Part 3: First-Order Logic with Equality

Equality is the most important relation in mathematics and

functional programming.

In principle, problems in first-order logic with equality can be
handled by, e.g., resolution theorem provers.

Equality is theoretically difficult:
First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems

that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be
integrated into the theorem prover.

3.1 Handling Equality Naively

Proposition 3.1:
Let F be a closed first-order formula with equality. Let ~ ¢ I1 be
a new predicate symbol. The set Eq(X) contains the formulas

Vx (x ~ x)
VX, y (x ~y =y ~Xx)
VX, v, z(x ~y ANy ~zZ— x~ Z)
VX, V(X1 ~ Y1 A AXp~yn— F(xq,..., Xn) ~ F(y1, ..., ¥n))
VX, Y (xt ~yi Ao Axp ~ Yo Ap(X1, oo Xa) = p(Y1, -+ -0 V)

for every f/n € Q and p/n € T. Let F be the formula that one

obtains from F if every occurrence of = is replaced by ~. Then
F is satisfiable if and only if Eq(X) U {F} is satisfiable.

Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with
equality can in principle be solved by a standard resolution or

tableaux prover.

But this is unfortunately not efficient

(mainly due to the transitivity and congruence axioms).

Roadmap

How to proceed:
e Arbitrary binary relations.

e Equations (unit clauses with equality):

Term rewrite systems.
Expressing semantic consequence syntactically.
Entailment for equations.

e Equational clauses:

Entailment for clauses with equality.

3.2 Abstract Reduction Systems

Abstract reduction system: (A, —), where
Als a set,

— C A X AIs a binary relation on A.

Abstract Reduction Systems

(%) | x € A}
o —
Ui>0_>i
Uiso—' = =T U0
—>er

—={y) |y —x}

— U «—
(=)7

(=)

identity

I + 1-fold composition
transitive closure

reflexive transitive closure
reflexive closure

Inverse

symmetric closure
transitive symmetric closure

refl. trans. symmetric closure

Abstract Reduction Systems

x € Ais reducible, if there is a y such that x — .
x is in normal form (irreducible), if it is not reducible.

y is a normal form of x, if x —=* y and y is in normal form.
Notation: y = x| (if the normal form of x is unique).

x and y are joinable, if there is a z such that x —=* z «* y.
Notation: x | .

Abstract Reduction Systems

A relation — is called
Church-Rosser, if x <=* y implies x | y.
confluent, if x «* z = y implies x | y.
locally confluent, if x +— z — y implies x | vy.

terminating, if there is no infinite decreasing chain

X0 — X1 —7 X0 —
normalizing, if every x € A has a normal form.

convergent, if it is confluent and terminating.

Abstract Reduction Systems

Lemma 3.2:

If — is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Abstract Reduction Systems

Theorem 3.3:
The following properties are equivalent:

(i) — has the Church-Rosser property.
(i) — is confluent.

Proof:

(i)=(ii): trivial.

(ii)=-(i): by induction on the number of peaks in
the derivation x «* y.

10

Abstract Reduction Systems

Lemma 3.4:
If — is confluent, then every element has at most one

normal form.

Corollary 3.5:
If — is normalizing and confluent, then every element x
has a unique normal form.

Proposition 3.6:

If — is normalizing and confluent, then x <~* y if and only if

x| =yl.

11

Well-Founded Orderings

Lemma 3.7:
If — is a terminating binary relation over A,
then —7 is a well-founded partial ordering.

Lemma 3.8:

If > is a well-founded partial ordering and — C >,
then — Is terminating.

12

Proving Confluence

Theorem 3.9 (“Newman's Lemma"):
If a terminating relation — is locally confluent, then it is
confluent.

Proof:
Let — be a terminating and locally confluent relation.

Then — T is a well-founded ordering.

Define P(z) & (Vx,y:x«*z—=*y=x]y).

Prove P(z) for all x € A by well-founded induction over —:
0

Case 1: x <" z —* y: trivial.

Case 2: x «—* z =0 y: trivial.

Case 3: x «* x" «+— z — y" —* y: use local confluence, then
use the induction hypothesis.

13

Proving Termination: Monotone Mappings

Let (A, >4) and (B, >pg) be partial orderings.
A mapping ¢ : A — B is called monotone,
if x >4y implies p(x) > p(y) for all x,y € A.

Lemma 3.10:
If p: A— B is a monotone mapping from (A, >4) to (B, >3g)
and (B, >pg) is well-founded, then (A, >4) is well-founded.

14

3.3 Rewrite Systems

Some notation:

Positions of a term s:

pos(x) = {e},

pos(f(s1,...,sn))={eUlU_{ip| p € pos(si) }.

Size of a term s:
|s| = cardinality of pos(s).
Prefix order for p, g € pos(s):

p above q: p < g if pp’ = q for some p’,
p strictly above g: p < g if p < g and not g < p,

p and q parallel: p || g if neither p < g nor g < p.

15

Rewrite Systems

Some notation:
Subterm of s at a position p € pos(s):

s/e =s,
f(s1,...,Sn)/ip=s;i/p.
Replacement of the subterm at position p € pos(s) by t:

s[t]. = t,

16

Rewrite Relations

Let E be a set of equations.

The rewrite relation —g C Ty (X) x Tx(X) is defined by

s —pt iff thereexist (/~r)e€ E, p€ pos(s),
and 0 : X — Tz(X),
such that s/p = lo and t = s[ro],.

An instance of the |hs (left-hand side) of an equation is called a
redex (reducible expression).

Contracting a redex means replacing it with the corresponding
instance of the rhs (right-hand side) of the rule.

17

Rewrite Relations

An equation |/ = r is also called a rewrite rule, if / is not a

variable and var(/) D var(r).

Notation: | — r.

A set of rewrite rules is called a term rewrite system (TRS).

18

Rewrite Relations

We say that a set of equations E or a TRS R is terminating,
If the rewrite relation — g or — g has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

19

E-Algebras

Let E be a set of closed equations. A > -algebra A is called an
E-algebra, if A =VX(s ~ t) for all VX(s =~ t) € E.

If E =VX(s~t) (i.e., VX(s ~ t) is valid in all E-algebras), we

write this also as s ~¢ t.

Goal:
Use the rewrite relation — g to express the semantic consequence
relation syntactically:

s~ tifandonlyif s ¢ t.

20

E-Algebras

Let E be a set of equations over Ty (X). The following inference
system allows to derive consequences of E:

21

E-Algebras

EFtxt

EF-txt

EFt ~t

E-t~t EFt ~t"
EFtmt!

Erty~t] ... ErFt,~t

Etf(ty,...,ty) = f(t],..., t)

EFto~to
if (t~t')e Eando: X — Tg(X)

(Reflexivity)

(Symmetry)

(Transitivity)

(Congruence)

(Instance)

22

E-Algebras

Lemma 3.11:
The following properties are equivalent:
(i) s—ft

(i) E+ s ~ t is derivable.

Proof:

(i)=(ii): s <>g t implies E - s &~ t by induction on the depth
of the position where the rewrite rule is applied;

then s <=7 t implies E = s = t by induction on the number of
rewrite steps in s <> t.

(ii)=>(i): By induction on the size of the derivation for E - s = t.

23

E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

Fort € Te(X) let [t] ={t' € Te(X) | EFt ~ t’} be the
congruence class of t.

Define a X-algebra Ty (X)/E (abbreviated by 7) as follows:
Ur = 1lt] |t e T(X)).
fr([ti], ..., [t,]) = [f(ts, ..., t,)] for f/n € Q.

24

E-Algebras

Lemma 3.12:
fr is well-defined:

If [t;] = [t]], then [f(t1,..., ta)] = [f(t], ..., t/)].

Proof:
Follows directly from the Congruence rule for |-.

25

E-Algebras

Lemma 3.13:
7T = Tx(X)/E is an E-algebra.

Proof:
Let Vx;1...x,(s & t) be an equation in E; let § be an arbitrary
assignment.

We have to show that 7(5)(VX(s ~ t)) = 1, or equivalently,
that 7(y)(s) = T(v)(t) for all v = B[x; — [ti] [1 < i < n]
with [t;] € Ur.

Let o0 = [t1/x1, ..., tn/Xn], then so € T(v)(s) and to € T (v)(t).
By the Instance rule, E - so = to is derivable,

hence 7 (v)(s) = [so] = [to] = T(7)(t).

26

E-Algebras

Lemma 3.14:
Let X be a countably infinite set of variables; let s, t € Tx(X).

If Tx(X)/E =VX(s ~ t), then E s =~ t is derivable.

Proof:

Assume that 7 | VX(s = t), i.e.,, T(0)(VX(s = t)) = 1.
Consequently, 7(v)(s) = 7 (v)(t) forally = B[x; — [t;] | i € 1]
with [t;] € Ur.

Choose t; = x;, then [s] =T (v)(s) =T (v)(t) = [t],

so E F s = t is derivable by definition of 7.

27

E-Algebras

Theorem 3.15 (“Birkhoff's Theorem™):

Let X be a countably infinite set of variables, let E be a set of
(universally quantified) equations. Then the following properties
are equivalent for all s, t € Tx(X):

(i) s =f t.
(i) EF s = tis derivable.
(iii)) s~g t, ie., EE=VX(s~t)

(iv) Ts(X)/E = V(s ~ t).

28

E-Algebras

Proof:
(i)<(ii): See above (slide 23).

(ii)=-(iii): By induction on the size of the derivation for
ErFs~t.

(iii)=-(iv): Obvious, since 7 = 7g(X) is an E-algebra.
(iv)=>(ii): See above (slide 27).

29

Universal Algebra

Ts(X)/E =Tg(X)/~g = Tx(X)/<E is called the
free E-algebra with generating set X /~g = {[x] | x € X }:

Every mapping ¢ : X/~g — B for some E-algebra B can be
extended to a homomorphism ¢ : Tx(X)/E — B.

Ts(0)/E =Tx(0)/~g = Tx(0)/<E is called the
initial E-algebra.

30

Universal Algebra

~e={(s,t)|[Es~t)
Is called the equational theory of E.

~eg=1{(st) [Tz(D)/EEs~t}
Is called the inductive theory of E.

Example:

Let £ = {Vx(x 4+ 0 = x), VxVy(x +s(y) =s(x+y))}.
Then x+y ~f y +x, but x+y % y + x.

31

Rewrite Relations

Corollary 3.16:
If E is convergent (i.e., terminating and confluent),
then s~g tifandonlyif sz tifandonly if s|g = t|E.

Corollary 3.17:
If E is finite and convergent, then =g is decidable.

Reminder:
If E is terminating, then it is confluent if and only if

it is locally confluent.

32

Rewrite Relations

Problems:
Show local confluence of E.
Show termination of E.

Transform E into an equivalent set of equations that is

locally confluent and terminating.

33

