

Tutorials for "Logic in Computer Science"
 Exercise sheet 10

Exercise 10.1:

We define a matching relation between lists (analogously to the matching relation for Unix shell patterns) in the following way:

- every list matches itself.
- the list [*] matches every (possibly empty) list.
- the list [?] matches every list of length 1.
- if l_{1} matches l_{1}^{\prime} and l_{2} matches l_{2}^{\prime}, then the concatenation of l_{1} and l_{2} matches the concatenation of l_{1}^{\prime} and l_{2}^{\prime}.
Example: The list $[*$, one, $*, *, 5, ?$] matches the list [one, $2,3,4,5$, six].
Implement a Prolog predicate matches (XL, YL) that succeeds if and only if the list XL matches the list YL. (Hint: One can implement matches without using append or other auxiliary predicates. If you prefer to use append, beware of non-termination.)

Exercise 10.2:

Give a logical program P such that $T_{P}^{0}(\emptyset) \subset T_{P}^{1}(\emptyset) \subset T_{P}^{2}(\emptyset) \subset T_{P}^{3}(\emptyset)=T_{P}^{n}(\emptyset)$ for all $n \geq 3$.

Exercise 10.3:

Let $\Sigma=(\{a / 0\},\{p / 1, q / 1\})$. Show that there exists no Σ-model I of the clause $C=$ $p(a) \vee q(a)$ such that $I \models A \Leftrightarrow C \models A$ for all Σ-atoms A. (In other words: C does not have a canonical model.)

Exercise 10.4:

Prove part (1) of Theorem 2.9:

$$
I_{P}=I_{G_{\Sigma}(P)}=\bigcup_{i=0}^{\infty} T_{P}^{i}(\emptyset)=\bigcap_{T_{P}(I) \subseteq I} I
$$

You can use all the preceding theorems.

Exercise 10.5:

Prove the footnote on slide 27: Let Σ be a signature with infinitely many constants. Let P be a set of closed Σ-formulas, let $\forall \vec{x} G$ be a closed Σ-formula (where \vec{x} is the list of all variables occurring in G). Let ρ be a substitution that maps all variables in \vec{x} to pairwise different constants that do not occur in P or G. Then $P \models G \rho$ implies $P \models \forall \vec{x} G$.

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before June 28, 11:00 (Group D: before July 1, 11:00). Don't forget to write your name and the name of your tutorial group ($\mathrm{B}, \mathrm{C}, \mathrm{D}$) on your solution.

