Simplification Orderings

The proper subterm ordering \triangleright is defined by $s \triangleright t$ if and only if $s/p = t$ for some position $p \neq \varepsilon$ of s.
Simplification Orderings

A rewrite ordering \succ over $T_\Sigma(X)$ is called simplification ordering, if it has the subterm property:
$s \succ t$ implies $s \succ t$ for all $s, t \in T_\Sigma(X)$.

Example:

Let R_{emb} be the rewrite system

$$R_{\text{emb}} = \{ f(x_1, \ldots, x_n) \rightarrow x_i \mid f/n \in \Omega, \ n \geq 1, \ 1 \leq i \leq n \}.$$

Define $\triangleright_{\text{emb}} = \rightarrow_{R_{\text{emb}}}^+$ and $\triangleright_{\text{emb}} = \rightarrow_{R_{\text{emb}}}^*$

(“homeomorphic embedding relation”).

$\triangleright_{\text{emb}}$ is a simplification ordering.
Simplification Orderings

Lemma 3.31:
If $\not\succ$ is a simplification ordering, then $s \succ_{\text{emb}} t$ implies $s \not\succ t$ and $s \succeq_{\text{emb}} t$ implies $s \succeq t$.

Proof:
Since $\not\succ$ is transitive and \succeq is transitive and reflexive, it suffices to show that $s \rightarrow_{\text{R}_{\text{emb}}} t$ implies $s \not\succ t$.
By definition, $s \rightarrow_{\text{R}_{\text{emb}}} t$ if and only if $s = s[l\sigma]$ and $t = s[r\sigma]$ for some rule $l \rightarrow r \in \text{R}_{\text{emb}}$.
Obviously, $l \succ r$ for all rules in R_{emb}, hence $l \not\succ r$.
Since $\not\succ$ is a rewrite relation, $s = s[l\sigma] \not\succ s[r\sigma] = t$.
Simplification Orderings

Goal:

Show that every simplification ordering is well-founded (and therefore a reduction ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification orderings and the definition of embedding have to be modified.
Kruskal’s Theorem

A (usually not strict) partial ordering \succeq on a set A is called well-partial-ordering (wpo), if for every infinite sequence a_1, a_2, a_3, \ldots there are indices $i < j$ such that $a_i \preceq a_j$.

Terminology:

An infinite sequence a_1, a_2, a_3, \ldots is called good, if there exist $i < j$ such that $a_i \preceq a_j$; otherwise it is called bad.

Therefore: \succeq is a wpo iff every infinite sequence is good.
Kruskal’s Theorem

Lemma 3.32:
If \succeq is a wpo, then every infinite sequence a_1, a_2, a_3, \ldots has an infinite ascending subsequence $a_{i_1} \preceq a_{i_2} \preceq a_{i_3} \preceq \ldots$, where $i_1 < i_2 < i_3 < \ldots$.

Proof:
Let a_1, a_2, a_3, \ldots be an infinite sequence. We call an index $m \geq 1$ terminal, if there is no $n > m$ such that $a_m \preceq a_n$. There are only finitely many terminal indices m_1, m_2, m_3, \ldots; otherwise the sequence $a_{m_1}, a_{m_2}, a_{m_3}, \ldots$ would be bad.
Choose $p > 1$ such that all $m \geq p$ are not terminal; define $i_1 = p$; define recursively i_{j+1} such that $i_{j+1} > i_j$ and $a_{i_{j+1}} \succeq a_{i_j}$.
Kruskal’s Theorem

Lemma 3.33:
If \(\succeq_1, \ldots, \succeq_n \) are wpo’s on \(A_1, \ldots, A_n \), then \(\succeq \) defined by
\[
(a_1, \ldots, a_n) \succeq (a_1', \ldots, a_n') \iff a_i \succeq_i a_i' \text{ for all } i
\]
is a wpo on \(A_1 \times \cdots \times A_n \).

Proof:
The case \(n = 1 \) is trivial.
Otherwise let \((a_1^{(1)}, \ldots, a_n^{(1)}), (a_1^{(2)}, \ldots, a_n^{(2)}), \ldots\) be an infinite sequence. By the previous lemma, there are infinitely many indices \(i_1 < i_2 < i_3 < \ldots \) such that \(a_{n}^{(i_1)} \preceq a_{n}^{(i_2)} \preceq a_{n}^{(i_3)} \preceq \ldots \).
By induction on \(n \), there are \(k < l \) such that \(a_{1}^{(i_k)} \preceq a_{1}^{(i_l)} \land \cdots \land a_{n-1}^{(i_k)} \preceq a_{n-1}^{(i_l)} \). Therefore \((a_1^{(i_k)}, \ldots, a_n^{(i_k)}) \preceq (a_1^{(i_l)}, \ldots, a_n^{(i_l)})\).
Kruskal’s Theorem

Theorem 3.34 (“Kruskal’s Theorem”):
Let \(\Sigma \) be a finite signature, let \(X \) be a finite set of variables. Then \(\succeq_{\text{emb}} \) is a wpo on \(T_\Sigma(X) \).

Proof:
Baader and Nipkow, page 114/115.
Theorem 3.35 (Dershowitz): If Σ is a finite signature, then every simplification ordering \succ on $T_{\Sigma}(X)$ is well-founded (and therefore a reduction ordering).

Proof:
Suppose that $t_1 \succ t_2 \succ t_3 \succ \ldots$ is an infinite decreasing chain.

First assume that there is an $x \in \operatorname{var}(t_{i+1}) \setminus \operatorname{var}(t_i)$. Let $\sigma = [t_i/x]$, then $t_{i+1}\sigma \supseteq x\sigma = t_i$ and therefore $t_i = t_i\sigma \succ t_{i+1}\sigma \succeq t_i$, contradicting reflexivity.

Consequently, $\operatorname{var}(t_i) \supseteq \operatorname{var}(t_{i+1})$ and $t_i \in T_{\Sigma}(V)$ for all i, where V is the finite set $\operatorname{var}(t_1)$. By Kruskal’s Theorem, there are $i < j$ with $t_i \leq_{\text{emb}} t_j$. Hence $t_i \leq t_j$, contradicting $t_i \succ t_j$.

Simplification Orderings

There are reduction orderings that are not simplification orderings and terminating TRSs that are not contained in any simplification ordering.

Example:

Let \(R = \{ f(f(x)) \rightarrow f(g(f(x))) \} \).

\(R \) terminates and \(\rightarrow^+ \) is therefore a reduction ordering.

Assume that \(\rightarrow_R \) were contained in a simplification ordering \(\succ \).

Then \(f(f(x)) \rightarrow_R f(g(f(x))) \) implies \(f(f(x)) \succ f(g(f(x))) \),
and \(f(g(f(x))) \trianglerighteq_{\text{emb}} f(f(x)) \) implies \(f(g(f(x))) \succeq f(f(x)) \),
hence \(f(f(x)) \succ f(f(x)) \).
Recursive Path Orderings

Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω.

The lexicographic path ordering \succ_{lpo} on $T_\Sigma(X)$ induced by \succ is defined by: $s \succ_{lpo} t$ iff

1. $t \in \text{var}(s)$ and $t \neq s$, or
2. $s = f(s_1, \ldots, s_m)$, $t = g(t_1, \ldots, t_n)$, and
 (a) $s_i \succeq_{lpo} t$ for some i, or
 (b) $f \succ g$ and $s \succ_{lpo} t_j$ for all j, or
 (c) $f = g$, $s \succ_{lpo} t_j$ for all j, and
 $(s_1, \ldots, s_m) \prec_{lpo}(t_1, \ldots, t_n)$.

Recursive Path Orderings

Lemma 3.36:
$s \succ_{lpo} t$ implies $\text{var}(s) \supseteq \text{var}(t)$.

Proof:
By induction on $|s| + |t|$ and case analysis.
Recursive Path Orderings

Theorem 3.37:
\(\succ_{lpo} \) is a simplification ordering on \(T_\Sigma(X) \).

Proof:
Show transitivity, subterm property, stability under substitutions, compatibility with \(\Sigma \)-operations, and irreflexivity, usually by induction on the sum of the term sizes and case analysis.
Details: Baader and Nipkow, page 119/120.
Recursive Path Orderings

Theorem 3.38:
If the precedence \(\succ \) is total, then the lexicographic path ordering \(\succ_{\text{lpo}} \) is total on ground terms, i.e., for all \(s, t \in T_{\Sigma}(\emptyset) \):
\[
s \succ_{\text{lpo}} t \lor t \succ_{\text{lpo}} s \lor s = t.
\]

Proof:
By induction on \(|s| + |t|\) and case analysis.
Recursive Path Orderings

Recapitulation:

Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω. The lexicographic path ordering \succ_{lpo} on $T_{\Sigma}(X)$ induced by \succ is defined by: $s \succ_{lpo} t$ iff

(1) $t \in \text{var}(s)$ and $t \neq s$, or

(2) $s = f(s_1, \ldots, s_m)$, $t = g(t_1, \ldots, t_n)$, and

 (a) $s_i \succeq_{lpo} t$ for some i, or

 (b) $f \succ g$ and $s \succ_{lpo} t_j$ for all j, or

 (c) $f = g$, $s \succ_{lpo} t_j$ for all j, and

 $(s_1, \ldots, s_m) (\succ_{lpo})_{\text{lex}} (t_1, \ldots, t_n)$.
Recursive Path Orderings

There are several possibilities to compare subterms in (2)(c):

- compare list of subterms lexicographically left-to-right
 ("lexicographic path ordering (lpo)“, Kamin and Lévy)
- compare list of subterms lexicographically right-to-left
 (or according to some permutation \(\pi \))
- compare multiset of subterms using the multiset extension
 ("multiset path ordering (mpo)“, Dershowitz)

To each function symbol \(f/n \) associate a status \(\in \{\text{mul}\} \cup \{\text{lex}_\pi \mid \pi : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}\} \)
and compare according to that status
("recursive path ordering (rpo) with status")
The Knuth-Bendix Ordering

Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω, let $w : \Omega \cup X \rightarrow \mathbb{R}_0^+$ be a weight function, such that the following admissibility conditions are satisfied:

\[w(x) = w_0 \in \mathbb{R}^+ \text{ for all variables } x \in X; \]
\[w(c) \geq w_0 \text{ for all constants } c/0 \in \Omega. \]

If $w(f) = 0$ for some $f/1 \in \Omega$, then $f \succeq g$ for all $g \in \Omega$.

w can be extended to terms as follows:

\[w(t) = \sum_{x \in \text{var}(t)} w(x) \cdot \#(x, t) + \sum_{f \in \Omega} w(f) \cdot \#(f, t). \]
The Knuth-Bendix Ordering

The Knuth-Bendix ordering \succ_{kbo} on $T_{\Sigma}(X)$ induced by \succ and w is defined by: $s \succ_{\text{kbo}} t$ iff

(1) $\#(x, s) \geq \#(x, t)$ for all variables x and $w(s) > w(t)$, or

(2) $\#(x, s) \geq \#(x, t)$ for all variables x, $w(s) = w(t)$, and
 (a) $t = x$, $s = f^n(x)$ for some $n \geq 1$, or
 (b) $s = f(s_1, \ldots, s_m)$, $t = g(t_1, \ldots, t_n)$, and $f \succ g$, or
 (c) $s = f(s_1, \ldots, s_m)$, $t = f(t_1, \ldots, t_m)$, and
 $(s_1, \ldots, s_m) (\succ_{\text{kbo}})_{\text{lex}} (t_1, \ldots, t_m)$.

The Knuth-Bendix Ordering

Theorem 3.39:
The Knuth-Bendix ordering induced by \(\succ \) and \(w \) is a simplification ordering on \(T_\Sigma(X) \).

Proof:
Baader and Nipkow, pages 125–129.
3.6 Knuth-Bendix Completion

Completion:

Goal: Given a set \(E \) of equations, transform \(E \) into an equivalent convergent set \(R \) of rewrite rules.

How to ensure termination?

Fix a reduction ordering \(\succ \) and construct \(R \) in such a way that \(\rightarrow_R \subseteq \succ \) (i.e., \(l \succ r \) for every \(l \rightarrow r \in R \)).

How to ensure confluence?

Check that all critical pairs are joinable.
Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R:

$E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$

At the beginning, $E = E_0$ is the input set and $R = R_0$ is empty. At the end, E should be empty; then R is the result.

For each step $E, R \vdash E', R'$, the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$.
Knuth-Bendix Completion: Inference Rules

Notations:

The formula \(s \simeq t \) denotes either \(s \simeq t \) or \(t \simeq s \).

\(\text{CP}(R) \) denotes the set of all critical pairs between rules in \(R \).
Knuth-Bendix Completion: Inference Rules

Orient:

\[
\frac{E \cup \{s \equiv t\}, \ R}{E, \ R \cup \{s \rightarrow t\}} \quad \text{if } s \succ t
\]

Note: There are equations \(s \equiv t \) that cannot be oriented, i.e., neither \(s \succ t \) nor \(t \succ s \).
Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented – but we don’t need them anyway:

\[E \cup \{s \approx s\}, \quad R \]
\[\frac{E, \quad R}{E, \quad R} \]

Delete:
Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in \(R \) are turned into additional equations:

\[
\frac{E, \ R}{E \cup \{s \approx t\}, \ R} \quad \text{if } \langle s, t \rangle \in \text{CP}(R).
\]

Deduce:

Note: If \(\langle s, t \rangle \in \text{CP}(R) \) then \(s \leftarrow_R u \rightarrow_R t \) and hence \(R \models s \approx t \).
Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

\[
\begin{align*}
E \cup \{s \approx t\}, & \quad R \\
\Rightarrow & \quad E \cup \{u \approx t\}, \quad R \\
\text{if } s \rightarrow_R u.
\end{align*}
\]
Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule:

\[
\begin{align*}
E, & \quad R \cup \{s \rightarrow t\} \\
E, & \quad R \cup \{s \rightarrow u\}
\end{align*}
\]

if \(t \rightarrow_R u \).

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an *equation*:

L-Simplify-Rule:

\[
\begin{align*}
E, & \quad R \cup \{s \rightarrow t\} \\
E \cup \{u \equiv t\}, & \quad R
\end{align*}
\]

if \(s \rightarrow_R u \) using a rule \(l \rightarrow r \in R \) such that \(s \sqsupset l \) (see next slide).
Knuth-Bendix Completion: Inference Rules

For technical reasons, the lhs of $s \rightarrow t$ may only be simplified using a rule $l \rightarrow r$, if $l \rightarrow r$ cannot be simplified using $s \rightarrow t$, that is, if $s \sqsupseteq l$, where the encompassment quasi-ordering \sqsupseteq is defined by

$$s \sqsupseteq l \text{ if } s/p = l\sigma \text{ for some } p \text{ and } \sigma$$

and $\sqsubset = \sqsupset \setminus \sqsupseteq$ is the strict part of \sqsupseteq.

Lemma 3.40:
\sqsubset is a well-founded strict partial ordering.
Knuth-Bendix Completion: Inference Rules

Lemma 3.41:
If $E, R \vdash E', R'$, then $\approx_{EUR} = \approx_{E'UR'}$.

Lemma 3.42:
If $E, R \vdash E', R'$ and $\rightarrow_R \subseteq \succ$, then $\rightarrow_{R'} \subseteq \succ$.
Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can happen:

(1) We reach a state where no more inference rules are applicable and E is not empty.
 ⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.
Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) \(E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots \) with \(R_0 = \emptyset \) is called a run of the completion procedure with input \(E_0 \) and \(\succcurlyeq \).

For a run, \(E_\infty = \bigcup_{i \geq 0} E_i \) and \(R_\infty = \bigcup_{i \geq 0} R_i \).

The sets of persistent equations or rules of the run are \(E_* = \bigcup_{i \geq 0} \bigcap_{j \geq i} E_j \) and \(R_* = \bigcup_{i \geq 0} \bigcap_{j \geq i} R_j \).

Note: If the run is finite and ends with \(E_n, R_n \), then \(E_* = E_n \) and \(R_* = R_n \).
Knuth-Bendix Completion: Correctness Proof

A run is called fair, if \(CP(R_*) \subseteq E_\infty \)
(i.e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:

Show: If a run is fair and \(E_* \) is empty,
then \(R_* \) is convergent and equivalent to \(E_0 \).

In particular: If a run is fair and \(E_* \) is empty,
then \(\approx E_0 = \approx E_\infty \cup R_\infty = \leftrightarrow E_\infty \cup R_\infty = \downarrow R_* \).
General assumptions from now on:

\[E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots \text{ is a fair run.} \]

\[R_0 \text{ and } E_* \text{ are empty.} \]
Knuth-Bendix Completion: Correctness Proof

A proof of $s \simeq t$ in $E_\infty \cup R_\infty$ is a finite sequence (s_0, \ldots, s_n) such that $s = s_0$, $t = s_n$, and for all $i \in \{1, \ldots, n\}$:

1. $s_{i-1} \leftrightarrow_{E_\infty} s_i$, or
2. $s_{i-1} \rightarrow_{R_\infty} s_i$, or
3. $s_{i-1} \leftarrow_{R_\infty} s_i$.

The pairs (s_{i-1}, s_i) are called proof steps.

A proof is called a rewrite proof in R_*, if there is a $k \in \{0, \ldots, n\}$ such that $s_{i-1} \rightarrow_{R_*} s_i$ for $1 \leq i \leq k$ and $s_{i-1} \leftarrow_{R_*} s_i$ for $k + 1 \leq i \leq n$.
Knuth-Bendix Completion: Correctness Proof

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite proof in R_* there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_*.
Knuth-Bendix Completion: Correctness Proof

We associate a cost \(c(s_{i-1}, s_i) \) with every proof step as follows:

1. If \(s_{i-1} \leftrightarrow_{E_\infty} s_i \), then \(c(s_{i-1}, s_i) = (\{s_{i-1}, s_i\}, -, -) \), where the first component is a multiset of terms and \(-\) denotes an arbitrary (irrelevant) term.

2. If \(s_{i-1} \rightarrow_{R_\infty} s_i \) using \(l \rightarrow r \), then \(c(s_{i-1}, s_i) = (\{s_{i-1}\}, l, s_i) \).

3. If \(s_{i-1} \leftarrow_{R_\infty} s_i \) using \(l \rightarrow r \), then \(c(s_{i-1}, s_i) = (\{s_i\}, l, s_{i-1}) \).

Proof steps are compared using the lexicographic combination of the multiset extension of reduction ordering \(\succ \), the encompassment ordering \(\sqsupseteq \), and the reduction ordering \(\succ \).
Knuth-Bendix Completion: Correctness Proof

The cost $c(P)$ of a proof P is the multiset of the costs of its proof steps.

The proof ordering \succ_C compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma 3.43:
\succ_C is a well-founded ordering.
Lemma 3.44:
Let P be a proof in $E_\infty \cup R_\infty$. If P is not a rewrite proof in R_*, then there exists an equivalent proof P' in $E_\infty \cup R_\infty$ such that $P \succ C P'$.

Proof:
If P is not a rewrite proof in R_*, then it contains

(a) a proof step that is in E_∞, or
(b) a proof step that is in $R_\infty \setminus R_*$, or
(c) a subproof $s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof:
Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation $s \approx t$ is in E_∞. This equation must be deleted during the run.

If $s \approx t$ is deleted using Orient:

$$\ldots s_{i-1} \leftrightarrow_{E_\infty} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_\infty} s_i \ldots$$

If $s \approx t$ is deleted using Delete:

$$\ldots s_{i-1} \leftrightarrow_{E_\infty} s_{i-1} \ldots \implies \ldots s_{i-1} \ldots$$

If $s \approx t$ is deleted using Simplify-Eq:

$$\ldots s_{i-1} \leftrightarrow_{E_\infty} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_\infty} s' \leftrightarrow_{E_\infty} s_i \ldots$$
Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule $s \rightarrow t$ is in $R_\infty \setminus R_*$. This rule must be deleted during the run.

If $s \rightarrow t$ is deleted using R-Simplify-Rule:

\[
\ldots s_{i-1} \rightarrow_{R_\infty} s_i \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow_{R_\infty} s' \leftarrow_{R_\infty} s_i \ldots
\]

If $s \rightarrow t$ is deleted using L-Simplify-Rule:

\[
\ldots s_{i-1} \rightarrow_{R_\infty} s_i \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow_{R_\infty} s' \leftarrow_{E_\infty} s_i \ldots
\]
Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form \(s_{i-1} \xleftarrow{R_*} s_i \xrightarrow{R_*} s_{i+1} \).

If there is no overlap or a non-critical overlap:

\[
\ldots s_{i-1} \xleftarrow{R_*} s_i \xrightarrow{R_*} s_{i+1} \ldots \implies \ldots s_{i-1} \xrightarrow{R_*} s' \xleftarrow{R_*} s_{i+1} \ldots
\]

If there is a critical pair that has been added using \textit{Deduce}:

\[
\ldots s_{i-1} \xleftarrow{R_*} s_i \xrightarrow{R_*} s_{i+1} \ldots \implies \ldots s_{i-1} \xleftarrow{E_\infty} s_i \ldots
\]

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine.
Knuth-Bendix Completion: Correctness Proof

Theorem 3.45:
Let $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$ be a fair run and let R_0 and E_\ast be empty. Then

(1) every proof in $E_\infty \cup R_\infty$ is equivalent to a rewrite proof in R_\ast,
(2) R_\ast is equivalent to E_0, and
(3) R_\ast is convergent.
Knuth-Bendix Completion: Correctness Proof

Proof:
(1) By well-founded induction on \succ_C using the previous lemma.

(2) Clearly $\approx_{E_\infty \cup R_\infty} = \approx_{E_0}$. Since $R_* \subseteq R_\infty$, we get $\approx_{R_*} \subseteq \approx_{E_\infty \cup R_\infty}$.
On the other hand, by (1), $\approx_{E_\infty \cup R_\infty} \subseteq \approx_{R_*}$.

(3) Since $\rightarrow_{R_*} \subseteq \succ$, R_* is terminating.
By (1), R_* is confluent.
Knuth-Bendix Completion: Outlook

Classical completion:

Fails, if an equation can neither be oriented nor deleted.

Unfailing Completion:

Use an ordering \succ that is total on ground terms.

If an equation cannot be oriented, use it in both directions for rewriting (except if that would yield a larger term).

In other words, consider the relation $\leftrightarrow_E \cap \not\prec$.

Special case of superposition (see next chapter).