

Universität des Saarlandes FR Informatik

Harald Ganzinger Uwe Waldmann October 24, 2002

Tutorials for "Decision Procedures for Logical Theories" Exercise sheet 1

Exercise 1.1: (5 P.)

Prove that the canonical list model \mathbb{L} described on slide 39 satisfies the list axioms. (Hint: Use the fact that L is uniquely normalizing.)

Exercise 1.2: (5 P.)

Find some non-trivial model of the list axioms that is not isomorphic to the canonical list model L. (An algebra is trivial, if its universe is a one-element set.)

Exercise 1.3: (6 P.)

Let $\Sigma = (\Omega, \Pi)$ be a signature, and let $\mathcal{A} = (U_{\mathcal{A}}, (f_{\mathcal{A}} : U_{\mathcal{A}}^n \to U_{\mathcal{A}})_{f/n \in \Omega}, (p_{\mathcal{A}} \subseteq U_{\mathcal{A}}^m)_{p/m \in \Pi}))$ and $\mathcal{B} = (U_{\mathcal{B}}, (f_{\mathcal{B}} : U_{\mathcal{B}}^n \to U_{\mathcal{B}})_{f/n \in \Omega}, (p_{\mathcal{B}} \subseteq U_{\mathcal{B}}^m)_{p/m \in \Pi}))$ be two Σ -algebras. The product of \mathcal{A} and \mathcal{B} is a Σ -algebra

$$\mathcal{A} \times \mathcal{B} = (U_{\mathcal{A} \times \mathcal{B}}, (f_{\mathcal{A} \times \mathcal{B}} : U_{\mathcal{A} \times \mathcal{B}}^n \to U_{\mathcal{A} \times \mathcal{B}})_{f/n \in \Omega}, (p_{\mathcal{A} \times \mathcal{B}} \subseteq U_{\mathcal{A} \times \mathcal{B}}^m)_{p/m \in \Pi}))$$

defined as follows:

$$U_{\mathcal{A}\times\mathcal{B}} = U_{\mathcal{A}} \times U_{\mathcal{B}},$$

$$f_{\mathcal{A}\times\mathcal{B}}((a_1, b_1), \dots, (a_n, b_n)) = (f_{\mathcal{A}}(a_1, \dots, a_n), f_{\mathcal{B}}(b_1, \dots, b_n)),$$

$$p_{\mathcal{A}\times\mathcal{B}} = p_{\mathcal{A}} \times p_{\mathcal{B}}.$$

Prove: If \mathcal{F} is a set of universally quantified Σ -equations, and \mathcal{A} and \mathcal{B} are models of \mathcal{F} , then $\mathcal{A} \times \mathcal{B}$ is a model of \mathcal{F} . (In fact, the same property holds also for products of more than two, or even of infinitely many Σ -algebras.)

Exercise 1.4: (4 P.)

The property described in the previous exercise holds for sets of equations but not for sets of arbitrary formulas. Give an example of a set \mathcal{F} of universally quantified formulas and two models of \mathcal{F} such that their product is not a model of \mathcal{F} . (Hint: Find an equational formula F such that each model of F has at most two elements.)

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before October 31, 14:00.

Note: In case of group work, write the names of all group members (not more than three!) on a single solution sheet. Do not submit several identical solution sheets.