

Universität des Saarlandes FR Informatik

Harald Ganzinger Uwe Waldmann June 27, 2002

Tutorials for "Logic in Computer Science" Exercise sheet 11

Exercise 11.1:

We represent relationships beween students, lectures, tutorial groups, and tutors using a list of terms in the following way:

[visits(eva, logic, 3),	% Eva visits tutorial group 3 of the logic lecture
<pre>visits(jan, logic, 1),</pre>	% Jan visits tutorial group 1 of the logic lecture
visits(jan, ai, 2),	% Jan visits tutorial group 2 of the AI lecture
<pre>tutors(eva, net, 1),</pre>	% Eva tutors group 1 of the networks lecture
<pre>visits(ali, net, 1),</pre>	% Ali visits tutorial group 1 of the networks lecture
<pre>tutors(ali, logic, 3)]</pre>	% Ali tutors group 3 of the logics lecture

Implement a Prolog predicate tutormutually(l, x, y) that takes such a list l and finds students x and y that visit each other's tutorial groups (e.g., Eva and Ali in the example above).

Exercise 11.2:

Give an example of a set U and a function $f: 2^U - > 2^U$ such that f is monotone but not continuous.

Hint: U must be infinite, e.g., the natural numbers. (Why?)

Challenge: Find a monotone function f such that $\bigcup_{i=0}^{\infty} f^i(\emptyset)$ is not a fixpoint of f.

Exercise 11.3:

Prove or refute the following LTL statements:

(a)
$$\models \mathsf{G}(p \to q) \to (\mathsf{F}p \to \mathsf{F}q)$$

(b) $\models \mathsf{F}(p \to q) \to (\mathsf{F}p \to \mathsf{F}q)$
(c) $\models \mathsf{G}(p \leftrightarrow \mathsf{X}p) \leftrightarrow (\mathsf{G}p \lor \mathsf{G}\neg p)$

(Statements (a) and (b) are easy, (c) is a bit more involved.)

Exercise 11.4:

The behaviour of an elevator can be described using the following set of nullary predicates (propositional variables):

up	elevator is moving upwards
down	elevator is moving downwards
halting	elevator is not moving
at_i	elevator is at floor $i \ (0 \le i \le 2)$
$above_i$	elevator is between floors i and $i + 1$ $(0 \le i \le 1)$
$activated_i$	a button for floor i is activated $(0 \le i \le 2)$
	(i. e., somebody wants to enter or leave at floor i)

Express the following statements in LTL:

- (a) The elevator cannot move upwards forever.
- (b) If the elevator is moving upwards at some time and moving downwards at some later time, then it must have stopped in between.
- (c) If the elevator is between floors 0 and 1 in some state, then in the next state it is either still between floors 0 and 1, or at floor 0, or at floor 1.
- (d) Whenever the button for floor 2 is activated, the elevator will stop there eventually. The button remains activated, until the elevator stops there, and then it becomes non-activated. While the button is activated, the elevator does not pass by floor 2 without halting.

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before July 5, 11:00 (Group D: before July 8, 11:00). Don't forget to write your name and the name of your tutorial group (B, C, D) on your solution.