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Figure 1: Three results of our facial performance capture methodviar indoor sequences with fast and expressive motion.

Abstract

Recent progress in passive facial performance captureHuaens
impressively detailed results on highly articulated metidow-
ever, most methods rely on complex multi-camera set-ups; co
trolled lighting or ducial markers. This prevents them fincbeing
used in general environments, outdoor scenes, duringdiveraon

a Im set, or by freelance animators and everyday users wha wa
to capture their digital selves. In this paper, we therefoapose
a lightweight passive facial performance capture apprdahahis
able to reconstruct high-quality dynamic facial geometonf only

a single pair of stereo cameras. Our method succeeds uncam-un
trolled and time-varying lighting, and also in outdoor seenOur
approach builds upon and extends recent image-based soene
computation, lighting estimation and shading-based rmagt al-
gorithms. It integrates them into a pipeline that is speaily tai-
lored towards facial performance reconstruction from leimgjing
binocular footage under uncontrolled lighting. In an expental
evaluation, the strong capabilities of our method beconmiak
We achieve detailed and spatio-temporally coherent iefotex-
pressive facial motion in both indoor and outdoor scenesenev
from low quality input images recorded with a hand-held coner
stereo camera. We believe that our approach is the rst ttucap
facial performances of such high quality from a single sieig
and we demonstrate that it brings facial performance capiut of
the studio, into the wild, and within the reach of everybody.

CR Categories: 1.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism; 1.4.1 [IMAGE PROCESS-
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PROCESSING]: Scene Analysis;
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1 Introduction

Two essential features of a realistic virtual actor are avicmingly

rendered face and a convincingly animated facial perfooaarf

virtual facial detail is not believably modeled and lit, aifidacial

motion and expression does not exhibit authentic high apatid
temporal detail, it will not be perceived as realistic. Toahthese
high quality demands, the research community has develapad
riety of facial performance capture techniques that aimetmn-
struct very detailed dynamic facial geometry, motion andsjialy
appearance from sensor measurements of real subjects.

On the one hand, there are active optical systems that uderaar
active illumination or invisible paint to capture facialrfmance
[Bickel et al. 2007; Zhang et al. 2004; Furukawa and Ponc®R00
However, such reconstructions often lack detail and appear
capture is dif cult or impossible. On the other hand, passiv
approaches use multiple cameras and vision-based regcinsir
techniques to capture facial performance, e.g. [Bradley. €010].
Reconstructions are of high quality, but pore-level detsibf-
ten missing. Moreover, accumulating drift makes it hard ap-c
ture very expressive motion. Active lighting methods caimdpr
out pore-level shape detail, but the price to be paid is a ésxnp
controlled light and camera set-up [Vogiatzis and Herear2011;
Wilson et al. 2010]. In other words, to capture facial perfance
with high-quality spatial and temporal detail, currentistaf-the-
art techniques require a large number of cameras in a ctaurol
indoor environment, possibly actively controlled illuration, and
in many cases some form of active interference with the scene
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These strong requirements are the reason why facial pesfaren
capture has so far mostly been a privilege of high-budgehani
tion productions. In addition, facial performance captuae hardly
been used where it would actually be most effective: in eabjt
uncontrolled settings, such as indoor and outdoor movievseére
the actors perform in their natural environment. Also, i light of

an ever growing amount of existing stereo movie footage, thote

a purely geometric 3D scene ow method. Reconstruction ghhi
frequency detail is dif cult with their approach and the plyr ge-
ometric 3D scene ow method more frequently suffers fronftdri
Wand et al. [2009] simultaneously build up and track a temeptd

a face from point cloud data, but reconstructions lack soigk-h
frequency shape detail. Popa et al. [2010] propose a sifnéare-
work that can capture more high-frequency detail by means of

that makes use of a small number of cameras could serve as a corchange prior. Weise et al. [2011] use point clouds from a &tine

nerstone for new movie-production applications, such eisifaer-
formance capture from the principal stereo camera feed nineh
broader scope, simple stereo camera systems will soon lie ava
able on many hand-held consumer devices. It is clear thaethe
devices will not be equipped with complex multi-camera eys,

nor will they be used within the controlled con nes of a studi
All this shows that there is a clear use case for a performaape
ture method that succeeds with a minimum number of camerhs an
under general uncontrolled lighting, thereby opening up path
towards facial performance capture “in the wild”.

In this paper, we take a step towards this goal by proposing a Furukawa and Ponce 2009; Bickel et al. 2007].

new image-based facial performance capture approach #est u
an extremely simple acquisition set-u single stereo pair of
video cameras It captures performance under uncontrolled and
changing lighting conditions, either indoors or outdoorSrom
the stereo data, our approach reconstructs facial perfaendata
whose quality comes close to much more complex studio-based
proaches — they exhibit both high spatial detail, i.e. @eaand
folds in the face, as well as high temporal detall, i.e. aa®ifacial
motion. The main contributions of our work are the effectheen-
bination and adaptation of a variety of image-based recoctstn
and tracking approaches: 1) a robust variational steremetaic-
tion and scene ow method for coarse reconstruction andeeorr
spondence nding speci cally tailored to face capture, 2o@ust
template tracking approach with an active scene ow-based m
tion re nement mechanism and 3) an adapted spatio-tempooat
abilistic framework that estimates incident illuminatiand face
albedo and re nes coarse face geometry using shading irftoom

Our algorithm succeeds under uncontrolled and time-vgrifin-
mination, allows both the performer and the stereo pair oferas
to move independently, and yields detailed 3D facial penfmnce
geometry that is fully spatio-temporally coherent, everewlper-
formers make very expressive faces. We will show highly iteda
3D facial performance results, optionally with texture;, fiwo dif-
ferent camera systems: high-quality results from a pait.&f &am-
eras capturing indoors, and results of previously unsetil dap-
tured outdoors with a low quality consumer stereo camera.

It is important to understand that we do not claim to achieve
higher reconstruction quality than state-of-the-art ircdimera ap-
proaches under controlled studio conditionsfe want to solve a
different problem for which these methods may not be switafd
make detailed facial performance capture with cheap dsvicen-
controlled environments feasible, even for inexperieneests. We
show that a carefully designed reconstruction method eszhis,
and that purely passive capture of dynamic face geometm &o
single stereo rigs possible at an unprecedented level of detail that
comes close to state-of-the-art studio-based results.

2 Related Work

For many years, researchers in graphics and vision have-inve
tigated facial performance capture approaches that diffehe
employed sensors and reconstruction techniques. Somedseth
solely rely on dynamic 3D shape scanner data, i.e. timeivagry
point clouds, and no additional input images. Anuar and Gusk
[2004] track an initial template mesh from point cloud dasing

and a template with an attached blend shape model to traik fac
performances. However, their goal is animation transfet,au-
thentic reconstruction of ne-scale shape detail.

Image-based approaches help to overcome the resolutida &nd
the limits in tracking accuracy that purely geometric melhestill
have. Following the marker-based motion capture paradigtelw
accepted in industry, researchers attempted to recohstacial
performances by tracking attached or painted markers orce fa
with several cameras, or by tracking the distortion of arisiav
ble paint applied to the skin [Williams 1990; Guenter et 898,
Active dusial
greatly enhance tracking accuracy and enable robust reaotisn

of even extreme facial expressions. However, the resolutfdhe
captured geometry is limited, the mark-up phase can be cumbe
some, and due to the active intrusion into the scene, theltsimu
neous reconstruction of geometry and appearance is ndblieas
Huang et al. [2011] try to overcome some of these limitations

a data-driven way by transferring geometric detail from arse
set of 3D scans to dynamic face geometry recorded with a marke
based motion capture system.

Instead of markers, active illumination, e.g. patterns tedi
from projectors, can be used to facilitate image-based e
ometry reconstruction from multiple cameras [Zhang et @042
Wang et al. 2004; Weise et al. 2007]. For these approaches, te
ture acquisition requires interleaving of pattern anduexframes,
and temporal reconstruction artifacts may occur sinceraeseb-
sequent images are required for a single reconstructicso, &ktab-
lishing geometric correspondence between subsequenistego-
tions is still a challenge. Template-based methods t a deéble
shape model to images of a face [DeCarlo and Metaxas 1996;
Pighin et al. 1999; Blanz et al. 2003]. While these methodsdyi
spatio-temporally coherent reconstructions, the capttmee ge-
ometry is often coarse and lacks ne-scale detail.

High-quality facial performances were reconstructed vithely
passive stereo-based approaches in combination with madk t
ing [Bradley et al. 2010]. Borshukov et al. [2003] developbd
Universal Capturesystem for the moviéfhe Matrix which de-
forms a laser-scanned 3D facial model by using optical oids
computed from a multi-camera system. These approachefiyjusua
require dense multi-camera set-ups and a controlled stundioon-
ment. Also, reconstructing pore-level detail is dif culioin pure
stereo, and temporal drift in the reconstructions oftengmes cap-
turing expressive facial motions. Beeler et al. [2011] wyover-
come the drift problem in dense multi-view face reconstancby
stabilizing mesh tracking with a set of key facial poses. Thm-
mercial system by DepthAnalysisilso reportedly uses stereo re-
construction from a dense multi-camera system under dédro
studio lighting. Stereo reconstruction is also used in thed
Contour system, which employs an even denser array of tens of
cameras and invisible make-up to aid reconstruétion

Establishing 3D correspondences between subsequent-inazgel
face reconstructions is still a challenge and drift maylgasicur.
Most approaches resort to a form of template mesh trackiaga
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Figure 2: Overview of our facial performance capture method withriassking and re nement pipelines.

on features or non-rigid registration [Anuar and Guskov4£200
Bradley et al. 2010; Beeler etal. 2011]. Recently, imagseeda
scene ow methods have taken great strides forward. In @arti
lar, those approaches that treat the coupled problems refostend
motion estimation jointly in a variational framework tutheut to
be successful [Basha et al. 2010; Valgaerts et al. 2010hisgrcon-
text, there have even been efforts to consider the estimafitem-
porally coherent scene ow correspondences, e.g. by caingtg
the temporal evolution using basis functions [Birkbecklep@l11].
However, most of the image-based scene ow methods focupon a
plication scenarios that involve piecewise rigid body motsuch
as driver assistance systems [Wedel et al. 2008]. Recatistnof
human faces that require the estimation of heavily nordrizpdy
motion, in contrast, can hardly be found in the literaturer&bver,

if facial reconstructions are presented, they are typidatiited to
details of medium scale [Valgaerts et al. 2010].

Passive acquisition of true ne scale surface detail witrage-
based methods is still dif cult. Several approaches hawemdy
shown that shading and re ectance effects under contrdiggd-
ing can boost reconstruction resolution dramatically. igtais and
Hernandez [2011] use controlled tri-colored studio illnation
and a combination of multi-view stereo and photometricesidp
capture facial geometry. Combining active structuredtligtan-
ning and marker-based facial performance capture with gptem
light stage illumination set-up also enables high-quatipture of
geometry and appearance in a studio [Alexander et al. 200t
stage illumination requires recording of multi-view imagender
several light conditions to obtain a single reconstructi®a cope
with the resulting spatio-temporal alignment problem ig thata,
Wilson et al. [2010] developed an approach to establishespon-
dences between images taken under starkly varying sphgriza
dient illuminations. This enables a combination of stened pho-
tometric normal reconstruction in a spatio-temporal way.

On-set facial performance capture would require an algaorito
handle general uncontrolled, possibly time-varying ilination.
Beeler et al. [2010] have shown that shading cues under uncon
trolled illumination can be used to synthesize arti cialrpdevel
detail in multi-view stereo reconstructions of a statiofaBasri et
al. [2007] introduced a photometric stereo method for galnen-
known illumination. Jin et al. [2008] combine multi-vieweseo
and shape-from-shading under an unknown point light oricstat
scenes. Using results obtained by a full-body performaaptuce
approach from multi-view video, Wu et al. [2011a] estimateet-
varying low-frequency illumination using spherical hams. The
lighting estimates are used to perform shading-based reams of
the coarse performance capture geometry. We follow a simpa
proach to process video from only two cameras.

Only a few methods focus on additionally estimating the aef
re ectance. Carceroni et al. [2002] capture coarse surésled ge-

ometry of a moving face and re ectance estimates from muéw
video footage. Georghiades [2003] reconstructs a stateifzodel
and a coarse BRDF from multiple images under point lightiltu
nation with varying but unknown positions.

Our method takes inspiration from recent progress in thev@bo
mentioned individual domains in order to overcome seveénail |
tations of previous approaches. To the best of our knowledge
approach is the rst purely passive technique that enabigishh
detailed and spatio-temporally coherent facial perforceacapture
using only two cameras, while being applicable in uncoterbbr
even changing lighting scenarios at the same time.

3 Our Facial Performance Capture Method

As input, our approach expects a stereo video sequence oka fa
captured in an uncontrolled environment. Our method is casag
of two main computational pipelines (Fig. 2):

I Ina rst pass, we track a coarse-detail face template thheu
out a binocular stereo sequence. Tiesplate tracking step
(Sec. 5) produces a sequence of coarse face meshes that are
in full correspondence and exhibit minimal drift. To enable
this, our approach makes use of a new highly accurate image-
based scene ow method and relies on a Laplacian deforma-
tion model to regularize the moving geometry.

Il In a second pass, we add ne time-varying detail, e.g. wrin
kles and folds, to the tracked meshes. T8hape re nement
step(Sec. 6) exploits shading information to produce accurate
surface detail under uncontrolled and changing lightingg W
build upon a framework for incident lighting and albedo -esti
mation, and contribute with a new albedo clustering appgroac
and an improved, faster shape re nement optimization.

Thus, we capture facial performance in a coarse-to- ne m&ann
While the rst pipeline is responsible for the recovery ofacse-
scale head motion and facial deformation, the second pipeé-
nes the results to include ne-scale details at skin level.

In the next sections we will discuss both pipelines in detdénce-
forth, we will indicate byf{§ the left frame of a binocular stereo
sequence at timg and byf ] the corresponding right frame. For
any timet, we can assume the§ andf{™ (f1 andf;*™) are two
consecutive frames in the left (right) image sequence. \ithdu
denote byto the time at which we start capturing, i.€f°;f1°)

is the rst stereo pair in our tracking and re nement algbrit. A
reconstructed triangular mesh at titnwill be denoted byM * and

is characterized by its set of vertices and their connecting edges.
The Euclidean coordinates of a vertex at timeill be denoted by
the vectorX '. Our two processing pipelines reconstruct a coarse
meshM ¢ and a re ned mesiM | at each time step, both of which
are based on the same vertex set and connectivity.



4 Initialization

We assume that the stereo camera pair is calibrated offNiAg-
LAB toolbox). Our method starts from a smooth 3D reconstainct
of the face that will serve astamplate meskor the tracking step.
During mesh tracking, this template will be moved and defsm
according to the detected motion in the stereo sequence.

Template Reconstruction It is assumed that the face at tirhe

is in rest. To obtain an initial 3D reconstruction from thatstereo
pair (f (‘)0 i f {0), we apply a variant of the variational stereo method
of [Valgaerts et al. 2011] for calibrated images. This mdthe-
covers the dense 2D displacement eld betwégh andf;° by
minimizing an energy of the form:

4

E

= Eb+ Eg+ Es dx, oy

whereEp imposes constancy assumptions on certain image fea-
tures,E¢ includes knowledge about the known stereo geometry
andE s assumes the displacement eld to be piecewise smooth. The
exact form of these terms is given by the equations (5), (@)(@p
respectively, and for the minimization of the total energy nefer
to the next section on the related problem of scene ow edtona

Once the 2D displacement eld has been recovered, the corre-
sponding pixels can be triangulated to obtain a 3D pointctlou
[Hartley and Zisserman 2000]. In practice, we perform a 3D re
construction for both pairéf ;°; f1°) and(f ;°;f 5°). This ensures

a suf cient amount of 3D points in regions that are badly bisiin

just one image, such as the sides of the nose.

Postprocessing  In a post processing step, the background is re-
moved manually and the point cloud is converted to a trizargul
mesh [Kazhdan et al. 2006]. We set the number of verticeshtgug
equal to that of the pixels in the face region such that each ve
tex corresponds to a pixel in the input views. Finally, thesmés
smoothed [Sorkine 2005] and each vertex is assigned a xéat co
using projective texturing and blending from both inputwse If
desired, holes can be cut in the the mesh for the mouth or & ey

The above steps are illustrated in Fig. 3, where we show &ntrsg
framesf ;° andf ;° of a stereo sequence, together with the obtained
3D reconstruction and the nal template megH©.

5 Template Tracking

The tracking step is responsible for propagating the terapteesh
throughout the stereo sequence. To accurately recoverdtiemof

the face, we base our tracking on a state-of-the-art methrsténe
ow computation, which we extend with a new structure-aware reg
ularization strategy. This method establishes a dense Sadie-
ment eld, which is used to update the position of all the ica$

in the tracked mesh from one time instance to the next. A simoot
deformation of the face is obtained by regularizing the getynof
the surface via théaplacian operator Scene ow estimation is
then used a second time @ ne the motion and to minimize any
reprojection error that might have been induced by the tnack

5.1 Scene Flow Computation

To compute the scene ow between the time instandes
and t+1, we build upon a recent variational 3D scene ow
method [Valgaerts et al. 2010]. We propose an extendedorersi
of this method that assumes the stereo system to be catibrate
but does not require the recorded images to be preprocessed,

starting frame$,° and f;°.
and template migghi .

S|

Figure 3: Initialization. Top row:
Bottom row: stereo reconstruction
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Figure 4: The four-frame set-up for the scene ow computation.

recti ed. In addition, we propose a novel anisotropic stuane-
aware regularization technique that is inspired by receqical
ow methods. This adaptive regularization strategy pregdiense
results of high quality and is speci cally well suited forptaring
facial features, such as mouth, nose, eyebrows and laugh lin

Our scene ow method estimates a 3D reconstruction and 3D dis
placement eld by establishing correspondences in the eday
main. It is based on the four frame case depicted in Fig. 4. As
one can see, all possible constraints between two congeciéireo
pairs(f§; 1) and(f{** ;£1*) can be expressed in terms of three
unknown optical ow elds: themotion ow w1, the stereo ow

w, and thedifference oww ;. We propose to compute these ows

wi =(ui;vi)”,i =1;2; 3, by minimizing an energy of the form:
Z o e
E = Ep + Eg + iEs dx . (2
12z 2z— Rz
data geometry smoothness

The fourdata termsE;, encode constancy assumptions between all
frames, the thresmoothness ternisg assume the desired ows to
be piecewise smooth and tigeometry term& 5 model the geo-
metric relations between the two stereo pairs. All deviaifrom
model assumptions are weighted by positive weightand ; and

are integrated over the rectangular image domaaf the reference
framef §(x), x = (x;y)” . We now discuss these terms in detail.

Data Terms For the data constraints that model the relations be-
tween the four input images, we rst assume that the brigigrod
corresponding image points is the same in all frames. Uginag t



Figure 5: Scene ow estimation and incident illumination estimatidirst ve images from left to right: two consecutive lefafnesf § and
f&™, the mesM ! color coded by the scene ow magnitude (green to red for stodirge motion), an overlay of the estimated scene ow
vectorsW ' onM¢, a detail of the same overlay. Last gure: an estimated lighptenvironment map for the same sequence.

parameterization of [Valgaerts et al. 2010] with respec¢h&coor-
dinates of the reference frarii§, we obtain the four data terms

Eo = jfo™ (x+w1) fo(x)i® , 3
EZ= il (x+wi+twotws) fi(x+wa)j? , 4)
Es = jfilx+wa) fo(x)j® , )
Eg= it (x+witwa+ws) o7 (x+wy)j? (6)

While the rst two terms result from motion constraints betm
two consecutive time instances, the last two terms arise ftereo
constraints at the same time step. To handle outliers incalt ¢
straints independently, every data term is subject to aratpaub-
Buadratic penalization using the the regularizgadnorm ( s?) =

s2 + 2 as a cost function, with=0:001 To cope with varying
illumination and to make use of color information, we adutiglly
include the gradient constancy assumption in our nal maatel
extend it to RGB color images [Valgaerts et al. 2010].

Geometry Terms  The geometric relations between the left and
the right image of the stereo paisy; f1) and(fi™ ;fi™) are
given by the associatezpipolar constraints These constraints re-
late corresponding points in a stereo pair via the fundaahena-

trix F — a projective entity that describes the geometry of the un-
derlying stereo system [Hartley and Zisserman 2000]. T fiyzoégr
constraints between the two stereo pairs can be modeled as

Eé

(x+W2)nF (X0

()
8)

ES (X+WitWotwa)i F (x+wi)y °
where the subscrifit denotes the use of homogeneous coordinates,
i.e. (x)h=(x;y; 1)” . In contrast to [Valgaerts et al. 2010], we as-
sume that our stereo system is calibrated with a known fuedéah
matrix F. Thus, in our case, only the ows; are unknown. Both
termsE & andE & are soft constraints that penalize deviations of a
point from its epipolar line. Together with a sub-quadragénal-
izer function such as the regularized norm (see data terms), such
soft constraints increase the robustness of the scene bmaton

with respect to small inaccuracies in the camera calibmatio

Novel Structure-Aware Smoothness Terms Since the data

such as nose, eyebrows and laugh lines more realisticallyever,
we need a smoothness constraint that adapts better to ¢oticliral
structure of the underlying reference image, while prasgrsharp
discontinuities in the reconstruction and the scene owhatsame
time. To this end we make use of recent advances in the elgef o
tical ow estimation [Sun et al. 2008; Zimmer et al. 2011] gom-
pose the following anisotropic smoothness term
ES = s jrwiri® + s jrwirgf? )
It splits the regularization locally into the directialongandacross
the image structures by projecting the Jacobiam; ontor; and
r 2, respectively. Hereby, the directions andr , are computed as
eigenvectors of the structure tensor [Harris and Steph@88]1
J =K r firfi (10)
where denotes convolution with a Gaussiin . Since deviations
from smoothness are penalized separately for each direatid
typically a diﬁcontinuity-preserving cost function is dssuch as
s(s?)=2 2" 1+ s2= 2, with s> 0, discontinuities in the so-
lution are preservethdependentlyor both directions. This in turn
allows us to handle structures of different intrinsic dirsienal-
ity such as corners, edges and homogeneous regions apebpri
thereby achieving the desiretiucture-awareanisotropic smooth-
ing behavior. Extensions of these anisotropic smoothiegsdto
color images are straightforward [Zimmer et al. 2011].

To introduce an additional feedback in the adaptivity of smooth-
ness term, we can apply the following modi cation: Instedd o
computing the directions; andr 2 only once —i.e. using the struc-
ture tensor from the reference image — we can recompute tliese
rections during the scene ow estimation based on the siracf

the evolving ows themselves. This leads to a highly adaptow-
awaretechnique, where every ow is steered by a separate streictur
tensor computed by replaciig by u; andv; in Eq. (10).

In Fig. 6, we present a comparison of the TV regularizer used i
[Valgaerts et al. 2010] (top row) with our structure-awaneosth-
ness term (bottom row). It depicts two mesh geometries odtbdy
tracking the same coarse template over approximately E0efs.
From the zoom-in, it is clear that anisotropic regularizegne
ow produces more realistic, tracked features, while TV uleg-
ized scene ow induces drift artifacts, such as double fojdand

terms and geometry terms alone may not guarantee a unique so<degenerate triangles, in particular in the mouth and eyebegion.

lution at every location, the problem needs to be reguldrizg
imposing an additionasmoothness constraintin particular, this
allows us to obtain dense scene structure and scene ow.
[Valgaerts et al. 2010], the isotropic total variation (T&8elL 1

norm above) regularizer is used. To recover typical facatdres

In smoother scene structure and scene ow, while at the sanme

The reason for the better tracking results is the selectiveosh-
ing of our structure-aware regularization, which allowsoserall
tim
taking into account meaningful facial features. For a fertvisual
comparison of scene ow results, see the supplementaryriabte



Figure 6: Novel structure-aware smoothness terms. Top row: re-
sults obtained using [Valgaerts et al. 2010]. Bottom rowsuks
obtained using our method. Left: left target frame. Middbkumn:
tracked coarse mesh geometry. Right column: trianglelaicer
zoom-in into the highlighted region. Note the better tragkof ex-
pressive features such as mouth and eyebrows using our dhetho

Minimization ~ The nal energy given in Eq. (2) has to be mini-
mized with respect to the three unknown ows . To this end, we
follow the the minimization scheme from [Valgaerts et all@D
Large displacements are resolved by means of a coarseeto- n
multiresolution strategy, while the resulting nonlineatimiza-
tion problem at each resolution level is solved using a bittional
multigrid method. In contrast to the original optimizatischeme,
we do not need to perform an alternating minimization betwee
ows and fundamental matrix, sindeé is known from calibration.
Due to its computational complexity, scene ow is computed f
downsampled versions of the original images (half size ineou
periments). As we will see in Sec. 5.2, the lower resolutibthe
scene ow will not compromise tracking accuracy, as moti@t-v
tors will only be assigned to a subset of the vertices.

All corresponding pixels can be triangulated to obtain a 8Eon-
struction and a 3D displacement eld. Note that we have oslkydu
2D optical ow as an intermediate representation duringgbene
ow estimation. Our tracking algorithm effectively uses B &o-
tion eld, where each scene ow vector is characterized byla 3
starting positiorS' and a 3D vector valug/ '. An example of the
estimated scene ow eld is depicted in Fig. 5. Note that we ar
able to cope with large motion and even noticeable motion blu

5.2 Mesh Tracking

Once the scene oWV ! has been estimated for time instaricé
can be used to propagate the vertices of the current coadeMirde
to their new positions om+1. However, moving each vertex by
its corresponding scene ow vector is likely to induce lodiaift,
which would quickly destroy the integrity of the template she
The reason for this is that the computed scene structure atidnm
contain errors, e.g. due to noise, which cannot be completel
moved by our scene ow regularization. In addition, our seeaw
lacks temporal coherence because it is estimated indepeyfier
all time instances. To ensure that the tracked geometryinsma
smooth over time, we have to regularize the moving geometry.

Positional Constraints To preserve the smoothness of the
tracked mesh, we only assign a scene ow vector to a suBset
of vertices. These will be denoted eanstrained verticedbecause
their locations form the positional constraints in the tagamation

of the mesh geometry. We select the constrained verticésrony

on the mesh (each tenth vertex in our experiments) to ensures
suf cient distribution of positional constraints. Addithally, we
assure for each time instantéhat all vertices irC' are visible in
both the left and the right image. This avoids erroneouskingc

in regions that become occluded by head movement or expeessi
facial motion. For some outdoor sequences we experiencantsel
interference of the estimated background motion at the cfidlee
face. To avoid drift in more slanted regions for such casesrev
strictC" to vertices for which the angle between the surface normal
and the optical ray lies below a certain threshold70 ).

Positional Update A rst choice for updating the position of a
constrained verteX |, i 2 C!', is to move the vertex to the end
point of the closest scene ow vector, thus updating its posi
asX ! ! S!'+ W!. This strategy only produces good results if
both the 3D reconstructio8' and the 3D displacement el !
are estimated with equally high accuracy. However, in firacthe
structureS! is more noisy than the motioW | because the change
in view point between the cameras induces a larger opticaltian
the motion of the face. Especially for outdoor sequencetuceg
with low quality cameras, this strategy lead to bumpy owvmg
artifacts that could not be removed by Laplacian reguléiona

For a smooth tracking result, instead, we determine the ositipn

of a constrained vertex ! by simply adding the closest scene ow
vectorW ! to the current vertex position. The updated constrained
vertex position is then calculated st | X!+ W !. Possible
small errors, introduced by adding the closest scene oworec
rather than moving to the scene ow end point, can be compedsa
by the optional motion re nement step of Sec. 5.3.

In our supplementary video we compare a noisy sequence of per
time-step 3D reconstructions with our nal smooth tracknegult.

Laplacian Regularization For a natural, shape preserving defor-
mation of the face, we regularize the geometry of the targethm

M *1 using the differential coordinates of the template mieish
(similar in spirit to [Bradley et al. 2010]). The differeaticoordi-
nates ofM {° encode the shape characteristics of the template sur-
face and encapsulate information about the speci c facevisaare
tracking. If we would use the differential coordinates af turrent
meshM ¢, the original shape of the face would not be preserved and
the template structure would eventually be “forgotten”irdgvi &0

as a shape prior instead will avoid drift, while still allovgi the cap-
ture of the low frequency component of strong facial defdioms.

To deformM ! to M ** under the in uence of the constrained ver-
ticesX |,i 2 C', we minimize the energy

X
Lt B 20 Xt (xfew) fL )

i2ct

E: LX t+1

whereL is the Laplacian matrix with cotangent weights Mf.°
[Sorkine 2005]. FurtherX '*! andX !¢ contain the vertex posi-
tions of the mesheldl {1 andM (o, and is a weighting factor.

5.3 Motion Re nement

Two possible sources of error remain in our tracking pigelifirst
of all, the Laplacian regularization maintains mesh irtggbut
may prevent the vertices from moving to their true targettimss.
Secondly, we can expect a gradual accumulation of moticorserr



Figure 7: Motion re nement. From left to right: input image, cor-
responding mesh obtained without motion re nement, cqoes-
ing mesh obtained with motion re nement. With motion re e
the lips protrude as in the input image.

over multiple frames. To compensate for such errors, wedice
a motion re nement step. The idea is to generate a synthatgée
pair (f§;f1) by reprojecting the tracked mesh!*! onto the left
and right image and to correct its position by minimizing the
viation betweer(f {; f1) and the ground trutif ** ;£ 1**). This
effectively minimizes the reprojection error. We do this diym-
puting the scene ow betwee(f §;f1) and(f;** ;f1*) and by
updating the position df1{*! as explained in Sec. 5.2.

In Fig. 7, we illustrate the effect of motion re nement on @eence

of 30 frames. We see that the geometry obtained with motien re
nement (right) is closer to what one would expect from the-co
responding input image (left). This visual impression ia cmed
quantitatively by a higher normalized cross correlatio©@ be-
tween the reprojected image and the input image. For a datwgi
con rmation in the form of a graph, see the supplementaryemat
rial. For less expressive motion, such as speech, motiameraent
can be considered optional as we found no large improvenients
the estimated geometry. Motion re nement assumes thatttiare

of the face mesh does not change much over time and is thus les
effective in case of changing illumination and cast shadows

6 Shape Re nement

In this part, we explain how we employ shading cues to infer th
high-frequency geometric detail and add it to the coarsekéa
template. Our shading-based re nement algorithm consista/o
steps: First, the lighting and albedo for each frame areneséd,
after which both are utilized to optimize the geometry basethe
shading information in the images. Our approach is insgigethe
method of [Wu et al. 2011a], but it uses an albedo clustetiagis
better adapted to human faces as well as an improved re nemen
step which yields better results and faster convergence.

6.1 Albedo Clustering

In [Wu et al. 2011a], the surface albedo is assumed to be-piesz
uniform with larger coherent regions of similar re ectanc€his
could be ef ciently segmented using a graph-based segrienta
method [Felzenszwalb and Huttenlocher 2004]. However, rwhe
recording human faces from nearby camera positions, thisgs-
tion is less appropriate. While it is still fair to assumetttizere
are a few albedo groups of vertices, their locations may actga-
tially coherent, e.g. due to skin pigmentation, beard, et etc.

In contrast to [Wu et al. 2011a], we thus use a K-means ciuaster
method to obtaitk albedo groups, where vertices of the same group
share the same albedo value. Particularly, given a settédliper-
vertex color albedo valuds ; az; ;an ), we aim at partitioning
then vertices of the mesh into groupsS = fS;; Sy; ;Skgto

S

Figure 8: Albedo clustering. Left to right: Original spatially co-
herent clustering from [Wu et al. 2011a], our new clusteriegult
that corresponds better to typical facial feature disttibns (e.g.
around eyebrows, eyes etc.), average per material albeliming.

minimize the within-cluster sum of squares:

X X

arg min ka;  ik®

1 aj2s;

(12

where ; is the mean of the initial albedo of the vertices belong-
ing to groupi. The initial albedo value; is calculated from the
shading equation with the geometry and lighting providedhsy
previous time frame. Once the albedo clusters are obtainedti-
lize the same strategy as [Wu et al. 2011a] to estimate theent
illumination and the albedo value for each cluster.

An example of our improved albedo clustering strategy iswhim
Fig. 8, where the different clusters are color coded. Fidids an
example of an estimated lighting environment map.

6.2 Surface Re nement

With the estimated illumination and albedos xed, the ceage-
ometry of each frame is re ned based on the shading cues in the
images. The re ned geometry is represented as the dispkteoh
each vertex along its normal direction and is estimated birapa
spatio-temporal MAP inference problem.

A Novel Shading Energy ~ Wu et al. [2011a] minimize a cost
function that consists of a shading error term (data terrd)egprior
term (similarity term). Considering the fact that the retaace of
the face will not be purely Lambertian, such re nement wdhd

to noisy shape details when there are highlights on the skin.
account for this, we add to the energy a second prior termiwhic
requires the shape of the face to be spatially smooth (smesgh
term). The cost function that we minimize then takes on thnfo

Sl |75 S oL SR ¢ 5 S

data similarity  smoothness

13)

where m and s are weighting factors. The data tefp is the
shading error that measures the similarity of the shadiadignts
in the input image$$ andf | to the predicted shading gradients:

X X X

Ep = (re(ij) s(in? . (14)

i j2N(i)c2Q(ij)

wherei andj are triangle indices\ (i) is the set of neighboring tri-
angles of trianglé, cis the camera indexXQ(i;] ) is the set of cam-
eras which see trianglésndj , andr (i;j ) ands(i;j ) are the mea-
sured image gradient and predicted shading gradient. Tiéasi

ity termEw is a prior term based on the previous frame geometry,
that requires the current re ned geomeiy to be similar to the



re ned geometry of the previous time stép! !, transplanted on
the coarse mesk {. It constrains the reconstructed high-frequency
shape detail in the face, such as ne folds and laugh lineshamge
in a spatio-temporally coherent way. It takes on the form:

X X

Ew = 2

flo(XL o X)) T, (15)

iouv

where vertice ||, X |, andX ! belong to the same mesh triangle
andnr! is the propagated surface normal based on the already re-
constructed high-frequency normal eld of the previousdim 1.

For more details on the propagation of the surface normasefer

to the base-line method of [Wu et al. 2011a]. However, in kasit

to the base-line method, we de ne the surface normals in #tae d
and similarity term on triangles, since this allows a betigprox-
imation and easier calculation than for normals de ned oreg p
vertex basis. The third, newly-added term in our energy {d8)e
smoothness terf s, which has the following form:

X X

Es= Wij X}

2N

(16)

HereX i andX ; are the positions of the verticésandj in the
meshM/, N (i) is the 1-ring neighborhood of vertéxandw; are
the common cotangent weights [Sorkine 2005].

Novel Fast Iterative Minimization The shading energy (13) is
usually non-linear and not trivial to minimize. Wu et al. [2G&]
employ a patch-based non-linear optimization stratege teerthe
geometry within separate vertex patches. However, thategy
poses a trade-off between run time and re nement qualityil&\én
small patch size may not constrain the neighboring vergoesigh
to achieve high quality large-displacement shape re netrelarge
patch size will take much longer to compute.

We reduce this trade-off by replacing the non-linear optation
of the energy by an iterative linear one. To this end, we @pthe
only non-linear part in the energy — the argument of the sitpei-
ror term (14) — with its rst-order Taylor approximation. Ehway,
all terms in the energy become squared linear with respeitteto
unknown vertex displacement. Since each vertex in the tiegul
energy is only coupled to its direct neighbors, the dispiemeats
can be easily found by solving a sparse linear system. Aorster
Taylor approximation is only valid for small displacemergs in
practice we update the vertex positions using the obtaiokdisn
scaled by an adjustable step size. We repeat this proceslueh,
that the sequence of newly-de ned energies approximatesrily-
inal one better. In our experiments, we use a step sif&70and
iterate4 times to obtain the nal re nement.

Fig. 9 shows that our novel shading energy and iterativermia-
tion strategy lead to superior results compared to [Wu éGil1a]:
Our estimated face surface suffers less from noisy artifaghile
exhibiting a higher level of ne-scale detail. The supplerteey
material shows with a graph that the proposed optimizaticat-s
egy, which solves for all vertices simultaneously, conesr¢gp a
lower energy, and thus a better optimal shape. It also pesva¥i-
dence for the computational speed-up over [Wu et al. 2011a].

6.3 Temporal Postprocessing

After the nal shape re nement, there might remain a sligirnipo-

ral icker in the visualization of the results due to smalffdrences

in the direction of the surface normals. To reduce this &ffee
update the normals in the whole sequence by averaging them ov
a temporal window of size 5 and then adapting the geometityeto t
updated normals using the method of [Nehab et al. 2005].

Figure 9: Novel Shape Re nement. Top row: results obtained using
[Wu et al. 2011a]. Bottom row: results obtained using our hoet
Both meshes are colored by normal orientation. The zoorhéws
that we obtain a smoother result with an even higher levektditl

Figure 10: The set-ups used in our experiments. From left to right:
A pair of Canon EOS 550D cameras, the GoPro 3D Hero system.

7 Results

We evaluate the performance of our approach on real workl afat
three different test subjects captured with two differattigs: 1) a
pair of Canon SLR cameras in an indoor environment and 2)ra pai
of GoPro helmet cameras, used indoor and outdoor. Five segsie
with a length of 300 to 560 frames (12s to 22s) will be presg:nte

Canon Set-up  Our rst set-up consists of two Canon EOS 550D
cameras in an indoor environment (Fig. 10). These camecasde
HD video with a resolution of 19201088 at 25 fps. They are
not hardware synchronized, and synchronization is justeceby
event-based temporal alignment. The green screen in the u
not required and is just a standard feature of the room we used

Fig. 11 shows the results for a subject captured with thisupet
All meshes consist of the same set of vertices and are prdduce
by tracking a single template throughout a sequence of dr806
frames. The number of vertices is 100000. These resulttriite
that we are able to capture very expressive facial motionlexel

of detail that rivals more complex methods using more camana
controlled lighting. Reconstructions are space-time oafiiewith

no perceivable drift, as illustrated by the checkerboasdlte With
such high-quality reconstructions, realistic lookingtterd faces
can be created via projective texturing with no perceivgblesting.



Figure 11: Results for a pair of Canon cameras. From top to bot-
tom: the left input image, the corresponding reconstruatessh,
the mesh overlaid with a checkerboard pattern to demorestyab-
metric coherence, the mesh colored using projective tegur

In Fig. 12 we provide a long captured sequence for a diffeaetdr
performing both extreme facial gestures and normal coatiers
Both types of motion are captured by our method with high qual
ity. Motion blur, due to the fast movement, makes the segegnc
especially challenging. However, as shown in Fig. 5, ouraggh

is robust to this and captures fast motion reliably. Eveeré860
frames, our method has hardly introduced any temporal drift

The parameters used for both experiments are= 5, > =5,
1 =200, , =150, 3 =200, =3, s =0:1, k=4,
m = 2500 and s = 10000. The weight was chosen as 1 and
0.9 respectively. The run time for our sequential, nonvofgéed
code is around 9m per frame on an Intel Xeon@3.1GHz.

GoPro Set-up  Our second setup uses a pair of GoPro HD Hero
cameras that are hardware synchronized and combined imgle sin
housing (Fig. 10). The pair records at 192080 and30 fps each.
The camera is designed to be used outdoors on bike helmets and

Figure 12: Results for a pair of Canon cameras. From top to bot-
tom: the left input image, the corresponding reconstructexsh.

the generally higher noise level, the rolling shutter, anteptial
automatic white balancing which can not be controlled.

Recordings are done with the hand-held GoPro HD Hero stegeo s
tem in both indoor and outdoor environments. One such sé$-up
depicted in the rsttwo images in Fig. 13, where a speakirtgris
recorded indoors. The general uncontrolled lighting make ce-
nario extremely dif cult for any facial motion capture algthm.
Moreover, compared to the Canon set-up, the face of the aotpr
makes up a small portion of the HD images. Despite these chal-
lenges, we obtain reconstructions which exhibit a fair anicf
detail, Fig. 13. We are able to capture the face, includirghtbad
motion, over extended periods of time with only little drift

A second scenario is shown in the middle of Fig. 13, where an
actor records himself outdoors in bright direct sunlighor Enhis
sequence, the face was captured over 400 frames, and dittioaig
quality is not as high as for the indoor recordings, we are #abte-
cover a large amount of detail. A strong shadow from the nosts
freely over the mouth region and motion re nement in the kiag
step treats this incorrectly as physical motion. It was lulisa for
this sequence, but we are still able to achieve very exwedat
cial motion. The same strong shadow also leads to artifadtsea
boundary caused by the shading-based re nement step. Tifgise
frequency effects can be partly alleviated by the use ofédrigihder
spherical harmonics (see [Wu et al. 2011b]) to better apprate
the visibility and shadow boundaries, but this would insethe
run time substantially. Another option to handle this catmwn

in the supplementary video, is the explicit detection abisty shad-
ows to disable shape re nement there. We detect shadowsghy hi
shading errors and estimate them iteratively with the iight The
results that we obtain do not have shadow boundary artjfagtslo
exhibit less detail. This trade-off between ne detail ahddow ar-
tifacts should be chosen with respect to the applicationiimdm

The right two images of Fig. 13 show a third scenario of anracto
recording himself walking outdoors under trees. This isrg ebal-
lenging set-up, not in the least due to additional backgiauntion
and changing illumination on the face. Nevertheless, weabfe
to capture highly detailed and realistic facial motion, ethshows
that both our tracking and shape re nement pipeline aresbbith

at best comparable with an upscale web cam. Data are challeng respect to the aforementioned dif culties. These and aaldhit out-

ing due to the smaller baseline, cheap plastic wide anglgeken

door self-capture results are included in the supplemgrideo.



The parameters are the same as for the Canon sequences, excemvestigate if these can further improve the results.

1 =300, » =200, 3=300and s =40000. The weight is
0.9 for the indoor sequence and 0.4 for the outdoor sequences

Validation
essential to obtain detailed results on our challengingtincene
ow estimation and geometry regularization need to be comabi
robustly, otherwise drift will deteriorate the tracked s mesh
geometry quickly. Motion re nement helps to improve rectvos-
tion quality, as shown visually in Fig. 7 and quantitativétythe
supplementary material. Based on this coarse geomethtirlgy
and albedo can be estimated and shading-based re nemdi@dipp
as shown in the paper and the video. Overall, our shape reemém
pipeline achieves a speedup over and provides better setbalh
the baseline method of [Wu et al. 2011a], as shown in Fig. Glaad
graphs in the supplementary material. In the video, we diews
that our results are superior to a state-of-the-art biraocsiereo
method [Valgaerts et al. 2011]. The supplementary matknitiier
compares our reconstruction of a static face against asaserof a
similar pose (no hole- lling). While this does not providejaanti-
tative evaluation, it still shows that our reconstructiamlity comes
close to that of state-of-the-art static scanning techgieto

Recall that we are solving a different problem than highktpa
multi-camera approaches that are designed for perfeciostaah-

ditions. Our data sets are stereo data with a small baseline,

while those from a state-of-the-art multi-camera appraadath as
[Beeler et al. 2011] are multi-view data captured underistlight-

ing with a camera positioning naturally tailored to theipegach
and a comparably large baseline. Hence, applying our method
a subset of their cameras is dif cult, as the positioning loése
cameras suits the multi-view case but not our two-view chses{-
milar reasons, two distinct sets of benchmark data, one dtipre
views® and one for two viewk are available). Given the algorithm
speci ¢ camera arrangements, we believe that direct coispato

a multi-view method would therefore not be meaningful. A-rea

sonable comparison would be to record the same face under two

parallel synchronized camera set-ups, one multi-viewupednd a
separate two-view set-up, such that both categories ofadstban

8 Conclusion

As shown in the video, all steps in our pipeline are We have presented an algorithm for capturing high-quakial

performances from a single stereo pair of video streamswbeg
captured under uncontrolled illumination, even outdodmsis be-
comes possible through the use of a robust binocular vanialti
scene ow method that was adapted to the face capture sceasri
well as through the combination of a mesh tracking and a sigadi
based re nement approach that captures space-time cdhemdn
highly detailed geometry. With our approach we are able t pr
duce results of a high quality that could not be achievedreafis-
ing just a single stereo rig. We believe that our method cakema
hand-held facial performance capture feasible for evezydiralso
opens the door for new applications in on-set performanpguca,
movie postprocessing, social media and teleconferencing.
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