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Abstract. Many applications of automated deduction and verificatieguire
reasoning in combinations of theories, such as, on the oné (s@me fragment
of) first-order logic, and on, the other hand a backgroundrhesuch as some
form of arithmetic. Unfortunately, due to the high expreggiof the full logic,
complete reasoning is impossible in general. It is a realgal, however, to
devise theorem provers that are “reasonably complete”antjme, and the hier-
archic superposition calculus has been designed as a ticablmsis for that. In
a recent paper we introduced an extension of hierarchiagagiéion and proved
its completeness for the fragment where every term of thé&gdvaand sort is
ground. In this paper, we extend this result and obtain cetapkss for a larger
fragment that admits variables in certain places.

1 Hierarchic Superposition

Many applications of automated deduction and verificatemuire reasoning inombi-
nations of theorigssuch as, on the one hand (some fragment of) first-order &glon
the other hand some form of arithmetic. In hierarchic supsitpn [2, 3] we consider
the following scenario:

We assume that we have a background (“BG”) prover that as@pinput a set
of clauses over 8G signatureXg = (=g, Qg), WhereZp is a set 0BG sortsand Qg
is a set ofBG operators Termgclauses ovefy and BG-sorted variables are called
BG termglauses For instanceZg might be {int, book} and Qg might contain the
integer numberst, —, <, <, true., true., and additional parameteds 3, . .. that may
be interpreted freely over that-domain. The BG prover decides the satisfiability of
2g-clause sets w. r.t. BG specificationsay linear integer arithmetic (LIA).

For technical reasons, we assume that equality is the omgligate symbol in
our language and that any non-equational afifty, . . ., t,) is encoded as an equation
p(ts, ..., tn) = truep. We refer to the terms that result from this encoding of atesis
atom termsall other terms are callegroper termsWhen we simply write, say, <y,
this should always be taken as a shorthand for an equatidroas a
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The foreground (“FG”) theorem prover accepts as inputssdalwover a signature
X = (&,9), wherezg C 5 andQg C Q. The sorts in5r = =\ Zg and the operator
symbols inQr = Q\ Qg are called=G sortsandFG operatorsFor instancezr might be
{list, book} andQF might contain operatorsons: int x list — list, length: list — int,
isempty: list — book, andtruesempty: — D00k, among othersE-terms that are not BG
terms are called FG terms. Notice that FG terms sudaraghx) can have BG sorts.

After abstracting out certain BG terms that occur as sulgehFG terms, the FG
prover saturates the set bfclauses using the inference rules of hierarchic superposi

tion, such as, e.g.,

[~rvC qul #tv D
abstr(g[r] #tv C vV D)o)

Negative superposition

if (i) neither| noru is a BG term, (ii)u is not a variable, (iii)o- is a simple
mgu ofl andu, (iv) ro % lo, (V) (I = r)o is strictly maximal in [ ~ r v C)o,
(vi) the first premise does not have selected literals, (wii}t so-, and (viii)

if the second premise has selected literals, thent is selected in the second
premise, otherwises(z t)o- is maximalin 6 # t v D)o.

These difer from the standard superposition inference rules [1] ipdinthat only the
FG parts of clauses are overlapped and that any BG clausesdiduring the saturation
are instead passed to the BG prover. The BG prover implenaeritference rule

Cn

Close
O

if Cq,...,C, are BG clauses anfL4,...,C,} is unsatisfiable w.r.t. the BG
specification.

As soon as one of the two provers detects a contradictionnthe clause set has been
shown to be inconsistent w. rdonservative extensions of the BG specification

2 Refutational Completeness

There are two requirements for the refutational completeméd hierarchic superposi-
tion. The first one is a variant siyficient completenesVe must be able to prove that
every ground BG-sorted FG term is equal to some BG ternfficent completeness
of a set of2-clauses is a property that is not even recursively enuntergbr certain
classes of'-clause sets, however, it is possible to establish@ent completeness au-
tomatically [5, 3]: If all BG-sorted FG terms are ground, uifeces to add alefinition
a;y = t for every BG-sorted FG terrhoccurring in a claus€[t], wherea; is a new
parameter (BG constant); afterwaKdg] can be replaced b@[«a].

3 Abstracting outa termt that occurs in a claus@[t] means replacin€[t] by x # t v C[x] for
a new variablex. The reverse operation is calladabstraction



Since we can only pagmite clause sets to a BG prover, there is a second require-
ment for refutational completeness, namelydbenpactnessf the BG specification. A
specification is called compact, if every set of formulag thainsatisfiable w.r. t. the
specification has a finite unsatisfiable subset.

It is well-known that first-order logic is compact. So, if wesame that the BG
prover checks satisfiability w.r.t., say, the first-ordezdty of LIA* the compactness
requirement is automatically satisfied. Unfortunatelys@sn as the BG signature con-
tains parameters, satisfiability w.r.t. the first-orderottyeof LIA differs from satisfi-
ability w.r.t. LIA over Z. Consider the following example: Suppose that the BG sig-
nature contains the parameterin addition to the integer numbers and the operator
symbols of LIA, and that we have a unary FG predicate synmbahd theX-clauses
p(0), =p(X) vV X < a, and=-p(x) vV x+ 1 < yV p(y). Starting with these clauses, hierarchic
superposition produces a $¢f of BG clauses

O0<a,

O+1<yivwy<a,
O+l<yivyi+l<y,Vyr<a,
O+1l<yivyi+l<y,Vyo+1l<yzVys<a,

which, after removing the universally quantified variablgsquantifier elimination,
turns out to be equivalent t® < @, 1 < @, 2< a, 3< a, ...}. Each finite subset of
N; is satisfiable irz, and hence in the first-order theory of LIA. By compactness of
first-order logic,N; itself is also satisfiable in the first-order theory of LIA fm-
stance in the non-standard modglx Z with 0 = (0,0), 1 = (0,1), « := (1,0),
xy)+ (X,Y) = (x+X,y+Y), and a lexicographic ordering. On the other hand, the
setN; is clearly unsatisfiable iZ. This leaves us two undesirable choices: If we as-
sume that the BG specification is given by LIA o&rhierarchic superposition is not
refutationally complete — there is a contradiction, but wikk mever detect it. If we as-
sume that the BG specification is the first-order theory of IHigrarchic superposition

is refutationally complete, but we get non-standard modbakst we would prefer to
exclude in most applications.

3 Completeness without Compactness

Are there classes di-clause sets for which we can guarantee that hierarchiajgope
sition is refutationally complete even if we restrict ouves to the standard models of
linear integer or rational arithmetic? A first answer in ttiisection was given in [3]: If
all BG-sorted terms in a clause set are ground, clauses pre@jately preprocessed,
and some reasonable restrictions on simplifications arereed, then the hierarchic
superposition calculus can produce only finitely manfedent BG clauses (up to un-
abstraction and duplication of literals). Refutationaigmeteness follows immediately.

In the current paper, we extend this result significantly ésntting also BG-sorted
variables and, in certain positions, even variables wibets.

4 That is, the set of all first-order BG sentences that hold #. LI



Theorem 1. Let N be a set of clauses over the signature of linear integiraetic
(with parametersy, B, etc.), such that every proper term in these clauses is reithe
(i) ground, or (ii) a variable, or (iii) a sum » k of a variable x and a numberk 0 that
occurs on the right-hand side of a positive literaksx + k. If the set of ground terms
occurring in N is finite, then N is satisfiable in LIA ov&if and only if N is satisfiable

w. I. t. the first-order theory of LIA.

Proof. Let N be a set of clauses with the required properties, and ke the finite set
of ground terms occurring iN. We will show thatN is equivalent to soménite set of
clauses over the signature of linear integer arithmetigghvimplies that it is satisfiable
in the integer numbers if and only if it is satisfiable in thetfiorder theory of LIA.

In a first step, we replace every negative ordering litergk t or —s < t by the
equivalent positive ordering literal< sort < s. All literals of clauses in the resulting
setNp have the forms ~ t, s # t, s< t, s < t, ors < x+ k, wheres andt are either
variables or elements df andk € N. Note that the number of variables in clauses in
No may be unbounded.

In order to handle the various inequality literals in a mangarm way, we introduce
new binary relation symbolsy (for k € N) that are defined bg <x b if and only if
a < b+k. Observe thas <, t entailss <, t whenevek < n. Obviously, we may replace
every literals < t by s <g t, every literals < t by s <; t, and every literab < x + k by
s <k X. Let N; be the resulting clause set.

We will now transformN; into an equivalent sell, of ground clauses. We start
by eliminating all equality literals that contain variabley exhaustively applying the
following transformation rules:

NU{CvxzXx} — NUJ{C}

NU{Cvx#t} — NU{C[x—1]} if t#x
NU{Cvx=x} — N

NU{Cvx=t}] — NU{Cvx<t CVvt<yX]} if t#X

All variables in inequality literals are then eliminatedafrourier-Motzkin-like manner
by exhaustively applying the transformation rule

N U {CV'\/X<|(j SV .\/tj <n; X} —- NU {CV,\/,\/tj <k+n, S}
iel jed iel jed
wherex does not occur i€ and one of the index setsandJ may be empty.

The clauses i\, are constructed over the finite sEtof proper ground terms,
but the length of the clauses My is potentially unbounded. In the next step, we will
transform the clauses in such a way that any pair of tegrthfrom T is related by at
most one literal in any clause: We apply one of the followirapsformation rules as
long as two terms andt occur in more than one literal:

NU{CVvs<ctvsxt} — NU{CVs<t} if k>1
NU{CVvs<gtvs~t} —» NU{CVvs<t}
NU{CVvs<ctvszt} — N ifk>1
NU{CVvs<gtvs#t} — NU{CVs#t}



NU{CVvs<ktVvs<,t}] — NU{CVs<yt} ifk<n
NU{CvVvs<ctvt<ys} — N ifk+n>1
NU{CVvs<gtVti<gs} — NU({CvVvs#t}

NuU{CvLVL} - NU{CvVL} for any literalL
N U {

Cvsx~tvs#t} — N

The length of the clauses in the resulting Ngtis now bounded bg m(m + 1), where
m is the cardinality ofT. Still, due to the indices of the relation symbalg, N3 may
be infinite. We introduce an equivalence relatioon clauses ifN3 as follows: Define
C~Cifforall steT (i) s¥teCifandonlyifs~te C/, (ii) s#t e Cif and only
if s#teC’, and (iii) s<k t € C for somek if and only if s <, t € C’ for somen. This
relation splitsN3 into at most %m(m + 1))° equivalence classés.

We will now show that each equivalence class is logicallyiegjant to a finite
subset of itself. LeM be some equivalence class. Since any two clauses Ktatfiffer
at most in the indices of thek-literals, we can write every claugk € M in the form

G =CvyV S <k b
1<l<n

whereC and thes andt; are the same for all clauseshifh As we have mentioned above,
S <k b entailss <k, t whenevek; < kj; so aclaus€; € M entailsC; € M whenever
then-tuple (i1, ..., kin) is pointwise smaller or equal to thetuple K1, ..., kjn) (that
is, ki < kj forall1<1<n).

Let Q be the set of-tuples of natural numbers corresponding to the clauséé.in
By Dickson’s lemma [4], for every set of tuples i the subset of minimal tuples
(w.r. t. the pointwise extension gfto tuples) is finite. LeY’ be the subset of minimal
tuples inQ, and letM’ be the set of clauses M that correspond to the tuples @.
Since for every tuple iQ \ Q' there is a smaller tuple iQ’, we know that every clause
in M\ M’ is entailed by some clause M’. So the equivalence cla$g is logically
equivalent to its finite subsdd’. Since the number of equivalence classes is also finite
and all transformation rules are sound, this proves ounclai O

Corollary 2. The hierarchic superposition calculus is refutationalgneplete w. r. t. LIA
over Z for finite sets ofX-clauses in which every proper BG-sorted term is either
(i) ground, or (ii) a variable, or (iii) a sum % k of a variable x and a number ¥ 0
that occurs on the right-hand side of a positive literat  + k.

Proof. Let N be a finite set of-clauses with the required properties. By introducing
definitionsay =~ t as described above and weak abstraction we obtairffizisatly
complete finite sely of abstracted clauses.

Now we run the hierarchic superposition calculusNpr(with the same restrictions
on simplifications as in [3]). LelN; be the (possibly infinite) set of BG clauses gener-
ated during the run. By unabstracting these clauses, wéncdmeequivalent sel, of

5 Any pair of termss; tis related in all clauses of an equivalence class by eithiggralls ~ t, or
s#t,ors<ytforsomen, ort <, sfor somen, or no literal at all, so there are five possibilities
per unordered pair of terms.

6 Note that in the counterexample abowe1 occurs on théeft-handside of the literak+1 < y.



clauses that satisfy the conditions of Thm. 1N\sois satisfiable in LIA ovefZ if and
only if N is satisfiable w. r. t. the first-order theory of LIA. Since tiierarchic superpo-
sition calculus is refutationally complete w. r. t. the ficstler theory of LIA, the result
follows. O

Analogous results hold for linear rational arithmetic. lbebe the least common
divisor of all numerical constants in the original clausg teen we define <z b by
a<b+ 'ﬁ anda <1 bbya<b+ ln fori € N and express every inequation literal in
terms of<g. The Fourier-Motzkin transformation rule is replaced by

N U {CV'\/X<|(i SV ,\/tj <p, X} —» NU {CV.\/.\/tj <ken, S }
iel jed iel jed
wherex does not occur i€, one of the index setsandJ may be empty, anll e nis
defined ak + n— 1 if bothk andn are odd, andk + n otherwise. The rest of the proof
proceeds in the same way as before.
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