
���
�

�� k

I N F O R M A T I K

Universität

des

Saarlandes

FR Informatik

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Harald Ganzinger
Uwe Waldmann

June 13, 2002

Tutorials for “Logic in Computer Science”
Exercise sheet 9

Exercise 9.1:
If a list l has the form [a1, . . . , an], then ai+1 is called in successor of ai in l. (For instance, a,
r, and n are successors of a in the list [s,a,a,r,l,a,n,d].) Implement a Prolog predicate
succ(l,x,y) that succeeds if y is a successor of x in l. Can your implementation also be
used to compute the predecessors of an element in a list?

Notes on Prolog programming: You can find several Prolog implementations
on the computers at the University campus. For instance, at the CIP pool in the
first floor of Bldg. 45 you can find SWI-Prolog (/usr/local/bin/pl); on the MPI
computers, GNU Prolog is available (/opt/gnu/bin/gprolog). Sources and binari-
es (Linux, MS-Windows, MacOS X) for SWI-Prolog can also be downloaded from
http://www.swi-prolog.org/.

To use Prolog, write your clauses into a file filename.pl, start Prolog, and type

[’filename.pl’].

(including the square brackets, the quotes, and the period at the end). Queries can
be entered directly at the Prolog prompt (also terminated with a period). If a Prolog
system has found a solution (i. e., a success node of the SLD-tree), you can type a
semicolon to start the search for another solution.

A remark on the Prolog syntax: To prevent typos, most Prolog implementations issue
a warning message if a program clause contains a singleton variable (i. e., a variable
that occurs only once). To avoid this, use an underscore (_) instead of a regular
variable name for singleton variables.

Exercise 9.2:
Define a rotation of a list l as follows:

• If l is the empty list [], then l is a rotation of l.

• If l is a list [a1, . . . , an] with n ≥ 1, then l is a rotation of l, and every list
[ai, . . . , an, a1, . . . , ai−1] with 1 < i ≤ n is a rotation of l.

The following Prolog program computes rotations of a list. (We use a predicate append1
rather than append, since the latter is predefined in most Prolog systems.)

append1([],L2,L2).
append1([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

rotate(L,L).
rotate([X|L],R) :- append1(L,[X],R1), rotate(R1,R).

Describe the SLD-tree for the query rotate([a,b],X) and show that it is infinite.

Exercise 9.3:
Give an alternative implementation for rotate so that, given any ground list l, the SLD-
tree for the query rotate(l,X) is finite.

Hint: append1 can not only be used to append two lists, but also to split a list in two
sublists.

Challenge: Implement rotate in such a way that every rotation of a list is computed
exactly once (i. e., if l is a ground list of length n, then the SLD-tree for rotate(l,X) is
finite and contains exactly one success node for n = 0 and exactly n success nodes for
n > 0.)

Exercise 9.4:
Is it possible that a Prolog system terminates for a query G1, terminates for a query G2,
and loops for the query G1, G2 ? If so, how?

Put your solution into the mail box at the door of room 627 in the MPI building (46.1)
before June 21, 11:00 (Group D: before June 24, 11:00). Don’t forget to write your name
and the name of your tutorial group (B, C, D) on your solution.

