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Figure 1: Two results obtained with our methoteft: The input video.Middle: The tracked mesh shown as an overlRyght: Applying
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Abstract

Detailed facial performance geometry can be reconstrucsaty
dense camera and light setups in controlled studios. Haweve
a wide range of important applications cannot employ thgse a
proaches, including all movie productions shot from a sngin-
cipal camera. For post-production, these require dynancicat-
ular face capture for appearance modi cation. We preserdva n
method for capturing face geometry from monocular videor. &pu
proach captures detailed, dynamic, spatio-temporallyeit 3D
face geometry without the need for markers. It works under un
controlled lighting, and it successfully reconstructsresgive mo-
tion including high-frequency face detail such as folds &dyh
lines. After simple manual initialization, the capturingppess is
fully automatic, which makes it versatile, lightweight aeasy-to-
deploy. Our approach tracks accurate sparse 2D featuresdet
automatically selected key frames to animate a paramelitdb
shape model, which is further re ned in pose, expressionsraghe

by temporally coherent optical ow and photometric steréde
demonstrate performance capture results for long and eniatce
sequences captured indoors and outdoors, and we exempdify t
relevance of our approach as an enabling technology for mode
based face editing in movies and video, such as adding neal fac
textures, as well as a step towards enabling everyone toaial fa
performance capture with a single affordable camera.
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1 Introduction

Optical performance capture methods can reconstruct fzoés
tual actors in videos to deliver detailed dynamic face gdome
However, existing approaches are expensive and cumberasme
they can require dense multi-view camera systems, coetrdtjht
setups, active markers in the scene, and recording in aatieatr
studio (Sec2.2). At the other end of the spectrum are computer
vision methods that capture face models from monocularovide
(Sec.2.1). These captured models are extremely coarse, and usually
only contain sparse collections of 2D or 3D facial landmaeker
than a detailed 3D shape. Recently, Valgaerts et2@13 pre-
sented an approach for detailed performance capture frootii

lar stereo. However, 3D face models of a quality level nedded
movies and games cannot yet be captured from monocular.video

In this work, we aim to push the boundary and application eang
further and move towards monocular video. We propose a new
method to automatically captudetailed dynamic face geometry
from monocularvideo Imed under general lighting. It lls an
important algorithmic gap in the spectrum of facial perfarroe
capture techniques between expensive controlled setupsoan
quality monocular approaches. It opens up new applicatomsip
bilities for professional movie and game productions bybdéing
facial performance capture on set, directly from the prinam-
era. Finally, it is a step towards democratizing face cagptechnol-
ogy for everyday users with a single inexpensive video camer

A 3D face model for a monocular video is also a precondition
for many relevant video editing tasks (S&3). Examples in-
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clude video face transfer and face replacem¥itagic et al. 2005
Alexander et al. 2009facial animation retiming for dubbindJale

et al. 201}, or face puppeteeringdemelmacher-Shlizerman et al.
201Q Li et al. 2012. For these results, a tracked geometry model
of moderate shape detail was suf cient, but even then, sniisd
manual work is unavoidable to obtain a 3D face model thatlaysr
suf ciently with the video footage. To achieve a higher dtyabf
edits on more general scenes, and to show advanced editesuch
relighting or virtual make-up, we require much higher shdetail

to be captured from a single video.

Our approach relies on several algorithmic contributidret &are
joined with state-of-the-art 2D and 3D vision and graphiesht
niques adapted to monocular video. In a one-time preparatep,
we create a personalized blend shape model for the captoted a
by transferring the blend shapes of a generic model to aessigtic
3D face scan of the subject (Se. This task is the only manual
interaction in our technique. Then, in the rst step of outcamatic
algorithm, we track a sparse set of 2D facial features throug
the video by adapting a probabilistic face tracking methwat is
regularized by a parametric 3D face model, learned once iom
training set (SecS). To increase the accuracy of the 2D landmark
localization, we introduce a new feature correction schéraeuses
optical ow for tracking correction relative to key posestbe face.
These stabilizing key poses are automatically selectelitirsg
the sequence between frames with similar facial appearaifter
2D landmark tracking, we obtain the blend shape and poserpara
eters of the personalized 3D face model by solving a comstdai
quadratic programming problem at every frame ($&cTo further

re ne the alignment of the face model to the video, a nongsiggm-
porally coherent geometry correction is performed usingpeeh
multi-frame variational optical ow approach (Seg). Finally, a
shape-from-shading-based shape re nement approachsiaots
ne scale geometric face detail after estimating the unkmamci-
dent lighting and face albedo (Se&3.

We emphasize the simplicity and robustness of our lightiteagd
versatile performance capture method. We do not claim teeeeh

a higher reconstruction quality than multi-view methodst Wwe
think that our approach is one of the rst to capture long ssmes

of expressive face motion for scenarios where none of thiéss o
methods are applicable. Our method requires only a littés irs
tervention during blend shape model creation and initighahent,
and tracking itself is fully automatic. As an additional kenour
tracker estimates blend shape parameters that can be uapufhia
tors in standard software tools, which is an important feaaiso
advocated in previous 3D facial performance capture wv&ige

et al. 2011 We show qualitative and quantitative results on sev-
eral expressive face sequences captured under uncodtligje-
ing, both indoors and outdoors. Our approach comparesdhiyor
to the recent binocular performance capture method of éalgat
al.[2013, and even performs better for certain aspects. Finally, we
show a proof-of-concept application of advanced videoirgliby
applying virtual face textures to video.

2 Related Work

2.1 Monocular Face Tracking

Many monocular methods for tracking the motion of sparse D o
3D facial feature sets have been developed. These ofteaser

2D and 3D feature sets, which are learned from labeled trgini
data. Recent work trained regression forests to nd verysptace
features Pantone et al. 2012 Model-based optical ow has also
been applied for monocular non-rigid tracking and built g a
coarse face templatBfand and Bhotika 20Q1

Chuang et al.Z003 track a coarse blend shape model, albeit with
actively placed markers on the face, and coarsely map fawial
tion to a 3D avatar. Chai et al2Q003 also extract animation pa-
rameters from coarse tracked landmarks and map them to tar.ava
Kemelmacher-Shlizerman et aJ1Q use sparse feature tracking
to puppet a target character from an input face video. Thétrissa
coarse sequence of similar faces retrieved from a videoeaaufe
matching. Liet al. 2017 propose a variant of this retrieval idea that
produces temporally smoother results. The state-of-theparse,
monocular face tracker of Saragih et 2011 combines statistical
shape and appearance models, but falls short of the acoueaaiyn
for. We build additional innovations on top of this trackeeichieve

a suf cient level of accuracy and stability. In concurrerank [Cao
etal. 2013Lietal. 2013 Bouaziz et al. 2013 real-time monocular
face trackers have been proposed that are either based @inextr
shape regression model for video or on a run time shape timmec
strategy for combined depth and video data. All these woslesau
personalized blend shape model of some sort, but theircgtign

is limited to face retargeting. Instead, we move outsidehilead
shape domain by recovering a more detailed and expressiee fa
geometry and we show accurate video overlays.

2.2 Dense 3D Facial Performance Capture

Most algorithms for dense detailed 3D facial performanqgetwo@

use complex and dense camera, motion capture, or scanner sys
tems, or rely on sophisticated lighting and a special st{igighin

and Lewis 200p Some methods use dense camera sets to track
markers or invisible make-upWilliams 1999 Guenter et al. 1998
Furukawa and Ponce 200Bickel et al. 2007. Combining marker-
based motion capture with blending between static facessean
ables synthesis of detailed moving facEsiing et al. 2011 Other

3D methods track shape templates from dynamic active 3Dnscan
data Zhang et al. 2004Wang et al. 2004Weise et al. 2007

Image-based approaches help to overcome the limitatiosisape
detail and tracking accuracy that purely geometric and rsean
based methods still have. Template-based methods t a whefiole
shape model to images of a facBgCarlo and Metaxas 1996
Pighin et al. 1999Blanz et al. 200B These methods yield spatio-
temporally coherent reconstructions, but the capturedngéy is
coarse. High-quality facial performances can be obtairyedom-
bining passive stereo and mesh trackiBpishukov et al. 2003
Bradley et al. 2010Beeler et al. 201;1Valgaerts et al. 2012Some
commercial systems also fall into this category, e.g. thewdo
system or the approach by DepthAnalysisPore-level skin detail
can be reconstructed by recording under controlled illatiém and
employing photometric cue#\[exander et al. 2009Wilson et al.
2010. The approaches mentioned here produce high-quality re-
sults, but most require complex, expensive setups and woeild
inapplicable for the use cases motivating our work.

The rst steps toward more lightweight setups have beenrntake
Weise et al. 2009 2017 capture blend shape parameters in real-
time with a Kinect. Similar to our work, the ability to obtaimean-
ingful blend shape parameters is considered very importdodv-

the face as a parametric 2D or 3D shape model, which is matchedever, their goal is a coarse control of avatars in real-time @ot

against features in the video, e.bi ¢t al. 1993 Black and Yacoob
1995 Essa et al. 199@eCarlo and Metaxas 1996an this class of
algorithms, methods using variants of active appearancelsare
very popular Cootes et al. 20Q1Xiao et al. 2004 Such models
are linear approximations to the non-rigid deformation pérse

a highly detailed face reconstruction. Valgaerts et 201f] cap-
ture detailed facial performances under uncontrollediiighusing
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Figure 2: Algorithm overview:Left to right: (a) Input video frame, (b) sparse feature trackif®gc.5), (c) expression and pose estimation
using a blend shape mod@ec.6), (d) dense expression and pose correc{grc.7), (e) shape re nemer(Sec.8).

a single binocular stereo camera. In this paper, we go opdste tablished sparse feature set, we estimate a global 3D trans-
ther and capture detailed space-time-coherent face gepiinain formation (head pose) and a set of model parameters (facial
a single video. expression) for the blend shape model, see F(g).

S2 Dense tracking correction (Sec7). Next, we improve the
facial expression and head pose obtained from sparse blend
shape tracking by computing a temporally coherent and dense

2.3 Dynamic Monocular Face Reconstruction

Many methods for monocular dense 3D reconstruction wereldev motion eld in video and correcting the facial geometry to ob
oped to enable advanced video editing. Blanz e29I0§ ta PCA tain a more accurate model-to-video alignment, seeZFd).
face model, learned from a large database of 3D scans, to vide

and perform simple editing tasks. However, ne face detailsas S3 Dynamic shape re nement (Sec8). In a nal step, we re-
wrinkles and laugh lines cannot be recovered with their aggin, construct ne-scale, time-varying facial detail, such asmw
and the tracked faces do not always overlap exactly with iitheov kles and folds. We do this by estimating the unknown lighting
Vlasic et al. p00F introduce multilinear face models that learn and exploiting shading for shape re nement, see Ei().

separate dimensions for facial expressions and identiy farge
databases of face scans and use them to track coarse-tomedi Notation. A frame in the monocular video corresponding to time

scale, dynamic face geometry for face transfer in videogbtity stampt will be denoted byf ¢, with f © being the starting frame.
very little head motion. Dale et aR011 use the tracker from\la- We reconstruct a spatio-temporally coherent sequencéofjuilar

sic et al. 2005 but require a 3D model of much higher shape qual- face meshe# !, consisting of a xed set of vertices with Eu-

ity to enable faithful face replacement and video retimingriore clidean coordinateX ' and their connecting edges. The outcome of
unconstrained and general videos. The multilinear tradkes not the subsequent computational steps in our algorithm aregbleed
meet these requirements and considerable manual conmétgev- meshM (S1), thecorrected mesiM ¢ (S2) and the nalre ned
eral frames is needed. In the Digital Emily projeatdxander et al. meshM ! (S3), all based on the same vertex set and connectivity.

2009, a commercial software by Image Metritsvas used to cap-

ture face animation parameters of a blend shape rig thathesitc .

the actor in video. The high reconstruction quality and extign- 4 A Personalized Blend Shape Model

ment of the face to the video required considerable manugk wo .

by an artist. Thus, so far, only facial geometry of moderatalq We use alend shape models a parametric morphable 3D repre-

ity can be captured in a monocular setting, and this requsiués sentation of the face. Blend shap&ighin and Lewis 2006are
stantial manual intervention. In contrast, our new mettaptures additive deformations on top of a neutral face shape thaahie
spatio-temporally coherent, dynamic face geometry at bjghi- Fo span a Iayge yarlatlon of natural expressslf])ns and ardywiged
ity and with minimal manual interaction. It succeeds on seqes I facial animation. If we denote by 2 R™ the neutral shape
Imed in general environments and for expressive faces aatih containing the coordinates of thevertices of a face mesh in rest, a
motion, and it paves the way for high quality advanced fadtined new facial expressioa can be obtained by the linear combination:
in movies.
X

. e(j)=n+ b @

3 Method Overview i-1

Our method uses as input a single video of a face captured unde whereb; 2 R, with1 j k, are the blend shape displace-
unknown lighting. Itis composed of four main computatiostalps: ments and i 1,8j arethek blending weights

SO Personalized face model creation (Sed). We construct a ~ \We create an actor speci ¢ face model by starting from a gener
customized parametric 3D blend shape model for every actor, artist-created, professional blend shape médgl = 78) and per-
which is used to reconstruct all sequences starring that.act ~ forming a non-rigid registration of the neutral shape toreobular

) ) stereo reconstructionalgaerts et al. 20J1of the actor's face in

S1 Blend shape tracking (Sec5 and Sec6). We track 2D im-  rest. Please note that any generic blend shape model rfeyr

age features throughout the monocular video by combining an artist and any laser scanning or image-based face recctish

sparse facial feature tracking with automatic key framesel  method® can be used instead. Registration is based on manually
tion and reliable optical ow, see Fi® (b). From the es-

“4obtained from Faceware Technologigaw.facewaretech.com
Swww.image-metrics.com Swww.facegen.com
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Figure 3: Personalized blend shape modelsp: Three poses from
the generic model, including the neutral pod&ottom: The same
dimensions after transferring them to the target actor of.Ri

matching29 3D landmarks on the eyes, nose and mouth, followed
by a global correspondence search and Laplacian regudasimgpe
deformation Sorkine 200k Once the neutral shape is registered,
the blend shapes of the generic model are transferred usrgame
procedure. The obtained face models have a person specGigesh
but the same semantic dimensions over all actors. Although o
straightforward registration approach has proven sufti®er our
application, additional person-speci ¢ semantics can rizguided

by using extra scans of different expressionisef al. 201Q. Since

all personalized blend shape models are derived from thes sam
generic model, they share the same number of vertices (20k)
triangulation (henceforth shared by all meshes in this papég. 3
shows four corresponding poses for the generic model andethe
rived personalized model for the actor in Fiymore examples are
shown in the supplementary material). Note that the pradibtend
shape models lack high frequency shape detail, such aslesink

An alternative parametric representation is a PCA modeighvte-
moves possible linear dependencies between the blendshape
opposed to uncontrolled PCA dimensions, however, blengesha
are semantically meaningful and correspond to the lodalize
gions of in uence on the face that artists are used to workwit

5 2D Facial Feature Tracking

A sparse 2D facial feature tracker serves as the base of dhodhe
but its performance falls short of our accuracy requiremerio
meet our needs, we augment it with a new optical ow-based cor
rection approach using automatically selected key frames.

5.1 Sparse Feature Tracking

Our system utilizes a non-rigid face tracking algorithm pmsed
by Saragih 2011, which tracks a sparse set of =66 consistent
facial feature points, such as the eyes, brows, nose, modtfaae
outline, see Fig2 (b). The tracking algorithm is based on a 3D
point distribution model (PDM), which linearly models noigid
shape variations around a set of 3D reference locationsi =

Xti = SPR Xi+ iq +t 2)
Here,xti,1 i  m, denotes the estimated 2D location of the
i-th facial feature in the image amdthe orthogonal projection ma-
trix. The PDM parameters are the scaling facpthe 3D rotation
matrix R, the 2D translation vectdr, and the non-rigid deforma-
tion parameterg 2 RY, whered = 24 is the dimension of the

PDM model. Further, ; 2 R® ¢ denotes a previously learned

with P = 199

Figure 4: Facial features before correctiobéft) and after correc-
tion (Right).

submatrix of the basis of variation pertaining to thi feature. To

nd the most likely feature locations, the algorithm rsticalates
aresponse map for each landmark by local feature detectinsd
to differentiate aligned from misaligned locations, andrtttom-
bines the local detectors in an optimization step which ee® a
global prior over their joint motion. Both the trained PDM deb
and landmark classi ers where provided to us by the authors.

5.2 Automatic Key Frame Selection

There may be localization errors in the detected featusgeaally
for expressions on which the tracker was not trained. Tajoanti-
es this effect by listing the mean distance of the detectsatidres
from their manually annotated ground truth locations foelestion
of expressions from the experiments in Qedo account for such
errors, we correct the feature locations using accurateapow
betweenkey framesi.e., frames for which the localization of the
facial features detected by the face tracker is considedlébte.

Appearance descriptor. Key frames are selected by comparing
the facial appearance of each frame with the appearanceedf a r
erence frame that has well localized features, such as &fodra
neutral pose. In our application, we assume that the sgafitame

f to depicts the actor in rest and we choose it as a reference. $¥e r
align all frames in the sequence to the rst frame using a 2Deaf
transformation that maps at best the set of detected featun®
the reference shape. Next, we consider three rectanggii@nseof
xed size around the eyes and mouth, and split them into séver
tiles for which the appearance is represented as a histogfon
cal binary patterns (LBP). LBPs are very effective for exgien
matching and identi cation task#\honen et al. 2006and encode
the relative brightness around a pixel by assigning a bivalye to
each neighboring pixel, depending on whether it is brightamot.
The result is an integer value betwe®and2' for each center pixel,
wherel is the size of a circular neighborhood. To increase the dis-
criminative power of appearance matching, we combine atmif
LBP code forl =8 [Kemelmacher-Shlizerman et al. 2QMith a
non-uniform code fot = 4, resulting in an LBP histogram af5
bins for each tile. Finally, we concatenate all histogranithiw a
region of interest to a single descriptdrfor the whole region.

Appearance matching.  Ina rstpass, an initial set of key frames
is selected as those frames in the sequence that are clogést t
neutral expression according to the distance metric:

dapp (F0;F7) = d 2 Hi(f)Hi(fY)

i=1

®)

whered : is the chi-squared distance between two histograms and
H;i the appearance descriptor for the eyes and mouth regiores. Th
amount of initial key frames is chosen a$5% of the sequence
length, which can be thought of as a probability estimatensfing



Table 1: Key frame-based feature correction: Mean distance (in
pixels) of theb6 tracked facial feature points to their manually an-
notated ground truth location for a selection of expressifom
the sequences shown in the experiments of&ec.

Sequence Feature Tracking| Key Frame Correction
11 expressions of seq. 1 (Fig). 5.38 1.47 3.83 1.05
11 expressions of seq. 2 (Fit0) 6.72 144 460 0.70
10 expressions of seq. 3 (Fit0) 6.36 1.65 4.13 0.88
Overall 6.15 1.52 419 0.88
Overall, only mouth and eyes 7.24 222 435 1.46

a neutral expression in the video and at the same time camdsp
to an average inter-key-frame-distance of 40 frames. Incargk
pass, we select clips between consecutive key frames withgiH

of more than 50 and divide these by adding more key framesseThe
in-between key frames are selected in the same way usingshe d
tance metric §), but this time we use an appearance descriptor
for a small region around each of tine detected facial features.
Unlike the initial key frames, in-between key frames may eéhav
non-neutral expressions since we only seek similar texgateerns
around facial features and not within whole facial regiofilse di-
vision threshold of 50 frames is chosen to limit drift by apow
(see Se®.3) over longer clips. In our experiments, the resulting
average key frame distance w23 with an average maximum of
almost90.

5.3 Optical Flow-based Feature Correction

If we assume that we have a key frame at tirre T, we compute
the feature locations attimés T as:

for 1 i m, (4)
where0 i 1lisaweighting factor. In this expressiot, is the
feature positionZ) obtained by thdacial feature tracke(Sec.5.1)
at timet, andx ! is the feature location estimated bpgtical ow:
. X .
Xo = X' + w' . (5)
T i<t

X} = ix};i +(1 i)XE);i

Here,x T denotes the feature position in the key fraffeandw!

is the forward optical ow vector front tot + 1 in x5. Optical
ow is estimated in a variational framework by minimizing an-
ergy consisting of a data and a smoothness term similar getbb
Eq. (10) and Eq. 11). In practice, we also compute the backward
optical ow fromt +1 tot and use it to back-trace the feature po-
sition from the next key frame. The in uence of the forwarddan
backward optical ows is varied smoothly over time, with tfoe-
ward (backward) ow having more weight near the previousx{he
key frame. This avoids an accumulation of drift errors ansuees
smooth feature trajectories at key frames. A related kepdrap-
proach for dense tracking was adopted by Beeler ealL].

Improvements in feature location after optical ow-basedtire

correction are clearly noticeable for very expressiveaesgj such

as the mouth and the eyes in Fif. Tab. 1 further shows that the
overall feature localization improves after our correctstep.

6 Coarse Expression and Pose Estimation

We now align the 3D blend shape model to the 2D sparse feature

locations found in each frame: We solve an optimization &b
to nd the pose and facial expression parameters of the 3Ddle
shape model such that it reprojects onto the tracked 2D riesatu
This is done in three steps.

6.1 Coupling the 2D and 3D Model

To couple the sparse 2D features to their corresponding 8izes

on the blend shape model, we render an OpenGL shaded neutral
face in front of a black background and estimate the feanca-I|
tions with the tracker of Se&.1 After minimal manual correction

of the detected features (see the supplementary mateveabstab-

lish the xed set of corresponding 3D feature vertices, lefoth
denoted a$ . This step only needs to be completed once for the
generic model since all personalized models are derived fro

6.2 Expression Estimation

Given a set of facial feature locatiors, 1 i m estimated in
the current framé ', and a personalized blend shape magigl; ),
itis our task to estimate the current facial expressionrimseof the
blending weights j‘, 1 | k. This expression transfer problem
can be formulated in a constrained least squares sense as:

2
min SR'P xi+t' Xg 0, (6)
j i

1 for 1 | k, (7)

whereX g 2 F are the coordinates of the feature vertices of the
blend shape model. The orthogonal weak perspective piaject
matrix P is the same as in Eq2(ands', R' 2 R® ® andt' 2 R®
denote a scaling factor, a rotation matrix, and a transiati&ctor
which align the reprojected feature locations with the deatver-
tices of the blend shape model in a weak perspective segiinge

the alignment transformations are unknown, we solve the/@bo
quadratic programming problem iteratively: First we opzenfor
fs;R;tg" using a current estimate for the blending weights, after
which we solve for j‘ in a second step keeping the transformations

xed. We terminate when the change if falls below a threshold.

st. 0|

Solving for the transformations. Finding the least squares so-
lution of fs; R; tg' to expression€) for a constant set of blending
weights is equivalent to aligning two 3D point sets, whicim te
solved in closed form by SVDArun et al. 1987.

Solving for the blending weights. Once the alignment trans-
formations have been computed, we search for an optimal com-
bination of the linear weights which minimizes the difference

in shape between the point seSR'P” x| + t' andX ;i | ,

1 i m, subject to the box constraint3)( By rewriting the
blend shape model) as:
|
w
e(j)= 1 j n+ i(n+b), 8
j=1 j=1
P k

anddening o=1 i , We obtain an instance of a convex
quadratic programming problem with box constraints andheadr
equality constraint. This can be solved ef ciently by meibdased
on sequential minimal optimizatiofh [Platt 1998, As opposed
to the alignment step, we found experimentally that the difem
weight optimization is more robust if only performed ovee tK-
and Y-coordinates, so for this step we discard depth infiona

6.3 3D Pose Estimation

To retrieve the head pose under a full perspective projectie
update the positions of the 3D feature verticeF insing the com-
puted blending weights, and feed them together with thé&e&@2D

Shttp://cmp.felk.cvut.cz/ ~xfrancv/libgp/html/
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Figure 5: Dense expression and pose correctidreft: Overlay
of the tracked blend shape model of F&y(c), textured with the
starting frame.Middle: Textured overlay of the tracking-corrected
face mesh of Fig2 (d). This synthetic frame is closer to the target
frame in Fig.2 (a). Right: Per-vertex correction color coded on the
corrected mesh, where red means large correction and gressmm
small correction.

facial feature locations to a pose estimation algoritRraid et al.
2004. It approximates the perspective projection by a series of
scaled orthographic projections and iteratively estiméte global
pose parameters for the given set of 2D-to-3D corresporgenc

Expression and pose estimation are iterated until conuesgeae-
sulting in atracked face mesk | with associated blending weights
and pose parameters. Howewer; lies within the space spanned
by the blend shape model and lacks high-frequency facel deai
appears in the video. These shortcomings will be tackled nex

7 Dense Expression and Pose Correction

After coarse expression and pose estimation, there mayimema
residual errors in the facial expression and head pose whiclead

to misalignments when overlaying the 3D model with the video
see Fig5. The rst reason for this error is that the used paramet-
ric blend shape model has a limit in expressibility and is atae

to exactly reproduce a target expression that is not spabyéid
basis of variation. The second reason is that the optinoizatf
the previous section is performed over a xed set of sparaaufe
vertices and excludes vertices that lie in other facialargisuch

as the cheeks or the forehead. To obtain an accurately dligibe
mesh, we correct the initially estimated expression ane mogr

all vertices.

7.1 Temporally Coherent Corrective Flow

To correct the expression and pose of the face nvghobtained
by blend shape tracking, we assigrxad color to each vertex us-
ing projective texturing and blending from the startingnfieaf *°.
ProjectingM back onto the image plane at every timeesults
in the synthetic image sequentg depicted in Fig6. To ensure
optimal texturing for the results presented in S&cwe manually
improved the detected feature locations in the startingéra

The idea behind our correction step is to compute the dertszabp
ow eld that minimizes the difference between a synthetiarhe
f{ and its corresponding true target frafrle and then use the ow
to deform the mesh. This corrective optical ow is denotedhas

in Fig. 6. Computing such corrective optical ow independently
for each timet introduces temporal artifacts in the corrected mesh
geometry due to the lack of coherence over time in the opiteal
estimation (see the second supplementary video for ariralicn

of such temporal artifacts). However, if we assume tidt de-
forms coherently over time, the synthetic sequence willheath
over time and, since the true sequence is smooth by coristyct

—]
| —

Figure 6: Temporally coherent corrective ow estimation.

the corrective oww ; betweerf ! andf ' has to vary smoothly over
time as well.

To impose temporal smoothnesswn, we include frames dt+1
andt 1 and introduce a new optical ow method for the six-frame
scenario depicted in Fig. Exploiting the dependencies between
the correspondences, the problem can be parametrized thet
reference framé. by wi and four additional ows:w, andw
describing the face motion in the synthetic sequence vanend
ws describing the temporal change in the corrective ww. Note
thatwi1+ w3 andw 1+ ws represent the corrective ows in cor-
responding image points at1 andt 1 and so we can impose
temporal coherence through the ow changes andws.

To estimate all unknown ows simultaneously, we minimizeean
ergy consisting of data, smoothness, and similarity cairgs:
Z x

i
Edala +

X : X2
i Esmoolh +
i=1

iEsiim dX . (9)

Data constraints.  The data terms in energ®)(impose photo-
metric constancy between corresponding points along thense
connections drawn in Fig. For brightness constancy, the rst data
term betweeri {*1 andf '*! | for example, takes the form:

Edaa= o JI7 (x+watwotws) ™ (x+w)j® , (10)

. P . .
with ¢(s?)= s2+(0:001) the robust regularized; penalizer.
The remaining six data terms are constructed in the same gy a

all constraints are extended with a gradient constancyngstson
and color information for improved matching accuracy.

Smoothness constraints. Similar in spirit to the scene ow sce-
nario in [Valgaerts et al. 20J2we use a structure-aware regular-
ization for the owswi, w, andw, to improve the optical ow
estimation in semantically meaningful regions of the facg,:

Eslmooth = s jr Wi rljz + s jl’ Wi |'2j2 ’ (11)
wherer 1 andr, are smoothiBg directions along and across ow
structures and s(s?) = 2 2 1+(s= )2, with s = 0:1, a
discontinuity-preserving function. As opposed to the eative and
motion ows, we regularizevs andw s much stronger:

Essmooth = jr W3j2 and Essmooth = W5j2 - (12)
This quadratic regularization of the ow changes ensured the
corrective ow w 1 varies smoothly over time.



Similarity constraints. Finally, we enforce the corrective ows
w1, W1+ ws andwi+ ws to be similar to each other, i.e., we
strongly penalize the magnitude of the ow changes:
Eslim = jW3j2 and Eszim = jW5j2 . (13)

The respective term4d.8) and (L2) can be related to rst and second
order smoothness constraints along optical ow trajeeras de-
scribed in Molz et al. 201]. Contrary to their approach, we exploit
the circular dependencies in our speci ¢ set-up for the psepof

coherently correcting one image sequence w.r.t. another.

The total energy9) is minimized over all ows by a coarse-to-
ne multiresolution strategy using a non-linear multigmdethod.

Computation can be sped up by using the forward and backward

optical ows used for feature tracking in Segas initialization.

7.2 Optical Flow-based Mesh Deformation

We correct the geometry o\ by projecting the estimated optical
ow w1 back onto the mesh and retrieving a corrective 3D motion
vector for each vertex. Since our monocular setting has laerin
ent depth ambiguity, it is impossible to recover the corraotion
in the Z-direction (i.e., in depth). However, we experiahtkat
correcting each vertex in X- and Y-directions parallel te tmage
plane produces realistic and expressive results. Dendti@D
motion eld parallel to the image plane by ', we propagate each
vertex to its new position in theorrected face mesh ;. To en-
sure a smooth deformation, we minimize the Laplacian-eaizeéd
energy:

2 2X

XL x| %+ XL (Xhi+wh 2, (14

i2ct

whereL is the Laplacian matrix with cotangent weights Mf}
[Sorkine 2005 X ¢ andX | matrices collecting the positions of all
verticesX finMlandM{,1 i n,and aweight. The seC'

is a uniformly subsampled selection of currently visibletioes.

We perform the steps of Set.1and Sec7.2 once per frame, but
they could be applied iteratively. Note that they take ughsly

as [Valgaerts et al. 2032 In our monocular case, since the estima-
tion is much more under-constrained and error-prone, W ase
this result as an initialization. In a second step, we jginge the
initial albedo and ne scale geometry to estimate a singlgren-
ment map that globally ts to all time steps. We then use thasis
light environment and estimate the dynamic geometry dat@ch
time step Valgaerts et al. 2012 The result of dynamic shape re-
nement is the nal re ned face mestM . To remove temporal
icker in the visualization of the results, we update thefaae nor-
mals by averaging them over a temporal window of size 5 angtada
the geometry to the updated norma\ehab et al. 2005

9 Results

We evaluate the performance of our approach on four video se-
quences of different actors with lengths ranging from 568j20
1000 frames (40s). Three videos are recorded with a Canon EOS
550D camera at 25 fps in HD quality (1922088 pixels) and one
video with a GoPro outdoor camera at 30 fps in HD quality.

Performance capture results. The rst two results are part of

a calibrated binocular stereo sequence recorded undentiotted
indoor lighting by Valgaerts et al2D13. We only use one camera
output for our method and need one extra frame from the second
camera for the blend shape model creation. Results for stesa-
quence, featuring very expressive gestures and normatispase
shown in Fig.7. All meshes consist of the same set of vertices and
are produced by tracking and re ning the personalized birape
model of Fig.3 over 560 frames (22s). The green screen is part of
the recording and is not used. The gure shows that we aretable
faithfully capture very challenging facial expressiongrefor ges-
tures that are not spanned by the blend shape model, e.giglthe
column. The third row illustrates that our method effedgiwvecon-
structs a space-time coherent 3D face geometry with dynaraic
scale detail. Although the actor's head hardly moves intdepar
method estimates a small global translation componenticam-

era direction, which we discard for the 3D visualizationhe tg-
ures and supplementary video. Fif) shows a result for a second
sequence of 620 frames (25s), featuring fast and expressitien.

outside the 3D shape space spanned by the blend shape mddel anour results capture a high level of shape, motion, and seidatail.

yield an extremely accurate alignment of the mesh with thewi
The alignment before and after correction is shown in 5ig.

8 Dynamic Shape Re nement

In a nal step, we capture and add ne-scale surface detath®o
tracked mesh, such as emerging or disappearing wrinklefoisl
Our approach is based on thleape-from-shadinffamework under
general unknown illumination that was proposed\Valfaerts et al.
2017 for the binocular reconstruction case. Based on an estinfat
geometry and albedo, the method rst estimates the unknowin i
dent lighting at the current time step and then uses the kiighva
ing to deform the geometry such that the rendered shadimtiegrs
and the image shading gradients agree. Essentially, thisothén-
verts the rendering equation to reconstruct the scene hvideasier
in a setting with multiple cameras where the fact that a serfa
seen from several viewpoints constrains the solution spatter.

To adjust this approach to the monocular case, we estimaterth
known illumination from a larger temporal baseline to comgste
for the lack of additional cameras. In our setting, we assiiragthe
illumination conditions do not change over time but that augd
truth light probe is not available. Therefore, we rst esita light-
ing, albedo, and re ned surface geometry of the tracked faesh
for the rst 10 frames of every video using the exact same aagh

Fig. 10 shows an additional result for a third sequence, newly
recorded under similar conditions as the rst two. The segee
depicts a recitation of a theatrical play and is extremesllehging
due to is length of 1000 frames (40s), its diversity in faeigbres-
sions, and its fast and shaky head motion. The overlays irgthe
ure show that we are able to estimate the X- and Y-componénts o
the head pose very accurately and retrieve very subtlel fqiaes-
sions, demonstrating the applicability of our method fandeding
real world applications. We also captured an actor's fap@for-
mance outdoors with a lightweight GoPro camera. Despitéotlie
quality of the video and the uncontrolled setting, we obgaiourate
tracking results and realistic face detail, see Big/Ve recommend
watching all results in our supplementary video. The vidso a
shows a limiting head pose with extreme pitch for the GoPro se
guence, and demonstrates how our algorithm fully recovers.

For all results, i wasO0:1 for the mouth feature€):5 for the eye
features and:2 for the remaining features. For the Canon results,

1=500, 2= 4=600,and 3= 5=300, and for the GoPro
result = 4, =700,and 3= 5 =400. Further, 1 = 2=
50 and =0:5. For improved accuracy around the eye lids, the

eyes of the blend shape model were lled before tracking,rtmit
visualized in the nal results. Eye lling is only done onca the
generic model and does not change any of our method steps.



Figure 7: Results for expressive facial motioMop to bottom:

Figure 8: Outdoor result captured with a hand-held GoPro cam-
era.

Figure 9: Comparison with the binocular method o¥dlgaerts
et al. 2012. Left to right: Binocular reconstruction for the frame
in Fig. 2. Our reconstruction. Euclidean distance (see error scale)

Virtual face texture.  Our capturing process introduces very little
perceivable drift (see checkerboard texture in the vidsmit is well
suited for video augmentation tasks such as adding virexalites
or tattoos’, see Figsl and7. To this end, we render the texture as
a diffuse albedo map on the moving face and light it with the es
mated incident illumination. The texture is rendered in pasate
channel and overlaid with the input video using Adobe Presie
Our detailed reconstruction and lighting of the deformatitetail

is important to make the shading of the texture corresportig¢o
shading in the video, giving the impression of virtual maige-

The input frame, the corresponding blended overlay of ticene Run time.  For the Canon sequences, the tracking and tracking
structed mesh, a 3D view of the mesh, and an example of agplyin correction run at a respective speed of 10s and 4m per frahiks w
virtual face texture using the estimated geometry andiligit the shading-based re nement has a run time of around 5m per

Comparison with binocular reconstruction. In Fig. 9 we
compare our results with a binocular facial performancetwzep
method Malgaerts et al. 2012 In the middle and right panes we
show our reconstructed face mesh for the target frame oPrigd
its deviation w.r.t. the corresponding binocular resulttbe left.
The colored error plots in the gure and in the supplementédgo
depict the Euclidean distance between the nearest visdrteces
on the binocular and monocular meshes, and are producedyby al
ing the starting meshes of the sequence using rigid ICP ankitig
them while discarding the small translation in the deptleation.
As can be derived from the color scale, the meshes are vesg alo
geometry and pose. Over all 560 frames, the average distence

tween the meshes was 1.71mm, with an average maximum déstanc

of 7.45mm. Differences mainly appear near the lips, cheekls a
forehead, where the dense expression correction of Seannot
re ne in depth. The supplementary document further reptiis
comparison for the rst sequence of Fig0 (2.91mm average dis-
tance and 9.82mm average maximum distance) and illustitzes
our monocular tracking is, in some cases, less susceptildedu-
sions and drift, and is overall more robust to extreme heatbms

frame. All three steps run fully automatically and can betsth
in parallel with a small frame delay. The only tasks requjruser
intervention are the creation of the personalized blengeinaodel
(Sec.4, 20m), the one-time 2D-to-3D model coupling (Sécl,
10m) and the texturing of the blend shape model (3e¢.10m).

Discussion and limitations. Our face tracking and re nement
is automatic, but creating the personalized blend shapeshzoul
improving the 2D features in the rst frame for texturingyeain a
small amount of user interaction. This is because each séttesks
corresponds to a hard computer vision sub-problem. Cuyrentr
2D tracking and key frame selection start from a rest posethisy
could start from any frame with reliably detected featurAsiest
pose texture is also used for the optical ow-based coroectal-
though a non-rest texture could be used as well (albeit harde

Our results are very detailed and expressive, but not cdeiple
free from artifacts. As the dynamic texture in the videosthates,
small tracking inaccuracies can still be observed, e.gyrad the
teeth and lips. Small tangential oating of the vertices nago
be present, as observed in the virtual texture overlays laadly-

"Design taken fronwww.deviantart.com/ under a CC license



Figure 10: Performance capture results for very expressive and faslfgestures and challenging head motion for up to 1000 &sm

namic texture in the UV domain. For the GoPro result, art§ac
around the nose are visible due to the challenging low-tyuialput
(noise, rolling shutter, colour saturation). Extremelgtfanotion
can be problematic for feature tracking with optical ow aadr
method currently does not handle light changes as it visldie
optical ow assumptions. Under strong side illuminationhieh
causes cast shadows, the shading-based re nement mayuisibr
general unknown lighting (indoor ceiling, bright outdoaffuke),
we are able to produce good results for scenarios deemdémtpal
ing in previous works. Partial occlusions (hand, glasses) lare
dif cult to handle with our dense optical ow optimization.

The inverse problem of estimating depth from a single imadari
more challenging than in a multi-view setting, and depegdin
the camera parameters, even notable depth changes of thenaga
lead to hardly perceivable differences in the projectedyenaon-
sequently, even though our 3D geometry aligns well with tBe 2
video, there may be temporal noise in the estimated deptlthwh
we lter out for the 3D visualizations. This limitation mayesn

from the use of a 2D PDM model and a 3D blend shape model that

have a different dimensionality and expression range. Wevwirk
towards a better coupling of these models for 3D pose estmat

10 Conclusion

We presented a method for monocular reconstruction of gpati
temporally coherent 3D facial performances. Our systemesas
for scenes captured under uncontrolled and unknown ligh&ind

is able to reconstruct very long sequences, scenes shoeijgx-
pressive facial gestures, and scenes showing strong hetdnmo
Compared to previously proposed monocular approaches;anr
structs facial meshes of very high detail and runs fully mgtcally
aside from a small manual initialization. It also fares vessil in
comparison to a recent state-of-the-art binocular fageiggmance
capture method. Our approach combines novel 2D and 3D trgcki
and reconstruction methods, and estimates blend shapegaras
that can be directly used by animators. We demonstrateeiiferp
mance quantitatively and qualitatively on several faca dats, and
also showcased its application to editing the appearanfazes.
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