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Abstract. Many applications of automated deduction and verification require
reasoning in combinations of theories, such as, on the one hand (some fragment
of) first-order logic, and on, the other hand a background theory, such as some
form of arithmetic. Unfortunately, due to the high expressivity of the full logic,
complete reasoning is impossible in general. It is a realistic goal, however, to
devise theorem provers that are “reasonably complete” in practice, and the hier-
archic superposition calculus has been designed as a theoretical basis for that. In
a recent paper we introduced an extension of hierarchic superposition and proved
its completeness for the fragment where every term of the background sort is
ground. In this paper, we extend this result and obtain completeness for a larger
fragment that admits variables in certain places.

1 Hierarchic Superposition

Many applications of automated deduction and verification require reasoning incombi-
nations of theories, such as, on the one hand (some fragment of) first-order logicand on
the other hand some form of arithmetic. In hierarchic superposition [2, 3] we consider
the following scenario:

We assume that we have a background (“BG”) prover that accepts as input a set
of clauses over aBG signatureΣB = (ΞB, ΩB), whereΞB is a set ofBG sortsandΩB

is a set ofBG operators. Terms/clauses overΣB and BG-sorted variables are called
BG terms/clauses. For instance,ΞB might be {int, boolB} andΩB might contain the
integer numbers,+, −, <, ≤, true<, true≤, and additional parametersα, β, . . . that may
be interpreted freely over theint-domain. The BG prover decides the satisfiability of
ΣB-clause sets w. r. t. aBG specification, say linear integer arithmetic (LIA).

For technical reasons, we assume that equality is the only predicate symbol in
our language and that any non-equational atomp(t1, . . . , tn) is encoded as an equation
p(t1, . . . , tn) ≈ truep. We refer to the terms that result from this encoding of atomsas
atom terms; all other terms are calledproper terms. When we simply write, say,x ≤ y,
this should always be taken as a shorthand for an equation as above.
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The foreground (“FG”) theorem prover accepts as inputs clauses over a signature
Σ = (Ξ,Ω), whereΞB ⊆ Ξ andΩB ⊆ Ω. The sorts inΞF = Ξ \ ΞB and the operator
symbols inΩF = Ω\ΩB are calledFG sortsandFG operators. For instance,ΞF might be
{list, boolF} andΩF might contain operatorscons: int × list → list, length: list → int,
isempty: list → boolF, andtrueisempty:→ boolF, among others.Σ-terms that are not BG
terms are called FG terms. Notice that FG terms such aslength(x) can have BG sorts.

After abstracting out certain BG terms that occur as subterms of FG terms,3 the FG
prover saturates the set ofΣ-clauses using the inference rules of hierarchic superposi-
tion, such as, e. g.,

Negative superposition
l ≈ r ∨C s[u] 0 t ∨ D

abstr((s[r] 0 t ∨C ∨ D)σ)

if (i) neither l nor u is a BG term, (ii)u is not a variable, (iii)σ is a simple
mgu of l andu, (iv) rσ � lσ, (v) (l ≈ r)σ is strictly maximal in (l ≈ r ∨ C)σ,
(vi) the first premise does not have selected literals, (vii)tσ � sσ, and (viii)
if the second premise has selected literals, thens 0 t is selected in the second
premise, otherwise (s0 t)σ is maximal in (s0 t ∨ D)σ.

These differ from the standard superposition inference rules [1] mainly in that only the
FG parts of clauses are overlapped and that any BG clauses derived during the saturation
are instead passed to the BG prover. The BG prover implementsan inference rule

Close
C1 · · · Cn

�

if C1, . . . ,Cn are BG clauses and{C1, . . . ,Cn} is unsatisfiable w. r. t. the BG
specification.

As soon as one of the two provers detects a contradiction, theinput clause set has been
shown to be inconsistent w. r. t.conservative extensions of the BG specification.

2 Refutational Completeness

There are two requirements for the refutational completeness of hierarchic superposi-
tion. The first one is a variant ofsufficient completeness: We must be able to prove that
every ground BG-sorted FG term is equal to some BG term. Sufficient completeness
of a set ofΣ-clauses is a property that is not even recursively enumerable. For certain
classes ofΣ-clause sets, however, it is possible to establish sufficient completeness au-
tomatically [5, 3]: If all BG-sorted FG terms are ground, it suffices to add adefinition
αt ≈ t for every BG-sorted FG termt occurring in a clauseC[t], whereαt is a new
parameter (BG constant); afterwardsC[t] can be replaced byC[αt].

3 Abstracting outa termt that occurs in a clauseC[t] means replacingC[t] by x 0 t ∨C[x] for
a new variablex. The reverse operation is calledunabstraction.
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Since we can only passfinite clause sets to a BG prover, there is a second require-
ment for refutational completeness, namely thecompactnessof the BG specification. A
specification is called compact, if every set of formulas that is unsatisfiable w. r. t. the
specification has a finite unsatisfiable subset.

It is well-known that first-order logic is compact. So, if we assume that the BG
prover checks satisfiability w. r. t., say, the first-order theory of LIA4 the compactness
requirement is automatically satisfied. Unfortunately, assoon as the BG signature con-
tains parameters, satisfiability w. r. t. the first-order theory of LIA differs from satisfi-
ability w. r. t. LIA over Z. Consider the following example: Suppose that the BG sig-
nature contains the parameterα in addition to the integer numbers and the operator
symbols of LIA, and that we have a unary FG predicate symbolp and theΣ-clauses
p(0),¬p(x)∨ x < α, and¬p(x)∨ x+1 < y∨ p(y). Starting with these clauses, hierarchic
superposition produces a setN1 of BG clauses

0 < α,
0+ 1 < y1 ∨ y1 < α,

0+ 1 < y1 ∨ y1 + 1 < y2 ∨ y2 < α,

0+ 1 < y1 ∨ y1 + 1 < y2 ∨ y2 + 1 < y3 ∨ y3 < α,

. . .

which, after removing the universally quantified variablesby quantifier elimination,
turns out to be equivalent to{0 < α, 1 < α, 2 < α, 3 < α, . . .}. Each finite subset of
N1 is satisfiable inZ, and hence in the first-order theory of LIA. By compactness of
first-order logic,N1 itself is also satisfiable in the first-order theory of LIA, for in-
stance in the non-standard modelQ × Z with 0 := (0, 0), 1 := (0, 1), α := (1, 0),
(x, y) + (x′, y′) := (x+ x′, y+ y′), and a lexicographic ordering. On the other hand, the
setN1 is clearly unsatisfiable inZ. This leaves us two undesirable choices: If we as-
sume that the BG specification is given by LIA overZ, hierarchic superposition is not
refutationally complete – there is a contradiction, but we will never detect it. If we as-
sume that the BG specification is the first-order theory of LIA, hierarchic superposition
is refutationally complete, but we get non-standard models, that we would prefer to
exclude in most applications.

3 Completeness without Compactness

Are there classes ofΣ-clause sets for which we can guarantee that hierarchic superpo-
sition is refutationally complete even if we restrict ourselves to the standard models of
linear integer or rational arithmetic? A first answer in thisdirection was given in [3]: If
all BG-sorted terms in a clause set are ground, clauses are appropriately preprocessed,
and some reasonable restrictions on simplifications are observed, then the hierarchic
superposition calculus can produce only finitely many different BG clauses (up to un-
abstraction and duplication of literals). Refutational completeness follows immediately.

In the current paper, we extend this result significantly by permitting also BG-sorted
variables and, in certain positions, even variables with offsets.

4 That is, the set of all first-order BG sentences that hold in LIA.
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Theorem 1. Let N be a set of clauses over the signature of linear integer arithmetic
(with parametersα, β, etc.), such that every proper term in these clauses is either
(i) ground, or (ii) a variable, or (iii) a sum x+k of a variable x and a number k≥ 0 that
occurs on the right-hand side of a positive literal s< x + k. If the set of ground terms
occurring in N is finite, then N is satisfiable in LIA overZ if and only if N is satisfiable
w. r. t. the first-order theory of LIA.

Proof. Let N be a set of clauses with the required properties, and letT be the finite set
of ground terms occurring inN. We will show thatN is equivalent to somefiniteset of
clauses over the signature of linear integer arithmetic, which implies that it is satisfiable
in the integer numbers if and only if it is satisfiable in the first-order theory of LIA.

In a first step, we replace every negative ordering literal¬s < t or ¬s ≤ t by the
equivalent positive ordering literalt ≤ s or t < s. All literals of clauses in the resulting
setN0 have the forms ≈ t, s 0 t, s < t, s ≤ t, or s < x + k, wheres andt are either
variables or elements ofT andk ∈ N. Note that the number of variables in clauses in
N0 may be unbounded.

In order to handle the various inequality literals in a more uniform way, we introduce
new binary relation symbols<k (for k ∈ N) that are defined bya <k b if and only if
a < b+k. Observe thats<k t entailss<n t wheneverk ≤ n. Obviously, we may replace
every literals < t by s <0 t, every literals ≤ t by s <1 t, and every literals < x+ k by
s<k x. Let N1 be the resulting clause set.

We will now transformN1 into an equivalent setN2 of ground clauses. We start
by eliminating all equality literals that contain variables by exhaustively applying the
following transformation rules:

N ∪ {C ∨ x 0 x } → N ∪ {C }

N ∪ {C ∨ x 0 t } → N ∪ {C[x 7→ t] } if t , x

N ∪ {C ∨ x ≈ x } → N

N ∪ {C ∨ x ≈ t } → N ∪ {C ∨ x <1 t, C ∨ t <1 x } if t , x

All variables in inequality literals are then eliminated ina Fourier-Motzkin-like manner
by exhaustively applying the transformation rule

N ∪ {C ∨
∨

i∈I
x <ki si ∨

∨

j∈J
t j <nj x } → N ∪ {C ∨

∨

i∈I

∨

j∈J
t j <ki+nj si }

wherex does not occur inC and one of the index setsI andJ may be empty.
The clauses inN2 are constructed over the finite setT of proper ground terms,

but the length of the clauses inN2 is potentially unbounded. In the next step, we will
transform the clauses in such a way that any pair of termss, t from T is related by at
most one literal in any clause: We apply one of the following transformation rules as
long as two termssandt occur in more than one literal:

N ∪ {C ∨ s<k t ∨ s≈ t } → N ∪ {C ∨ s<k t } if k ≥ 1

N ∪ {C ∨ s<0 t ∨ s≈ t } → N ∪ {C ∨ s<1 t }

N ∪ {C ∨ s<k t ∨ s0 t } → N if k ≥ 1

N ∪ {C ∨ s<0 t ∨ s0 t } → N ∪ {C ∨ s0 t }
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N ∪ {C ∨ s<k t ∨ s<n t } → N ∪ {C ∨ s<n t } if k ≤ n

N ∪ {C ∨ s<k t ∨ t <n s} → N if k+ n ≥ 1

N ∪ {C ∨ s<0 t ∨ t <0 s} → N ∪ {C ∨ s0 t }

N ∪ {C ∨ L ∨ L } → N ∪ {C ∨ L } for any literalL

N ∪ {C ∨ s≈ t ∨ s0 t } → N

The length of the clauses in the resulting setN3 is now bounded by12m(m+ 1), where
m is the cardinality ofT. Still, due to the indices of the relation symbols<k, N3 may
be infinite. We introduce an equivalence relation∼ on clauses inN3 as follows: Define
C ∼ C′ if for all s, t ∈ T (i) s≈ t ∈ C if and only if s≈ t ∈ C′, (ii) s0 t ∈ C if and only
if s 0 t ∈ C′, and (iii) s<k t ∈ C for somek if and only if s<n t ∈ C′ for somen. This
relation splitsN3 into at most (12m(m+ 1))5 equivalence classes.5

We will now show that each equivalence class is logically equivalent to a finite
subset of itself. LetM be some equivalence class. Since any two clauses fromM differ
at most in the indices of their<k-literals, we can write every clauseCi ∈ M in the form

Ci = C ∨
∨

1≤l≤n
sl <kil tl

whereC and thesl andtl are the same for all clauses inM. As we have mentioned above,
sl <kil tl entailssl <k jl tl wheneverkil ≤ k jl ; so a clauseCi ∈ M entailsC j ∈ M whenever
then-tuple (ki1, . . . , kin) is pointwise smaller or equal to then-tuple (k j1, . . . , k jn) (that
is, kil ≤ k jl for all 1 ≤ l ≤ n).

Let Q be the set ofn-tuples of natural numbers corresponding to the clauses inM.
By Dickson’s lemma [4], for every set of tuples inNn the subset of minimal tuples
(w. r. t. the pointwise extension of≤ to tuples) is finite. LetQ′ be the subset of minimal
tuples inQ, and letM′ be the set of clauses inM that correspond to the tuples inQ′.
Since for every tuple inQ \Q′ there is a smaller tuple inQ′, we know that every clause
in M \ M′ is entailed by some clause inM′. So the equivalence classM is logically
equivalent to its finite subsetM′. Since the number of equivalence classes is also finite
and all transformation rules are sound, this proves our claim. ⊓⊔

Corollary 2. The hierarchic superposition calculus is refutationally complete w. r. t. LIA
over Z for finite sets ofΣ-clauses in which every proper BG-sorted term is either
(i) ground, or (ii) a variable, or (iii) a sum x+ k of a variable x and a number k≥ 0
that occurs on the right-hand side of a positive literal s< x+ k.6

Proof. Let N be a finite set ofΣ-clauses with the required properties. By introducing
definitionsαt ≈ t as described above and weak abstraction we obtain a sufficiently
complete finite setN0 of abstracted clauses.

Now we run the hierarchic superposition calculus onN0 (with the same restrictions
on simplifications as in [3]). LetN1 be the (possibly infinite) set of BG clauses gener-
ated during the run. By unabstracting these clauses, we obtain an equivalent setN2 of

5 Any pair of termss, t is related in all clauses of an equivalence class by either a literal s≈ t, or
s0 t, or s<n t for somen, or t <n s for somen, or no literal at all, so there are five possibilities
per unordered pair of terms.

6 Note that in the counterexample abovex+1 occurs on theleft-handside of the literalx+1 < y.
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clauses that satisfy the conditions of Thm. 1, soN2 is satisfiable in LIA overZ if and
only if N is satisfiable w. r. t. the first-order theory of LIA. Since thehierarchic superpo-
sition calculus is refutationally complete w. r. t. the first-order theory of LIA, the result
follows. ⊓⊔

Analogous results hold for linear rational arithmetic. Letn be the least common
divisor of all numerical constants in the original clause set; then we definea <2i b by
a < b+ i

n anda <2i+1 b by a ≤ b+ i
n for i ∈ N and express every inequation literal in

terms of<k. The Fourier-Motzkin transformation rule is replaced by

N ∪ {C ∨
∨

i∈I
x <ki si ∨

∨

j∈J
t j <nj x } → N ∪ {C ∨

∨

i∈I

∨

j∈J
t j <ki•nj si }

wherex does not occur inC, one of the index setsI andJ may be empty, andk • n is
defined ask + n− 1 if both k andn are odd, andk + n otherwise. The rest of the proof
proceeds in the same way as before.
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