Hierarchic Superposition With Weak Abstraction

Peter Baumgartner! and Uwe Waldmann?

I NICTA* and Australian National University, Canberra, Australia
Peter.Baumgartner@icta.com.au
2 MPI fiir Informatik, Saarbriicken, Germany
uwe@mpi-inf.mpg.de

Abstract. Many applications of automated deduction require reasoning in first-
order logic modulo background theories, in particular some form of integer arith-
metic. A major unsolved research challenge is to design theorem provers that
are “reasonably complete” even in the presence of free function symbols ranging
into a background theory sort. The hierarchic superposition calculus of Bachmair,
Ganzinger, and Waldmann already supports such symbols, but, as we demon-
strate, not optimally. This paper aims to rectify the situation by introducing a
novel form of clause abstraction, a core component in the hierarchic superposi-
tion calculus for transforming clauses into a form needed for internal operation.
We argue for the benefits of the resulting calculus and provide a new complete-
ness result for the fragment where all background-sorted terms are ground.

1 Introduction

Many applications of automated deduction require reasoning modulo background the-
ories, in particular some form of integer arithmetic. Developing corresponding auto-
mated reasoning systems that are also able to deal with quantified formulas has recently
been an active area of research. One major line of research is concerned with extend-
ing (SMT-based) solvers [[15]] for the quantifier-free case by instantiation heuristics for
quantifiers [[1O0/11} e. g.]. Another line of research is concerned with adding black-box
reasoners for specific background theories to first-order automated reasoning methods
(resolution [4/12l1], sequent calculi [17]], instantiation methods [9/56], etc). In both
cases, a major unsolved research challenge is to provide reasoning support that is “rea-
sonably complete” in practice, so that the systems can be used more reliably for both
proving theorems and finding counterexamples.

In [4]], Bachmair, Ganzinger, and Waldmann introduced the hierarchical superposi-
tion calculus as a generalization of the superposition calculus for black-box style theory
reasoning. Their calculus works in a framework of hierarchic specifications. It tries to
prove the unsatisfiability of a set of clauses with respect to interpretations that extend
a background model such as the integers with linear arithmetic conservatively, that is,
without identifying distinct elements of old sorts (“‘confusion”) and without adding new
elements to old sorts (“junk’). While confusion can be detected by first-order theorem

* NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

proving techniques, junk can not — in fact, the set of logical consequences of a hierar-
chic specifications is usually not recursively enumerable. Refutational completeness can
therefore only be guaranteed if one restricts oneself to sets of formulas where junk can
be excluded a priori. The property introduced by Bachmair, Ganzinger, and Waldmann
for this purpose is called “sufficient completeness with respect to simple instances”.
Given this property, their calculus is refutationally complete for clause sets that are
fully abstracted (i. e., where no literal contains both foreground and background sym-
bols). Unfortunately their full abstraction rule may destroy sufficient completeness with
respect to simple instances. We show that this problem can be avoided by using a new
form of clause abstraction and a suitably modified hierarchical superposition calculus.
Since the new hierarchical superposition calculus is still refutationally complete and the
new abstraction rule is guaranteed to preserve sufficient completeness with respect to
simple instances, the new combination is strictly more powerful than the old one.

In practice, sufficient completeness is a rather restrictive property. While there are
application areas where one knows in advance that every input is sufficiently complete,
in most cases this does not hold. As a user of an automated theorem prover, one would
like to see a best effort behaviour: The prover might for instance try to make the in-
put sufficiently complete by adding further theory axioms. In the calculus by Bach-
mair, Ganzinger, and Waldmann, however, this does not help at all: The restriction to
a particular kind of instantiations (“simple instances”) renders theory axioms essen-
tially unusable in refutations. We show that this can be prevented by introducing two
kinds of variables of the background theory sorts instead of one, that can be instanti-
ated in different ways, making our calculus significantly “more complete” in practice.
We also include a definition rule in the calculus that can be used to establish sufficient
completeness by linking foreground terms to background parameters, thus allowing the
background prover to reason about these terms.

The following trivial example demonstrates the problem. Consider the clause set
N = {C} where C = f(1) < f(1). Assume that the background theory is integer arithmetic
and that f is an integer-sorted operator from the foreground (free) signature. Intuitively,
one would expect N to be unsatisfiable. However, N is not sufficiently complete, and it
admits models in which f(1) is interpreted as some junk element ¢, an element of the
domain of the integer sort that is not a numeric constant. So both the calculus in [4]
and ours are excused to not find a refutation. To fix that, one could add an instance
C’ = =(f(1) < f(1)) of the irreflexivity axiom —(x < x). The resulting set N’ = {C, C’} is
(trivially) sufficiently complete as it has no models at all. However, the calculus in [4]]
is not helped by adding C’, since the abstracted version of N’ is again not sufficiently
complete and admits a model that interprets f(1) as ¢. Our abstraction mechanism always
preserves sufficient completeness and our calculus will find a refutation.

With this example one could think that replacing the abstraction mechanism in [4]]
with ours gives all the advantages of our calculus. This is not the case, however. Let
N” = {C, =(x < x)} be obtained by adding the more realistic axiom —(x < x). The
set N” is still sufficiently complete with our approach thanks to having two kinds of
variables at disposal, but it is not sufficiently complete in the sense of [4]. Indeed, in that
calculus adding background theory axioms never helps to gain sufficient completeness,
as variables there have only one kind.

Another alternative to make N sufficiently complete is by adding a clause that forces
f(1) to be equal to some background domain element. For instance, one can add a “defi-
nition” for f(1), that is, a clause f(1) ~ a, where « is a fresh symbolic constant belonging
to the background signature (a “parameter”). The set N’ = {C,f(1) = «} is sufficiently
complete and it admits refutations with both calculi. The definition rule in our calcu-
lus mentioned above will generate this definition automatically. Moreover, the set N
belongs to a syntactic fragment for which we can guarantee not only sufficient com-
pleteness (by means of the definition rule) but also refutational completeness.

We present the new calculus in detail and provide a general completeness result,
modulo compactness of the background theory, and a specific completeness result for
clause sets over ground background-sorted terms that does not require compactness. We
also report on experiments with a prototypical implementation on the TPTP problem
library. Complete proofs, which are omitted here for lack of space, can be found in [[7].

Related Work. The relation with the predecessor calculus in [4]] is discussed above
and also further below. What we say there also applies to other developments rooted
in that calculus, [1} e. g.]. The specialised version of hierarchic superposition in [13]
will be discussed in Sect. [7] below. The resolution calculus in [12] has built-in infer-
ence rules for linear (rational) arithmetic, but is complete only under restrictions that
effectively prevent quantification over rationals. Earlier work on integrating theory rea-
soning into model evolution [5l6] lacks the treatment of background-sorted foreground
function symbols. The same applies to the sequent calculus in [[17], which treats linear
arithmetic with built-in rules for quantifier elimination. The instantiation method in [9]
requires an answer-complete solver for the background theory to enumerate concrete
solutions of background constraints, not just a decision procedure. All these approaches
have in common that they integrate specialized reasoning for background theories into
a general first-order reasoning method. A conceptually different approach consists in
using first-order theorem provers as (semi-)decision procedures for specific theories in
DPLL(T)(-like) architectures [[14/2l8]. Notice that in this context the theorem provers
do not need to reason modulo background theories themselves, and indeed they don’t.
The calculus and system in [[14], for instance, integrates superposition and DPLL(T).
From DPLL(T) it inherits splitting of ground non-unit clauses into their unit compo-
nents, which determines a (backtrackable) model candidate M. The superposition infer-
ence rules are applied to elements from M and a current clause set F. The superposition
component guarantees refutational completeness for pure first-order clause logic. Be-
yond that, for clauses containing background-sorted variables, (heuristic) instantiation
is needed. Instantiation is done with ground terms that are provably equal w.r.t. the
equations in M to some ground term in M in order to advance the derivation. The limits
of that method can be illustrated with an (artificial but simple) example. Consider the
unsatisfiable clause set {i < jVP@{I+1,x) VP(j+2,x),i < jV-P@{+3,x)V-P(j+4, x)}
where i and j are integer-sorted variables and x is a foreground-sorted variable. Neither
splitting into unit clauses, superposition calculus rules, nor instantiation applies, and so
the derivation gets stuck with an inconclusive result. By contrast, the clause set belongs
to a fragment that entails sufficient completeness (“no background-sorted foreground
function symbols™) and hence is refutable by our calculus. On the other hand, heuristic
instantiation does have a place in our calculus, but we leave that for future work.

2 Signatures, Clauses, and Interpretations

We work in the context of standard many-sorted logic with first-order signatures com-
prised of sorts and operator (or function) symbols of given arities over these sorts. A
signature is a pair X' = (5, Q2), where = is a set of sorts and Q is a set of operator sym-
bols over Z. If X is a set of sorted variables with sorts in =, then the set of well-sorted
terms over 2 = (&, Q) and X is denoted by Tx(X); Ty is short for Tx(0). We require
that 2" is a sensible signature, i. e., that Tx has no empty sorts. As usual, we write #[u] to
indicate that the term u is a (not necessarily proper) subterm of the term ¢. The position
of u in ¢ is left implicit.

A X-equation is an unordered pair (s,?), usually written s ~ ¢, where s and ¢ are
terms from Tx(X) of the same sort. For simplicity, we use equality as the only predi-
cate in our language. Other predicates can always be encoded as a function into a set
with one distinguished element, so that a non-equational atom is turned into an equa-
tion P(t1,...,t,) = truep; this is usually abbreviated by P(zq,..., t,,)E] A literal is an
equation s ~ t or a negated equation —(s ~ f), also written as s # t. A clause is a
multiset of literals, usually written as a disjunction; the empty clause, denoted by O is a
contradiction. If F is a term, equation, literal or clause, we denote by vars(F) the set of
variables that occur in F. We say F is ground if vars(F) = 0

A substitution o is a mapping from variables to terms that is sort respecting, that is,
maps each variable x € X to a term of the same sort. Substitutions are homomorphically
extended to terms as usual. We write substitution application in postfix form. A term s
is an instance of a term ¢ if there is a substitution o such that o = s. All these notions
carry over to equations, literals and clauses in the obvious way.

The domain of a substitution o is the set dom(c) = {x | x # xo}. We work with
substitutions with finite domains only, written as o = [x; = #,...,X, — t,] where
dom(o) = {xy,...,x,}. A ground substitution is a substitution that maps every variable
in its domain to a ground term. A ground instance of F is obtained by applying some
ground substitution with domain (at least) vars(F) to it.

A X-interpretation I consists of a Z-sorted family of carrier sets {I¢}s= and of a
function I : Iy, X -+ X I, > Iy, forevery f: & ... &, — & in Q. The interpretation t'
of a ground term 7 is defined recursively by f(#1,...,1,) = I;(1,,... i) forn > 0. An
interpretation / is called term-generated, if every element of an I is the interpretation
of some ground term of sort £. An interpretation / is said to satisfy a ground equation
s ~ t, if s and ¢ have the same interpretation in /; it is said to satisfy a negated ground
equation s # ¢, if s and ¢ do not have the same interpretation in /. The interpretation /
satisfies a ground clause C if at least one of the literals of C is satisfied by 1. We also say
that a ground clause C is true in I, if I satisfies C; and that C is false in I, otherwise. A
term-generated interpretation / is said to satisfy a non-ground clause C if it satisfies all
ground instances Co; it is called a model of a set N of clauses, if it satisfies all clauses
of NE] We abbreviate the fact that 7 is a model of N by I E N; I E C is short for

3 Without loss of generality we assume that there exists a distinct sort for every predicate.
4 This restriction to term-generated interpretations as models is possible since we are only con-
cerned with refutational theorem proving, i. e., with the derivation of a contradiction.

I E {C}. We say that N entails N’, and write N = N’, if every model of N is a model of
N’; N E C is short for N | {C}.

If J is a class of 2-interpretations, a 2-clause or clause set is called T -satisfiable if
atleastone I € 7 satisfies the clause or clause set; otherwise it is called T -unsatisfiable.

A specification is a pair SP = (2, J), where 2 is a signature and 7 is a class of
term-generated 2-interpretations called models of the specification SP. We assume that
J is closed under isomorphisms.

We say that a class of X-interpretations J or a specification (X,) is compact,
if every infinite set of X-clauses that is J-unsatisfiable has a finite subset that is also
J -unsatisfiable.

3 Hierarchic Theorem Proving

In hierarchic theorem proving, we consider a scenario in which a general-purpose fore-
ground theorem prover and a specialized background prover cooperate to derive a con-
tradiction from a set of clauses. In the sequel, we will usually abbreviate “foreground”
and “background” by “FG” and “BG”.

The BG prover accepts as input sets of clauses over a BG signature 2y = (5, Q).
Elements of =g and Qp are called BG sorts and BG operators, respectively. We fix an
infinite set X of BG variables of sorts in Zg. Every BG variable has (is labeled with)
a kind, which is either “abstraction” or “ordinary”. Terms over 2y and Xg are called
BG terms. A BG term is called pure, if it does not contain ordinary variables; otherwise
it is impure. These notions apply analogously to equations, literals, clauses, and clause
sets.

The BG prover decides the satisfiability of 2p-clause sets with respect to a BG
specification (2, B), where B is a class of term-generated 2p-interpretations called BG
models. We assume that B is closed under isomorphisms.

In most applications of hierarchic theorem proving, the set of BG operators Qg
contains a set of distinguished constant symbols QQ C Qg that has the property that
di # dj for any two distinct dy,d, € QF and every BG model I € B. We refer to these
constant symbols as (BG) domain elements.

While we permit arbitrary classes of BG models, in practice the following three
cases are most relevant:

(1) B consists of exactly one Zp-interpretation (up to isomorphism), say, the integer
numbers over a signature containing all integer constants as domain elements and
<, <, +, — with the expected arities. In this case, B is trivially compact; in fact, a set
N of 2Zg-clauses is B-unsatisfiable if and only if some clause of N is B-unsatisfiable.

(2) 2p is extended by an infinite number of parameters, that is, additional constant
symbols. While all interpretations in B share the same carrier sets {/}zez, and
interpretations of non-parameter symbols, parameters may be interpreted freely by
arbitrary elements of the appropriate ;. The class B obtained in this way is in
general not compact; for instance the infinite set of clauses {n < 8| n € N}, where
[is a parameter, is unsatisfiable in the integers, but every finite subset is satisfiable.

(3) 23 is again extended by parameters, however, 8 is now the class of all interpreta-
tions that satisfy some first-order theory, say, the first-order theory of linear integer

arithmeticE] Since B corresponds to a first-order theory, compactness is recovered.
It should be noted, however, that 8 contains non-standard models, so that for in-
stance the clause set {rn < S | n € N} is now satisfiable (e.g., Q X Z with a
lexicographic ordering is a model).

The FG theorem prover accepts as inputs clauses over a signature 2’ = (&,), where
Zp € Fand Qg C Q. The sorts in 5 = &'\ 5 and the operator symbols in QF = Q\ Qp
are called FG sorts and FG operators. Again we fix an infinite set Xg of FG variables
of sorts in Zg. All FG variables have the kind “ordinary”. We define X = Xg U XE.

In examples we use {0, 1,2, ...} to denote BG domain elements, {+, —, <, <} to de-
note (non-parameter) BG operators, and the possibly subscripted letters {x, y}, {X, Y},
{a,B}, and {a, b, c,f, g} to denote ordinary variables, abstraction variables, parameters,
and FG operators, respectively. The letter { denotes an ordinary variable or an abstrac-
tion variable.

We call aterm in Tx(X) a FG term, if it is not a BG term, that is, if it contains at least
one FG operator or FG variable (and analogously for equations, literals, or clauses). We
emphasize that for a FG operator f : &1 ...&, — & in QF any of the & may be a BG sort,
and that consequently FG terms may have BG sorts.

If I is a 2-interpretation, the restriction of I to Xy, written /|5, , is the 2 -interpretation
that is obtained from I by removing all carrier sets I for & € Zf and all functions /¢
for f € Q. Note that |5, is not necessarily term-generated even if / is term-generated.
In hierarchic theorem proving, we are only interested in 2-interpretations that extend
some model in B and neither collapse any of its sorts nor add new elements to them,
that is, in Z-interpretations / for which |5z, € B. We call such a Z-interpretation a
B-interpretation.

Let N and N’ be two sets of 2-clauses. We say that N entails N’ relative to B (and
write N g N’), if every model of N whose restriction to 23 is in B is a model of
N’. Note that N g N’ follows from N E N’. If N g 0O, we call N B-unsatisfiable;
otherwise, we call it B-satisfiable[]

Our goal in refutational hierarchic theorem proving is to check whether a given
set of X-clauses N is false in all B-interpretations, or equivalently, whether N is B-
unsatisfiable.

We say that a substitution is simple if it maps every abstraction variable in its domain
to a pure BG term. For example, [x = 1 + Y +a],[X — 1 + Y + @] and [x — f(1)]
all are simple, whereas [X — 1 +y + @] and [X — f(1)] are not. Let F be a clause or
(possibly infinite) clause set. By sgi(F) we denote the set of simple ground instances of
F, that is, the set of all ground instances of (all clauses in) F obtained by simple ground
substitutions. Standard unification algorithms can be modified in a straightforward way
for computing simple mgus. Note that a simple mgu can map an ordinary variable to an
abstraction variable but not vice versa, as ordinary variables are not pure BG terms.

> To satisfy the technical requirement that all interpretations in 5 are term-generated, we assume
that in this case 2y is suitably extended by an infinite set of constants (or by one constant and
one unary function symbol) that are not used in any input formula or theory axiom.

6 If X' = Xy, this definition coincides with the definition of satisfiability w.r.t. a class of inter-
pretations that was given in Sect. |2} A set N of BG clauses is B-satisfiable if and only if some
interpretation of $ is a model of N.

For a BG specification (23, B), we define GndTh($) as the set of all ground 2p-
formulas that are satisfied by every I € 8.

Definition 3.1 (Sufficient completeness). A X-clause set N is sufficiently complete
w. 1. t. simple instances iff for every X-model J of sgi(N) U GndTh(Bﬂ and every ground
BG-sorted FG term s there is a ground BG term t such that J = s = IEI

For brevity, we will from now on omit the phrase “w.r.t. simple instances” and speak
only of “sufficient completeness”. It should be noted, though, that our definition differs
from the classical definition of sufficient completeness in the literature on algebraic
specifications.

4 Orderings

A hierarchic reduction ordering is a strict, well-founded ordering on terms that is com-
patible with contexts, i.e., s > ¢ implies u[s] > u[t], and stable under simple substitu-
tions, i.e., s > ¢ implies so > to for every simple o. In the rest of this paper we assume
such a hierarchic reduction ordering > that satisfies all of the following: (i) > is total on
ground terms, (ii) s > d for every domain element d and every ground term s that is not
a domain element, and (iii) s > ¢ for every ground FG term s and every ground BG term
t. These conditions are easily satisfied by an LPO with an operator precedence in which
FG operators are larger than BG operators and domain elements are minimal with, for
example, - -+ > =2 > 2 > —1 > 1 > 0 to achieve well-foundedness.

Condition (iii) and stability under simple substitutions together justify to always
order s > X where s is a non-variable FG term and X is an abstraction variable. By
contrast, s > x can only hold if x € vars(s). Intuitively, the combination of hierarchic
reduction orderings and abstraction variables affords ordering more terms.

The ordering > is extended to literals over terms by identifying a positive literal
s ~ t with the multiset {s, 7}, a negative literal s # ¢ with {s, s, ¢, t}, and using the multiset
extension of >. Clauses are compared by the multiset extension of >, also denoted by >.

The non-strict orderings > are defined as s > ¢ iff s > ¢ or s = ¢ (the latter is multiset
equality in case of literals and clauses). We say that a literal L is maximal (strictly
maximal) in a clause L V C iff there isno K € C with K > L (K > L).

5 Weak Abstraction

To refute an input set of X-clauses, hierarchic superposition calculi derive BG clauses
from them and pass the latter to a BG prover. In order to do this, some separation
of the FG and BG vocabulary in a clause is necessary. The technique used for this
separation is known as abstraction: One (repeatedly) replaces some term ¢ in a clause
by a new variable and adds a disequations to the clause, so that C[¢] is converted into
the equivalent clause ¢ # t vV C[{], where { is a new (abstraction or ordinary) variable.

7 In contrast to [4], we include GndTh(8) in the definition of sufficient completeness. (This is
independent of the abstraction method used; it would also have been useful in [4]].)
8 Note that J need not be a B-interpretation.

The calculus by Bachmair, Ganzinger, and Waldmann [4]] works on “fully abstracted”
clauses: Background terms occuring below a FG operator or in an equation between a
BG and a FG term or vice versa are abstracted out until one arrives at a clause in which
no literal contains both FG and BG operator symbols.

A problematic aspect of any kind of abstraction is that it tends to increase the num-
ber of incomparable terms in a clause, which leads to an undesirable growth of the
search space of a theorem prover. For instance, if we abstract out the subterms ¢ and ¢’
in a ground clause f(f) = g(¢'), we get x 2 t Vy # t' V{(x) = g(y), and the two new terms
f(x) and g(y) are incomparable in any reduction ordering. The approach used in [4] to
reduce this problem is to consider only instances where BG-sorted variables are mapped
to BG terms: In the terminology of the current paper, all BG-sorted variables in [4] have
the kind “abstraction”. This means that, in the example above, we obtain the two terms
f(X) and g(Y). If we use an LPO with a precedence in which f is larger than g and g
is larger than every BG operator, then for every simple ground substitution 7, f(X)7 is
strictly larger that g(Y)7, so we can still consider f(X) as the only maximal term in the
literal.

The advantage of full abstraction is that this clause structure is preserved by all
inference rules. There is a serious drawback, however: Consider the clause set N =
{1+c # 1+c}. Since N is ground, we have sgi(N) = N, and since sgi(/N) is unsatisfiable,
N is trivially sufficiently complete. Full abstraction turns N into N’ = {X # ¢V 1 +
X # 1+ X }. In the simple ground instances of N’, X is mapped to all pure BG terms.
However, there are X-interpretations of sgi(N’) in which c is interpreted differently from
any pure BG term, so sgi(N’) U GndTh(8) does have a 2-model and N’ is no longer
sufficiently complete. In other words, the calculus of [4] is refutationally complete for
clause sets that are fully abstracted and sufficiently complete, but full abstraction may
destroy sufficient completeness. (In fact, the calculus is not able to refute N’.)

The problem that we have seen is caused by the fact that full abstraction replaces
FG terms by abstraction variables, which may not be mapped to FG terms later on.
The obvious fix would be to use ordinary variables instead of abstraction variables
whenever the term to be abstracted out is not a pure BG term, but as we have seen
above, this would increase the number of incomparable terms and it would therefore be
detrimental to the performance of the prover.

Full abstraction is a property that is stronger than actually necessary for the com-
pleteness proof of [4]]. In fact, it was claimed in a footnote in [4] that the calculus could
be optimized by abstracting out only non-variable BG terms that occur below a FG op-
erator. This is incorrect, however: Using this abstraction rule, neither our calculus nor
the calculus of [4] would not be able to refute {1 +1 =~ 2, (1 +1)+c # 2+ c}, even
though this set is unsatisfiable and trivially sufficiently complete. We need a slightly
different abstraction rule to avoid this problem:

Definition 5.1. A BG term t occurring in a clause C is called target term if t is neither
a domain element nor a variablfﬂ and if C has the form C[f(s1,...,t,...,Sy)], where f
is a FG operator or at least one of the s; is a FG or impure BG term.

® The reason why it is permissible to treat domain elements in a special way will become clear
in Sect. [}

A clause is called weakly abstracted if it does not have any target terms.
The weakly abstracted version of a clause is the clause that is obtained by exhaus-
tively replacing C[t] by

— C[X]V X # t, where X is a new abstraction variable, if t is a pure target term in C,
— C[y] Vy # t, where y is a new ordinary variable, if t is an impure target term in C.

The weakly abstracted version of C is denoted by abstr(C).

For example, weak abstraction of the clause g(1, a, f(1)+(a+1), z) = Syields g(1, X, f(1)+
)= BV X #aVY#a+ 1. Note that the terms 1, f(1) + (@ + 1), z, and § are not ab-
stracted out: 1 is a domain element; f(1)+ (a+ 1) has a BG sort, but it is not a BG term; z
is a variable; and S is not a subterm of a FG term. The clause write(a, 2, read(a, 1)+1) = b
is already weakly abstracted. Every BG clause is trivially weakly abstracted.

Proposition 5.2. If N is a set of clauses and N’ is obtained from N by replacing one or
more clauses by their weakly abstracted versions, then sgi(N) and sgi(N") are equiva-
lent and N’ is sufficiently complete whenever N is.

In contrast to full abstraction, the weak abstraction rule does not require abstraction of
FG terms (which can destroy sufficient completeness, if done using abstraction vari-
ables, and which is detrimental to the performance of a prover if done using ordinary
variables). BG terms are usually abstracted out using abstraction variables. The excep-
tion are BG terms that are impure, i. e., that contain ordinary variables themselves. In
this case, we cannot avoid to use ordinary variables for abstraction, otherwise, we might
again destroy sufficient completeness. For example, the clause set { P(1 +y), =P(1+¢)}
is sufficiently complete. If we used an abstraction variable instead of an ordinary vari-
able to abstract out the impure subterm 1+y, we would get { P(X)VX # 1+y, -P(1+c)},
which is no longer sufficiently complete.

In input clauses (that is, before abstraction), BG-sorted variables may be declared
as “ordinary” or “abstraction”. As we have seen above, using abstraction variables can
reduce the search space; on the other hand, abstraction variables may be detrimental
to sufficient completeness. Consider the following example: The set of clauses N =
{=f(x) > g(x)Vh(x) = 1, =f(x) < g(x)Vh(x) = 2, =h(x) > 0} is unsatisfiable w. r. t. linear
integer arithmetic, but since it is not sufficiently complete, the hierarchic superposition
calculus does not detect the unsatisfiability. Adding the clause X > Y VX < Yto N
does not help: Since the abstraction variables X and ¥ may not be mapped to the FG
terms f(x) and g(x) in a simple ground instance, the resulting set is still not sufficiently
complete. However, if we add the clause x > y V x < y, the set of clauses becomes
(vacuously) sufficiently complete and its unsatisfiability is detected.

One might wonder whether it is also possible to gain anything if the abstraction
process is performed using ordinary variables instead of abstraction variables. The fol-
lowing proposition shows that this is not the case:

Proposition 5.3. Let N be a set of clauses, let N be the result of weak abstraction of
N as defined above, and let N” be the result of weak abstraction of N where all newly
introduced variables are ordinary variables. Then sgi(N") and sgi(N"") are equivalent
and sgi(N’) is sufficiently complete if and only if sgi(N"") is.

6 Base Inference System

An inference system I is a set of inference rules. By an J inference we mean an instance
of an inference rule from J such that all conditions are satisfied.

The base inference system HSPpas of the hierarchic superposition calculus consists
of the inference rules Equality resolution, Negative superposition, Positive superposition,
Equality factoring, and Close defined belowF_G] All inference rules are applicable only to
weakly abstracted premise clauses.

sztvC

Equality resoluton —
abstr(Co)

if (i) neither s nor ¢ is a pure BG term, (ii) o is a simple mgu of s and ¢, and (iii) (s # t)o
is maximal in (s # t V C)U'E-]

For example, Equality resolution is applicable to 1 + ¢ # 1 + x with the simple mgu
[x — c], but it is not applicable to 1 + @ # 1 + x, since 1 + « is a pure BG term.

I~rvC slul #tv D
abstr((s[r] # t vV C V D)o)

Negative superposition

if (i) neither / nor u is a pure BG term, (ii) « is not a variable, (iii) o is a simple mgu of
land u, (iv) ro # lo, (v) (I = r)o is strictly maximal in (I = r V C)o, (vi) to # so, and
(vii) (s # o is maximal in (s # t V D)o

I~rvC slul =tV D
abstr((s[r] = t v C VvV D)o)

Positive superposition

if (1) neither / nor u is a pure BG term, (ii) « is not a variable, (iii) o is a simple mgu of
land u, (iv) ro # lo, (v) (I = r)o is strictly maximal in (I = r V C)o, (vi) to # so, and
(vii) (s # f)o is strictly maximal in (s = t V D)o

I~rvVs~tvC
abstr(I=tVvr#tvC)o)

Equality factoring

where (i) neither [nor s is a pure BG term, (ii) o is a simple mgu of / and s, (iii) (I = r)o
ismaximalin (I x rV s =tV C)o, (iv) ro # lo, and (V) to # so.

Cc, - C,
m]

Close

10 With weak abstraction, it is not possible to replace Equality factoring by Factoring and
Merging paramodulation. The inference system can be extended by selection functions, but
only negative FG literals in clauses that do not contain ordinary BG variables may be selected.

"' As in [4], it is possible to strengthen condition (iii) by requiring that there exists some simple
ground substitution ¢ such that (s # f)oy is maximal in (s # ¢ V C)oy (and analogously for
the other inference rules).

if Cy,...,C, are BG clauses and {C1, ..., C,} is B-unsatisfiable, i. e., no interpretation
in Bis a 2g-model of {Cy,...,C,}.

Notice that Close is not restricted to take pure BG clauses only. The reason is that
also impure BG clauses admit simple ground instances that are pure.

In contrast to [4]], the inference rules above include an explicit weak abstraction in
their conclusion. Without it, conclusions would not be weakly abstracted in general. For
example Positive superposition applied to the weakly abstracted clauses f(X) ~ 1VX # «
and P(f(1)+ 1) would then yield P(1+1)V1 # «, whose P-literal is not weakly abstracted.
Additionally, the side conditions of our rules differ somewhat from the corresponding
rules of [4], this is due on the one hand to the presence of impure BG terms (which must
sometimes be treated like FG terms), and on the other hand to the fact that, after weak
abstraction, literals may still contain both FG and BG operators.

The inference rules are supplemented by a redundancy criterion, that is, a mapping
Rci from sets of formulae to sets of formulae and a mapping Ry,r from sets of formulae
to sets of inferences that are meant to specify formulae that may be removed from N and
inferences that need not be computed. (Rci(N) need not be a subset of N and Ryye(N)
will usually also contain inferences whose premises are not in N.)

Definition 6.1. A pair R = (Rus, Rey) is called a redundancy criterion (with respect to
an inference system 7 and a consequence relation =), if the following conditions are
satisfied for all sets of formulae N and N':

(i) N\ Ra(N) E Ra(N).
(ii) If N € N’, then Rei(N) € Rei(N').
(iii) If v is an inference and its conclusion is in N, then t € Ryye(N).

(iv) If N' € Rei(N), then Rpp(N) € Rnr(N \ N').
Inferences in Ry (N) and formulae in Re|(N) are said to be redundant with respect to N.

To define a redundancy criterion for HSPg,. and to prove the refutational completeness
of the calculus, we use the same approach as in [4]] and relate HSPg, inferences to the
corresponding ground inferences in the standard superposition calculus SSP [16].

Let N be a set of ground clauses. We define Rgl(N) to be the set of all clauses C
such that there exist clauses Cy,...,C, € N that are smaller than C with respect to >
and Cy,...,C, E C. We define Rif(N) to be the set of all ground SSP inferences ¢ such
that either a premise of ¢ is in Rgl(N) or else Cy is the conclusion of ¢ and there exist
clauses Cy,...,C, € N that are smaller with respect to > than the maximal premise
of tand Cy,...,C, E Co. It is well known that ground SSP together with (R, RS)) is
refutationally complete.

Let ¢ be an HSPg, inference with premises Cy,...,C, and conclusion abstr(C),
where the clauses Cy,...,C, have no variables in common. Let ¢ be a ground SSP
inference with premises C1,...,C; and conclusion C’. If ¢ is a simple substitution
such that C’ = Co and C] = Cjo for all i, and if none of the C; is a BG clause, then
U is called a simple ground instance of t. The set of all simple ground instances of an
inference ¢ is denoted by sgi().

Definition 6.2. Let N be a set of weakly abstracted clauses. We define R;fn’f(N) to be the
set of all inferences 1 such that either v is not a Close inference and sgi(t) C Rf]f(sgi(N)u

GndTh(B)), or else ¢ is a Close inference and 0 € N. We define R(g(N) to be the set
of all weakly abstracted clauses C such that sgi(C) C R*Cgl(sgi(N) U GndTh(8B)) U
GndTh(8)|7]

To prove that HSPg,s and RH = R}’;{f, Rg) are refutationally complete for sets of
weakly abstracted 2-clauses and compact BG specifications (2, 8), we use the same
technique as in [4]:

First we show that R* is a redundancy criterion with respect to |z, and that a set of
clauses remains sufficiently complete if new clauses are added or if redundant clauses
are deleted. The proofs for both properties are similar to the corresponding ones in [4];
the differences are due, on the one hand, to the fact that we include GndTh(%) in the
redundancy criterion and in the definition of sufficient completeness, and, on the other
hand, to the explicit abstraction steps in our inference rules.

We then encode arbitrary term-generated 2g-interpretation by sets of unit ground
clauses in the following way: Let I € B be a term-generated 2p-interpretation. For
every 2g-ground term ¢ let m(f) be the smallest ground term of the congruence class of
tin I. We define a rewrite system E} by E; = {t — m(#) | t € Tx, t # m(¢) }. Obviously,
E} is terminating, right-reduced, and confluent. Now let E; be the set of all rules [— r
in E; such that / is not reducible by E; \ {{ — r}. It is fairly easy to prove that E} and
E; define the same set of normal forms, and from this we can conclude that E; and E;
induce the same equality relation on ground 2z-terms. We identify E; with the set of
clauses {t ~ ' | t — ¢ € E;}. Let D; be the set of all clauses ¢ # ¢, such that ¢ and ¢’
are distinct ground 2z-terms in normal form with respect to E;.

Let N be a set of weakly abstracted clauses and / € B be a term-generated 2p-
interpretation, then N; denotes the set E; U D; U { Co | o simple, reduced with respect
to E;, C € N, Co ground }.

Theorem 6.3. Let I € B be a term-generated 2y-interpretation and let N be a set of
weakly abstracted X-clauses. If I satisfies all BG clauses in sgi(N) and N is saturated
with respect to HSPgyse and RH then N, is saturated with respect to SSP and RS,

The crucial property of abstracted clauses that is needed in the proof of this theo-
rem is that there are no superposition inferences between clauses in E; and FG ground
instances Co, or in other words, that all FG terms occurring in ground instances Co are
reduced w.r.t. E;. Abstracting out FG terms as in [4] is not necessary to achieve this
goal, and domain elements can also be excluded as target terms in Def. 5.1} Since two
different domain elements must always be interpreted differently in / and since domain
elements are smaller in the term ordering than any ground term that is not a domain
element, every domain element is the smallest term in its congruence class. Domain
elements occurring within FG terms are therefore trivially irreducible by E;, so it is
unnecessary to abstract them out.

If N is saturated with respect to HSPg, and RH and does not contain the empty
clause, then Close cannot be applicable to N. If (2p, B) is compact, this implies that
there is some term-generated 2g-interpretation / € B that satisfies all BG clauses in

12 In contrast to [4], we include GndTh(8B) in the redundancy criterion. (This is independent of
the abstraction method used; it would also have been useful in [4].)

sgi(N). Hence, by Thm. the set of reduced simple ground instances of N has a
model that also satisfies E; U D;. Sufficient completeness allows us to show that this is
in fact a model of all ground instances of clauses in N and that / is its restriction to 2p:

Theorem 6.4. If the BG specification (X3, B) is compact, then HSPgys. and R are
refutationally complete for all sets of clauses that are sufficiently complete.

We do not spell out in detail theorem proving processes here, because the well-known
framework of standard resolution [3]] can be readily instantiated with our calculus. In
particular, it justifies the following version of a generic simplification rule for clause
sets.

N U {C}

Simp
N U {D}

if (i) D is weakly abstracted, (ii) GndTh(8) U N U {C} E D, and (iii) C is redundant
w.r.t. N U {D}.

Condition (ii) is needed for soundness, and condition (iii) is needed for complete-
ness. The Simp rule covers the usual simplification rules of the standard superposition
calculus, such as demodulation by unit clauses and deletion of tautologies and (prop-
erly) subsumed clauses. It also covers simplification of arithmetic terms, e. g., replacing
a subterm (2 + 3) + @ by 5 + « and deleting an unsatisfiable BG literal 5 + « < 4 + «
from a clause. Any clause of the form C v { # d where d is domain element can be
simplified to C[{ + d].

7 Sufficient Completeness by Define

In this section we introduce an additional inference rule, Define. It augments the HSPg,g.
inference system with complementary functionality: while the HSPg, inference sys-
tem will derive a contradiction if the input clause set is inconsistent and sufficiently
complete, the Define rule may turn input clause sets that are not sufficiently complete
into sufficiently complete ones. Technically, the Define rule derives “definitions” of the
form ¢t ~ a, where ¢ is a ground BG-sorted FG term and « is a parameter. This way,
sufficient completenessis is achieved “locally” for ¢, by forcing 7 to be equal to some
element of the carrier set of the proper sort, denoted by the parameter a. For economy
of reasoning, definitions are introduced only on a by-need basis, when ¢ appears in a
current clause, and ¢ = « is used to simplify that clause immediately.
We need one more preliminary definition before introducing Define formally.

Definition 7.1 (Unabstracted clause). A clause is unabstracted if it does not contain
any disequation { # t between a variable { and a term t unless t # { and { € vars(t).

Every clause can be unabstracted by repeatedly replacing C vV { # t by C[{ +— (]
whenever t = £ or { ¢ vars(f). By unabstr(C) we denote an unabstracted version of
C that can be obtained this waym Ift =t&,...,4] is aterm in C and ¢ is finally

13 In general, unabstraction does not yield a unique result. All results are equivalent, however,
and we can afford to select any one and disregard the others.

instantiated to ¢;, we denote its unabstracted version f[¢, ..., #,] by unabstr(z, C). For a
clause set N let unabstr(N) = {unabstr(C) | C € N}.

N U {L[#y,- -, &l Vv DY
N U {abstr(#[t1, ..., ta] = @y,

Define

w1V D)}

..........

if G) #[{1, ..., ,] is a minimal BG-sorted non-variable term with a toplevel FG operator,
@i) t[t1, ..., t,] = unabstr(¢[{1, ..., &), LI, .- ., &1V D), (id) #[t,. . ., t,] is ground,
and (iv) ay,,...,] 1S @ parameter, uniquely determined by the term #[#4, .. ., t,].

In condition (i), by minimality we mean that no proper subterm of #[{},...,{,] is a
BG-sorted non-variable term with a toplevel FG operator. In effect, the Define rule elim-
inates such terms inside-out. Conditions (iii) and (iv) are needed for soundness. Notice
the Define-rule preserves B-satisfiability, not B-equivalence. In our main application,
Thm. [7.5]below, every ¢; will always be an abstraction variable.

Example 7.2. Consider the weakly abstracted clauses P(0), f(x) > 0 vV =P(x), Q(f(x)),
-Q(x) V 0 > x. Suppose —P(x) is maximal in the second clause. By superposition
between the first two clauses we derive f(0) > 0. With Define we obtain f(0) =~ @)
and @) > 0, the latter replacing f(0) > 0. From the third clause and f(0) = @)
we obtain Q(aj,), and with the fourth clause 0 > «4q,. Finally we apply Close to
{ozf(o) >0, 0> af(o)}. O

In practice, it is interesting to identify conditions under which sufficient completeness
can be established by means of Define and compactness poses no problems, so that a
complete calculus results. The ground BG-sorted term fragment (GBT fragment) dis-
cussed below is one such case.

A clause set N belongs to the GBT fragment iff every clause C € N is a GBT clause,
that is, all BG-sorted terms in C are ground. To get the desired completeness result we
need to establish that the Define rule preserves the GBT property.

Lemma 7.3. If unabstr(N) belongs to the GBT fragment and N’ is obtained from N by
a Define inference, then unabstr(N") also belongs to the GBT fragment.

Below we will equip the HSP calculus with a specific strategy that first applies Define
exhaustively before the derivation proper starts. In that, it may be beneficial to also ap-
ply Simp. But then, Simp needs to preserve the GBT property, too. Because this does not
hold at the outset, and to make sure Split is well-behaved in the subsequent derivation,
we have to make certain (mild) assumptions.

Definition 7.4. Let >4, be any strict (partial) term ordering such that for every ground
BG term s only finitely many ground BG terms t with s >z, t exist.[ﬂ We say that a
Simp inference with premise N U {C} and conclusion N U {D} is suitable (for the GBT
fragment) iff (i) if unabstr(C) is a GBT clause then unabstr(D) is a GBT clause, (ii) for
every BG term t occuring in unabstr(D) there is a BG term s € unabstr(C) such that
s >4 t, and (iii) every term t in D contains a BG-sorted FG operator only at toplevel
position, if at all. We say the Simp inference rule is suitable iff every Simp inference is.

14 A KBO with appropriate weights can be used for > .

Expected simplification techniques like demodulation, subsumption deletion and eval-
uation of BG subterms are all covered by suitable Simp rules. The latter is possible
because simplifications are not only decreasing w.r.t. > but additionally also decreas-
ing w.r.t. =g, as expressed in condition (ii). Without it, e. g., the clause P(1 + 1,0)
would admit infinitely many simplified versions P(2,0), P(2,0 + 0), P(2,0 + (0 + 0)),
etc. Condition (i) makes sure that also Simp preserves GBT clauses. Condition (iii) is
needed to make sure that no new BG terms are generated in derivations.

As said, we need to equip the HSP calculus with a specific strategy. Assume a
suitable Simp rule and let N be a set of GBT clauses. By N?"® we denote any clause
set obtained by a derivation of the form (Ny = abstr(N)), Ny, ..., (Ny = NP) with the
inference rules Define and Simp only, and such that every C € NP™ either does not
contain any BG-sorted FG operator or unabstr(C) is a ground positive unit clause of the
form f(#1,...,1,) = t where f is a BG-sorted FG operator and ¢4, ..., t,,t do not contain
BG-sorted FG operators.

For all GBT clause sets N, thanks to the effect of the Define rule and Lemma[7.3] all
offending occurrences of BG-sorted FG terms in N can stepwisely be eliminated until a
clause set NP results. Thanks to the additional assumptions about Simp we obtain the
following main result on the GBT fragment.

Theorem 7.5. The HSP calculus with a suitable Simp inference rule is refutationally
complete for the ground BG-sorted term fragment. More precisely, if a set N of GBT
clauses is B-unsatisfiable then there is a refutation of NP’ without the Define rule.

Because unabstraction can also be applied to fully abstracted clauses, it is possible
to equip the hierarchic superposition calculus of [4] with a correspondingly modified
Define rule and get Theorem [7.5]in that context as well.

In [13] it has been shown how to use hierarchic superposition as a decision proce-
dure for ground clause sets (and for Horn clause sets with constants and variables as
the only FG terms). Their method preprocesses the given clause set by “basification”,
a process that removes BG-sorted FG terms similarly as our Define rule. The resulting
clause set then is fully abstracted and hierarchic superposition is applied. Certain mod-
ifications of the inference rules make sure derivations always terminate. Simplification
is restricted to subsumption deletion. The effect of basification is achieved in our cal-
culus by the Define rule. Moreover, for GBT clause sets, by Theorem Define needs
to be applied as preprocessing only. Applying Define beyond that for non-GBT clause
sets can still be useful. Ex. for instance, cannot be solved with basification during
preprocessing. The fragment of [13] is a further restriction of the GBT fragment. We
expect we can get decidability results for that fragment with similar techniques.

8 Implementation and Experiments

We have implemented the HSP calculus and carried out experiments with the TPTP
Library [18]. Our implementation, “Beagle”, is intended as a testbed for rapidly try-
ing out theoretical ideas for their practical Viabilitypz] Beagle is in an early stage of

Bhttp://users.cecs.anu.edu.au/~baumgart/systems/beagle/

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

development. Nevertheless it is a full implementation of HSP and accepts TPTP for-
mulas over linear integer arithmetic (“TFF formulas”, see [[19]). The BG reasoner is a
quantifier elimination procedure for linear integer arithmetic (LIA) based on Cooper’s
algorithm; it is called with all current BG clauses as inputs (with caching of simpli-
fied formulas) whenever a new BG clause has been derived. The HSP calculus itself is
implemented in a straightforward way. Fairness is achieved through a combination of
measuring clause lengths, depths and their derivation-age. Implemented simplification
rules are evaluation of ground parameter-free BG terms and literals, expressing literals
with the predicate symbols > and > in terms of < and <, demodulation by unit clauses,
proper subsumption deletion, and removing a positive literal L from a clause in presence
of a unit clause that instantiates to the complement of L. Prover options allow the user
to enable/disable the Define rule and to add certain LIA-valid clauses over ordinary vari-
ables. Unit clauses like —(—x) = x, (x+(=y)+y = x, x+0 = x, x*0 = 0, =(x < x), etc,
are always helpful as demodulators. Transitivity clauses for < and < are helpful some-
times. Optionally, a split rule can be enabled for branching out into complementary unit
clauses if they simplify some current clause. Dependency-directed backtracking is used
for search space pruning then. Beagle also implements the previous calculus [4], with
abstraction variables only, full abstraction, and optionally a modified Define rule that
uses full abstraction instead of weak abstraction. We refer to this setting by “HSPFA”
below, and by “HSPWA” for the new calculus.

Beagle is implemented in Scala. The choice of a slow programming language and,
more severely, the absence of any form of term indexing limit Beagle’s applicability to
small problems only. Indeed, Beagle’s performance on problems that require significant
combinatorial search is poor. For example, the propositional pigeonhole problem with
8 pigeons takes more than two hours, SPASS solves it in under 4 seconds using settings
to get a comparable calculus and proof procedure (including splitting). Nevertheless
we tried Beagle on all first-order problems from the TPTP library (version 5.4.0) over
linear integer arithmetic. The experiments were run on a MacBook Pro with a 2.4 GHz
Intel Core 2 Duo processor. Here is our summary, by problem category.

ARI. Relevant are 223 problems. Many ARI problems are very simple, but roughly
half of them are non-trivial by including integer-sorted non-constant FG function sym-
bols and free predicates over the integers. The most difficult solved problems have a
rating of 0.88. Beagle times out after 60 seconds on one problem (ARI184=1), termi-
nates with an undecided result on one satisfiable problem (ARI603=1) and solves all
other 221 problems correctly, 10 non-theorems and 211 theorems. All but three solved
problems can be solved very quickly, the other three below 20 seconds. The Define rule
is essential for HSPWA in 14 cases, for HSPFA in 17 cases. The problem ARI186=1
cannot be solved by HSPFA.

GEG. The five relevant problems are variations of each other. They deal with travers-
ing weighted graphs and computing with the (sum of the) weights along paths. All five
problems are solved within 60 seconds, the hardest problem has a rating of 0.67. For
GEGO025=1 the use of additional LIA-valid axioms, in particular transitivity of < is es-
sential. For two problems Define is essential, and one problem is unsolvable by HSPFA.

PUZ. The only relevant problem (PUZ133=2) is not solved.

NUM. The only non-easy problem that is solvable is NUMS858=1 (rating 0.56),
which is not solvable by HSPFA. All easy problems are solved easily, but for one prob-
lem Define is essential.

SEV/HWYV. Six problems of SEV are relevant, about sets, stemming from a soft-
ware verification context. Only SEV421=1 and SEV422=1 can be solved, in 3 and 100
seconds, respectively. The problem SEV422=1 cannot be solved by HSPFA. Solving
the SEV-problems is dominated by pure foreground reasoning. The same applies to
HWYV, where no problem is solved.

SWV/SWW. Only one problem can be solved, SWV997=1 (rating 0.44), in 8 sec-
onds. All other problems are too big to be converted into CNF in reasonable time. The
same holds for all SWW problems.

SYO. Of the four problems, SYO521=1, SYO523=1 (rating 0.67) and SYO524=1
are solvable. The latter only with HSPWA, the Define rule and auxiliary lemmas.

The TSTP web page contains individual solutions to TPTP problems for various
provers. About 12 provers are applicable to problems over linear integer arithmetic.
Beagle solves 22 such problems with a rating of 0.60 or higher. Each of these problems
can typically be solved by four or less systems, with CVC3, Princess, SPASS+T and
73 the most reliable ones. There are five problems that only Princess and Beagle solve.

9 Conclusions

The main theoretical contribution of this paper is an improved variant of the hierarchic
superposition calculus. The improvements over its predecessor [4] are grounded in a
different form of “abstracted” clauses, the clauses the calculus works with internally.
Because of that, a modified completeness proof is required. We have argued informally
for the benefits over the old calculus in [4]]. They concern making the calculus “more
complete” in practice. It is hard to quantify that exactly in a general way, as complete-
ness is impossible to achieve in presence of background-sorted foreground function
symbols (e. g., “car” of integer-sorted lists). To compensate for that to some degree, we
have reported on initial experiments with a prototypical implementation on the TPTP
problem library. These experiments clearly indicate the benefits of our concepts, in par-
ticular the definition rule and the possibility of adding background theory axioms. They
also confirm advantages of the new calculus over the old, the former solves strictly more
more problems than the latter (and is never slower on the common set). Certainly more
experimentation and an improved implementation is needed to also solve bigger-sized
problems with a larger combinatorial search space.

We have also obtained a specific completeness result for clause sets over ground
background-sorted terms and that does not require compactness. As far as we know
this result is new. It is loosely related to the decidability results in [[13]], as discussed in
Sect.[/] It is also loosely related to results in SMT-based theorem proving. For instance,
the method in [[11] deals with the case that variables appear only as arguments of, in our
words, foreground operators. It works by ground-instantiating all variables in order to
being able to use an SMT-solver for the quantifier-free fragment. Under certain condi-
tions, finite ground instantiation is possible and the method is complete, otherwise it is
complete only modulo compactness of the background theory (as expected). Treating

different fragments, the theoretical results are mutually non-subsuming with ours. Yet,
on the fragment they consider we could adopt their technique of finite ground instan-
tiation before applying Thm. (when it applies). However, according to Thm.
our calculus needs instantiation of background-sorted variables only, this way keeping
reasoning with foreground-sorted terms on the first-order level, as usual with superpo-
sition.

References

1.

2.

3.

10.

11.

12.

13.

17.

18.

19.

E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo linear arithmetic
SUP(LA). In FroCos, 2009, LNCS 5749, pp. 84-99. Springer.

A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-based satis-
fiability procedures. ACM Trans. Comput. Log., 10(1), 2009.

L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In Handbook of Automated
Reasoning. North Holland, 2001.

. L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hierarchic

first-order theories. Appl. Algebra Eng. Commun. Comput, 5:193-212, 1994.

. P. Baumgartner, A. Fuchs, and C. Tinelli. ME(LIA) — Model Evolution With Linear Integer

Arithmetic Constraints. In LPAR, 2008, LNAI 5330, pp. 258-273. Springer.

. P. Baumgartner and C. Tinelli. Model evolution with equality modulo built-in theories. In

CADE-23, 2011, LNAI 6803, pp. 85-100. Springer.

. P. Baumgartner and U. Waldmann. Hierarchic superposition with weak abstraction. Tech-

nical Report MPI-I-2013-RG1-002, Max-Planck-Institut fiir Informatik, Saarbriicken, Ger-
many, 2013. http://www.mpi-inf.mpg.de/publications/index.html,

. M. P. Bonacina, C. Lynch, and L. M. de Moura. On deciding satisfiability by theorem proving

with speculative inferences. J. Autom. Reasoning, 47(2):161-189, 2011.

. H. Ganzinger and K. Korovin. Theory instantiation. In LPAR, 2006, LNCS 4246, pp. 497—

511. Springer.

Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using satisfiability
modulo theories. In F. Pfenning, ed., CADE-21, 2007, LNCS 4603, pp. 167-182. Springer.
Y. Ge and L. M. de Moura. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In CAV, 2009, LNCS 5643, pp. 306-320. Springer.

K. Korovin and A. Voronkov. Integrating linear arithmetic into superposition calculus. In
CSL, 2007, LNCS 4646, pp. 223-237. Springer.

E. Kruglov and C. Weidenbach. Superposition decides the first-order logic fragment over
ground theories. Mathematics in Computer Science, pp. 1-30, 2012.

. L. M. de Moura and N. Bjgrner. Engineering DPLL(T) + saturation. In IJCAR, 2008, LNCS

5195, pp. 475-490. Springer.

. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: from

an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM,
53(6):937-9717, 2006.

. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In Handbook of

Automated Reasoning, pp. 371-443. Elsevier and MIT Press, 2001.

P. Riimmer. A constraint sequent calculus for first-order logic with linear integer arithmetic.
In LPAR, 2008, LNAI 5330, pp. 274-289. Springer.

G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337-362, 2009.

G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. The TPTP typed first-order form
with arithmetic. In LPAR, 2012, LNAI 7180, pp. 406—419. Springer.

http://www.mpi-inf.mpg.de/publications/index.html

	Hierarchic Superposition With Weak Abstraction
	Peter Baumgartner and Uwe Waldmann

