
The Superposition Calculus

One problem:

In the completeness proof for the resolution calculus, the

following property holds:

If C = C ′ ∨ A with a strictly maximal and positive literal A

is false in the current interpretation, then adding A to the

current interpretation cannot make any literal of C ′ true.

This does not hold for superposition:

Let a > b > c .

Assume that the current rewrite system (representing the

current interpretation) contains the rule b → c .

Now consider the clause a ≈ b ∨ a ≈ c .
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The Superposition Calculus

We need a further inference rule to deal with clauses of this

kind, either the “Merging Paramodulation” rule of Bachmair

and Ganzinger or the following “Equality Factoring” rule due to

Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.
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The Superposition Calculus

How do the non-ground versions of the inference rules for

superposition look like?

Main idea as in the resolution calculus:

Replace identity by unifiability.

Apply the mgu to the resulting clause.

In the ordering restrictions, replace > by 6≤.
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The Superposition Calculus

However:

As in Knuth-Bendix completion, we do not want to consider

overlaps at or below a variable position.

Consequence: there are inferences between ground instances

Dθ and Cθ of clauses D and C which are not ground instances

of inferences between D and C .

Such inferences have to be treated in a special way in the

completeness proof.
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The Superposition Calculus

Until now, we have seen most of the ideas behind the

superposition calculus and its completeness proof.

We will now start again from the beginning giving precise

definitions and proofs.
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The Superposition Calculus

Inference rules (part 1):

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ
where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[u] 6≈ s′)σ
where σ = mgu(t, u) and
u is not a variable.
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The Superposition Calculus

Inference rules (part 2):

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ
where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ
where σ = mgu(s, s′).
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The Superposition Calculus

Theorem:

All inference rules of the superposition calculus are correct, i. e.,

for every rule

Cn, . . . ,C1

C0

we have {C1, . . . ,Cn} |= C0.

Proof:

Exercise.
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The Superposition Calculus

Orderings:

Let > be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t},
to a negative literal s 6≈ t the multiset {s, s, t, t}.
The literal ordering >L compares these multisets using the

multiset extension of >.

The clause ordering >C compares clauses by comparing their

multisets of literals using the multiset extension of >L.
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The Superposition Calculus

Inferences have to be computed only if the following ordering

restrictions are satisfied:

– the last literal in each premise is maximal in the respective

premise (i. e., there exists no greater one)

(strictly maximal for positive literals in superposition

inferences, i. e., there exists no greater or equal one),

– in these literals, the lhs is not smaller than the rhs

(neither smaller nor equal in superposition inferences), and

– in superposition inferences, after applying the unifier to both

premises, the left premise is not greater than the second

one.
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The Superposition Calculus

A ground inference is called redundant w. r. t. a set of ground

clauses N, if its conclusion follows from clauses in N that are

smaller than the largest (i. e., rightmost) premise.

An inference is redundant w. r. t. a set of clauses N, if all its

ground instances are redundant w. r. t. N, where N is the set of

all ground instances of clauses in N.

N is called saturated up to redundancy, if every inference from

clauses in N is redundant w. r. t. N.
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Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E -interpretation

(or E -algebra) with universe { [t] | t ∈ TΣ(∅) }.
One can show (similar to the proof of Birkhoff’s Theorem) that

for every ground equation s ≈ t we have TΣ(∅)/E |= s ≈ t if

and only if s ↔∗
E t.

In particular, if E is a convergent set of rewrite rules R and

s ≈ t is a ground equation, then TΣ(∅)/R |= s ≈ t if and only

if s ↓R t. By abuse of terminology, we say that an equation or

clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.
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Superposition: Refutational Completeness

Model construction:

Let N be a set of clauses not containing ⊥.

Using induction on the clause ordering we define sets of rewrite

rules EC and RC for all C ∈ N as follows:

Assume that ED has already been defined for all D ∈ N with

D <C C . Then RC =
⋃

D<CC ED .
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Superposition: Refutational Completeness

The set EC contains the rewrite rule s → t, if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C .

(c) s > t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s → t}.
(f) s is irreducible w. r. t. RC .

In this case, C is called productive. Otherwise EC = ∅.
Finally, R∞ =

⋃
D∈N ED .
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Superposition: Refutational Completeness

Lemma:

If ED = {u → v} and EC = {s → t}, then C >C D if and only

if s > u.
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Superposition: Refutational Completeness

Corollary:

The rewrite systems RC and R∞ are convergent.

Proof:

Obviously, s > t for all rules s → t in RC and R∞.

Furthermore, it is easy to check that there are no critical pairs

between any two rules: Assume that there are rules u → v in

ED and s → t in EC such that u is a subterm of s. As > is a

reduction ordering that is total on ground terms, we get u < s

and therefore D <C C and ED ⊆ RC . But then s would be

reducible by RC , contradicting condition (f).
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Superposition: Refutational Completeness

Lemma:

If D ≤C C and EC = {s → t}, then s > u for every term u

occurring in a negative literal in D and s ≥ v for every term v

occurring in a positive literal in D.
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Superposition: Refutational Completeness

Corollary:

If D ∈ N is true in RD , then D is true in R∞ and RC for all

C >C D.

Proof:

If a positive literal of D is true in RD , then this is obvious.

Otherwise, some negative literal s 6≈ t of D must be true in RD ,

hence s 6 ↓RD
t. As the rules in R∞ \ RD have left-hand sides that

are larger than s and t, they cannot be used in a rewrite proof

of s ↓ t, hence s 6 ↓RC
t and s 6 ↓R∞ t.
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Superposition: Refutational Completeness

Corollary:

If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true

in R∞ and RC for all C >C D.

Proof:

Obviously, D is true in R∞ and RC for all C >C D.

Since all negative literals of D′ are false in RD , it is clear that

they are false in R∞ and RC . For the positive literals u′ ≈ v ′ of

D′, condition (e) ensures that they are false in RD ∪ {u → v}.
Since u′ ≤ u and v ′ ≤ u and all rules in R∞ \ RD have left-hand

sides that are larger than u, these rules cannot be used in a

rewrite proof of u′ ↓ v ′, hence u′ 6 ↓RC
v ′ and u′ 6 ↓R∞ v ′.
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Superposition: Refutational Completeness

Lemma (“Lifting Lemma”):

Let C be a clause and let θ be a substitution such that Cθ

is ground. Then every equality resolution or equality factoring

inference from Cθ is a ground instance of an inference from C .

Proof:

Exercise.
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Superposition: Refutational Completeness

Lemma (“Lifting Lemma”):

Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be two clauses

(without common variables) and let θ be a substitution such

that Dθ and Cθ are ground.

If there is a superposition inference between Dθ and Cθ where

uθ and some subterm of sθ are overlapped, and uθ does not

occur in sθ at or below a variable position of s, then the

inference is a ground instance of a superposition inference from

D and C .

Proof:

Exercise.
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Superposition: Refutational Completeness

Theorem:

Let N be a set of clauses that is saturated up to redundancy

and does not contain the empty clause. Then we have for every

ground clause Cθ ∈ N:

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) Cθ is true in R∞ and RC0 for all C0 >C Cθ.

Proof:

We use induction on >C and assume that (i) and (ii) are already

satisfied for all clauses in N that are smaller than Cθ.

Note: the “if” part of (i) is obvious from the model construction

and (ii) follows directly from (i) and the two corollaries above.
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