

Tutorials for "Logic in Computer Science" Exercise sheet 3

Exercise 3.1:

What is the clausal normal form of

$$
\exists x \forall y(\forall z p(y, z) \rightarrow(\forall z q(y, z) \wedge \neg x \approx y))
$$

Exercise 3.2:

Let F and G be first-order formulas over Σ, let x be a variable, and let y be a variable not occurring in F, G, and x. Show that

$$
\mathcal{A}(\beta)((\exists x F) \wedge G)=\mathcal{A}(\beta)(\exists y(F[y / x] \wedge G))
$$

holds for all Σ-algebras \mathcal{A} and for all assignments $\beta: X \rightarrow \mathcal{A}$.

Exercise 3.3:

Sketch a procedure that decides the validity of prenex formulas $\forall x_{1} \ldots \forall x_{n} F$ without existential quantifiers, without function symbols, and without equality.

Exercise 3.4:

Derive \perp from the following four clauses using the resolution calculus Res:

$$
\begin{aligned}
p(a) & \vee p(b) \\
\neg p(a) & \vee p(b) \\
p(a) & \vee \neg p(b) \\
\neg p(a) & \vee \neg p(b)
\end{aligned}
$$

Exercise 3.5:

Let F be a closed first-order formula with equality over a signature $\Sigma=(\Omega, \Pi)$. Let $\sim \notin \Omega$ be a new binary relation symbol (written as an infix operator). Let the set $E q(\Sigma)$ contain the formulas

$$
\begin{gathered}
\forall x(x \sim x) \\
\forall x, y(x \sim y \rightarrow y \sim x) \\
\forall x, y, z(x \sim y \wedge y \sim z \rightarrow x \sim z)
\end{gathered}
$$

and for every $f / n \in \Omega$ the formula

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1} \sim y_{1} \wedge \ldots \wedge x_{n} \sim y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

and for every $p / n \in \Pi$ the formula

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1} \sim y_{1} \wedge \ldots \wedge x_{n} \sim y_{n} \wedge p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Let \tilde{F} be the formula that one obtains from F if every occurrence of the equality symbol \approx is replaced by the relation symbol \sim.
(a) Let \mathcal{A} be a model of $\tilde{F} \cup E q(\Sigma)$. Show that the interpretation $\sim_{\mathcal{A}}$ of \sim in \mathcal{A} is a congruence relation. (It is enough if you prove one of the properties of congruence relations, say symmetry; the other properties are proved analogously.)
(b) Let \mathcal{A} be a model of $\tilde{F} \cup E q(\Sigma)$. Use the congruence relation $\sim_{\mathcal{A}}$ to construct a model of F and prove that it is a model.
(c) Prove that a formula F is satisfiable if and only if $E q(\Sigma) \cup\{\tilde{F}\}$ is satisfiable.

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before May 2, 11:00. Don't forget to write your name and the name of your tutorial group $(\mathrm{B}, \mathrm{C}, \mathrm{D})$ on your solution.

