, \ldots, x_n) \rightarrow p(y_1, \ldots, y_n))$$

for every $f/n \in \Omega$ and $p/n \in \Pi$. Let \tilde{F} be the formula that one obtains from F if every occurrence of \approx is replaced by \sim. Then F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable.
Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence axioms).
Roadmap

How to proceed:

- Arbitrary binary relations.

- Equations (unit clauses with equality):
 - Term rewrite systems.
 - Expressing semantic consequence syntactically.
 - Entailment for equations.

- Equational clauses:
 - Entailment for clauses with equality.
3.2 Abstract Reduction Systems

Abstract reduction system: \((A, \rightarrow) \), where

\(A \) is a set,

\(\rightarrow \subseteq A \times A \) is a binary relation on \(A \).
Abstract Reduction Systems

\[
\rightarrow^0 = \{(x, x) \mid x \in A\} \quad \text{identity}
\]
\[
\rightarrow^{i+1} = \rightarrow^i \circ \rightarrow \quad i + 1\text{-fold composition}
\]
\[
\rightarrow^+ = \bigcup_{i>0} \rightarrow^i \quad \text{transitive closure}
\]
\[
\rightarrow^* = \bigcup_{i \geq 0} \rightarrow^i = \rightarrow^+ \cup \rightarrow^0 \quad \text{reflexive transitive closure}
\]
\[
\rightarrow= = \rightarrow \cup \rightarrow^0 \quad \text{reflexive closure}
\]
\[
\rightarrow^{−1} = \leftarrow = \{(x, y) \mid y \rightarrow x\} \quad \text{inverse}
\]
\[
\leftrightarrow = \rightarrow \cup \leftrightarrow \quad \text{symmetric closure}
\]
\[
\leftrightarrow^+ = (\leftrightarrow)^+ \quad \text{transitive symmetric closure}
\]
\[
\leftrightarrow^* = (\leftrightarrow)^* \quad \text{refl. trans. symmetric closure}
\]
Abstract Reduction Systems

$x \in A$ is reducible, if there is a y such that $x \rightarrow y$.

x is in normal form (irreducible), if it is not reducible.

y is a normal form of x, if $x \rightarrow^* y$ and y is in normal form. Notation: $y = \downarrow x$ (if the normal form of x is unique).

x and y are joinable, if there is a z such that $x \rightarrow^* z \leftarrow^* y$. Notation: $x \downarrow y$.
Abstract Reduction Systems

A relation \rightarrow is called

- **Church-Rosser**, if $x \leftrightarrow^* y$ implies $x \downarrow y$.
- **confluent**, if $x \leftarrow^* z \rightarrow^* y$ implies $x \downarrow y$.
- **locally confluent**, if $x \leftarrow z \rightarrow y$ implies $x \downarrow y$.
- **terminating**, if there is no infinite decreasing chain $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$.
- **normalizing**, if every $x \in A$ has a normal form.
- **convergent**, if it is confluent and terminating.
Abstract Reduction Systems

Lemma 3.2:
If \rightarrow is terminating, then it is normalizing.

Note: The reverse implication does not hold.
Theorem 3.3:
The following properties are equivalent:

(i) \(\rightarrow \) has the Church-Rosser property.

(ii) \(\rightarrow \) is confluent.

Proof:
(i)\(\Rightarrow\)(ii): trivial.

(ii)\(\Rightarrow\)(i): by induction on the number of peaks in the derivation \(x \leftrightarrow^* y \).
Abstract Reduction Systems

Lemma 3.4:
If \rightarrow is confluent, then every element has at most one normal form.

Corollary 3.5:
If \rightarrow is normalizing and confluent, then every element x has a unique normal form.

Proposition 3.6:
If \rightarrow is normalizing and confluent, then $x \leftrightarrow^* y$ if and only if $x \downarrow = y \downarrow$.
Well-Founded Orderings

Lemma 3.7:
If \rightarrow is a terminating binary relation over A, then \rightarrow^+ is a well-founded partial ordering.

Lemma 3.8:
If $>$ is a well-founded partial ordering and $\rightarrow \subseteq >$, then \rightarrow is terminating.
Proving Confluence

Theorem 3.9 ("Newman’s Lemma"): If a terminating relation \rightarrow is locally confluent, then it is confluent.

Proof:
Let \rightarrow be a terminating and locally confluent relation. Then \rightarrow^+ is a well-founded ordering.
Define $P(z) \iff (\forall x, y : x \leftarrow^* z \rightarrow^* y \Rightarrow x \downarrow y)$. Prove $P(z)$ for all $x \in A$ by well-founded induction over \rightarrow^+:
Case 1: $x \leftarrow^0 z \rightarrow^* y$: trivial.
Case 2: $x \leftarrow^* z \rightarrow^0 y$: trivial.
Case 3: $x \leftarrow^* x' \leftarrow z \rightarrow y' \rightarrow^* y$: use local confluence, then use the induction hypothesis.
Let \((A, >_A)\) and \((B, >_B)\) be partial orderings. A mapping \(\varphi : A \rightarrow B\) is called monotone, if \(x >_A y\) implies \(\varphi(x) >_B \varphi(y)\) for all \(x, y \in A\).

Lemma 3.10:
If \(\varphi : A \rightarrow B\) is a monotone mapping from \((A, >_A)\) to \((B, >_B)\) and \((B, >_B)\) is well-founded, then \((A, >_A)\) is well-founded.
3.3 Rewrite Systems

Some notation:

Positions of a term s:

\[
\text{pos}(x) = \{\varepsilon\}, \\
\text{pos}(f(s_1, \ldots, s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{ i \ p \mid p \in \text{pos}(s_i) \}.
\]

Size of a term s:

\[|s| = \text{cardinality of pos}(s).\]

Prefix order for $p, q \in \text{pos}(s)$:

- p above q: $p \leq q$ if $pp' = q$ for some p',
- p strictly above q: $p < q$ if $p \leq q$ and not $q \leq p$,
- p and q parallel: $p \parallel q$ if neither $p \leq q$ nor $q \leq p$.
Some notation:

Subterm of s at a position $p \in \text{pos}(s)$:

- $s/\varepsilon = s$,
- $f(s_1, \ldots, s_n)/ip = s_i/p$.

Replacement of the subterm at position $p \in \text{pos}(s)$ by t:

- $s[t]_{\varepsilon} = t$,
- $f(s_1, \ldots, s_n)[t]_{ip} = f(s_1, \ldots, s_i[t]_p, \ldots, s_n)$.
Rewrite Relations

Let E be a set of equations.

The rewrite relation $\rightarrow_E \subseteq T_\Sigma(X) \times T_\Sigma(X)$ is defined by

$$s \rightarrow_E t \quad \text{iff} \quad \text{there exist } (l \approx r) \in E, \ p \in \text{pos}(s),$$
$$\text{and } \sigma : X \rightarrow T_\Sigma(X),$$
$$\text{such that } s/p = l\sigma \text{ and } t = s[r\sigma]_p.$$

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression).

Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.
An equation $l \approx r$ is also called a **rewrite rule**, if l is not a variable and $\text{var}(l) \supseteq \text{var}(r)$.

Notation: $l \rightarrow r$.

A set of rewrite rules is called a **term rewrite system (TRS)**.
Rewrite Relations

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.
E-Algebras

Let E be a set of closed equations. A Σ-algebra \mathcal{A} is called an E-algebra, if $\mathcal{A} \models \forall \vec{x}(s \approx t)$ for all $\forall \vec{x}(s \approx t) \in E$.

If $E \models \forall \vec{x}(s \approx t)$ (i.e., $\forall \vec{x}(s \approx t)$ is valid in all E-algebras), we write this also as $s \approx_E t$.

Goal:
Use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically:

$s \approx_E t$ if and only if $s \leftrightarrow^*_E t$.

E-Algebras

Let E be a set of equations over $T_\Sigma(X)$. The following inference system allows to derive consequences of E:
E-Algebras

\[E \vdash t \approx t \]
\[(\text{Reflexivity}) \]

\[E \vdash t \approx t' \]
\[\frac{E \vdash t' \approx t}{E \vdash t' \approx t} \]
\[(\text{Symmetry}) \]

\[E \vdash t \approx t' \quad E \vdash t' \approx t'' \]
\[\frac{E \vdash t \approx t''}{E \vdash t \approx t''} \]
\[(\text{Transitivity}) \]

\[E \vdash t_1 \approx t'_1 \quad \ldots \quad E \vdash t_n \approx t'_n \]
\[E \vdash f(t_1, \ldots, t_n) \approx f(t'_1, \ldots, t'_n) \]
\[(\text{Congruence}) \]

\[E \vdash t\sigma \approx t'\sigma \]
\[\text{if } (t \approx t') \in E \text{ and } \sigma : X \rightarrow T_\Sigma(X) \]
\[(\text{Instance}) \]
Lemma 3.11:
The following properties are equivalent:

(i) $s \leftrightarrow^*_{E} t$
(ii) $E \vdash s \approx t$ is derivable.

Proof:
(i)\Rightarrow(ii): $s \leftrightarrow^*_{E} t$ implies $E \vdash s \approx t$ by induction on the depth of the position where the rewrite rule is applied; then $s \leftrightarrow^*_{E} t$ implies $E \vdash s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow^*_{E} t$.

(ii)\Rightarrow(i): By induction on the size of the derivation for $E \vdash s \approx t$.
E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

For $t \in T_\Sigma(X)$ let $[t] = \{ t' \in T_\Sigma(X) \mid E \vdash t \approx t' \}$ be the congruence class of t.

Define a Σ-algebra $T_\Sigma(X)/E$ (abbreviated by T) as follows:

$U_T = \{ [t] \mid t \in T_\Sigma(X) \}$.

$f_T([t_1], \ldots, [t_n]) = [f(t_1, \ldots, t_n)]$ for $f/n \in \Omega$.
Lemma 3.12:
f_T is well-defined:
If $[t_i] = [t'_i]$, then $[f(t_1, \ldots, t_n)] = [f(t'_1, \ldots, t'_n)]$.

Proof:
Follows directly from the Congruence rule for \vdash.
E-Algebras

Lemma 3.13:
\[\mathcal{T} = T_\Sigma(X)/E \] is an \(E \)-algebra.

Proof:
Let \(\forall x_1 \ldots x_n(s \approx t) \) be an equation in \(E \); let \(\beta \) be an arbitrary assignment.

We have to show that \(\mathcal{T}(\beta)(\forall x(s \approx t)) = 1 \), or equivalently, that \(\mathcal{T}(\gamma)(s) = \mathcal{T}(\gamma)(t) \) for all \(\gamma = \beta[x_i \mapsto [t_i] \mid 1 \leq i \leq n] \) with \([t_i] \in U_\mathcal{T} \).

Let \(\sigma = [t_1/x_1, \ldots, t_n/x_n] \), then \(s\sigma \in \mathcal{T}(\gamma)(s) \) and \(t\sigma \in \mathcal{T}(\gamma)(t) \).

By the \textit{Instance} rule, \(E \vdash s\sigma \approx t\sigma \) is derivable, hence \(\mathcal{T}(\gamma)(s) = [s\sigma] = [t\sigma] = \mathcal{T}(\gamma)(t) \).
Lemma 3.14:
Let X be a countably infinite set of variables; let $s, t \in T_\Sigma(X)$. If $T_\Sigma(X)/E \models \forall \bar{x}(s \approx t)$, then $E \vdash s \approx t$ is derivable.

Proof:
Assume that $T \models \forall \bar{x}(s \approx t)$, i.e., $T(\beta)(\forall \bar{x}(s \approx t)) = 1$. Consequently, $T(\gamma)(s) = T(\gamma)(t)$ for all $\gamma = \beta[x_i \mapsto [t_i] | i \in I]$ with $[t_i] \in U_T$.

Choose $t_i = x_i$, then $[s] = T(\gamma)(s) = T(\gamma)(t) = [t]$, so $E \vdash s \approx t$ is derivable by definition of T.

E-Algebras

Theorem 3.15 ("Birkhoff’s Theorem"): Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_\Sigma(X)$:

(i) $s \leftrightarrow^*_E t$.

(ii) $E \vdash s \approx t$ is derivable.

(iii) $s \approx_E t$, i.e., $E \vdash \forall \bar{x}(s \approx t)$.

(iv) $T_\Sigma(X)/E \models \forall \bar{x}(s \approx t)$.

28
E-Algebras

Proof:
(i)⇔(ii): See above (slide 23).

(ii)⇒(iii): By induction on the size of the derivation for $E \vdash s \approx t$.

(iii)⇒(iv): Obvious, since $\mathcal{T} = \mathcal{T}_E(X)$ is an E-algebra.

(iv)⇒(ii): See above (slide 27).
Universal Algebra

\[T_\Sigma(X)/E = T_\Sigma(X)/\approx_E = T_\Sigma(X)/\leftrightarrow_E^* \] is called the free E-algebra with generating set \(X/\approx_E = \{ [x] \mid x \in X \} \):

Every mapping \(\varphi : X/\approx_E \to B \) for some E-algebra \(B \) can be extended to a homomorphism \(\hat{\varphi} : T_\Sigma(X)/E \to B \).

\[T_\Sigma(\emptyset)/E = T_\Sigma(\emptyset)/\approx_E = T_\Sigma(\emptyset)/\leftrightarrow_E^* \] is called the initial E-algebra.
Universal Algebra

\[\approx_E = \{ (s, t) \mid E \models s \approx t \} \]

is called the equational theory of \(E \).

\[\approx'_E = \{ (s, t) \mid T\Sigma(\emptyset)/E \models s \approx t \} \]

is called the inductive theory of \(E \).

Example:

Let \(E = \{ \forall x(x + 0 \approx x), \forall x \forall y(x + s(y) \approx s(x + y)) \} \).

Then \(x + y \approx'_E y + x \), but \(x + y \not\approx_E y + x \).
Corollary 3.16:
If E is convergent (i.e., terminating and confluent),
then $s \approx_E t$ if and only if $s \leftrightarrow^*_E t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary 3.17:
If E is finite and convergent, then \approx_E is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.
Rewrite Relations

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and terminating.