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Abstract. We consider the following version of the stable matching problem. Suppose that men have preferences
for women, women have preferences for dogs, and dogs have preferences for men. The goal is to organize them into
family units so that no three of them have incentive to deserttheir assigned family members to join in a new family.
This problem is called circular stable matching, allegedlyoriginated by Knuth. We also investigate a generalized
version of this problem, in which every participant has preference among all others. The goal is similarly to partition
them into oriented triples so that no three persons have incentive to deviate from the assignment. This problem is
motivated by recent innovations in kidney exchange, and we call it the 3-way kidney transplant problem. We report
complexity, structural and counting results on these two problems.

1 Introduction

Stable matching problems were introduced by Gale and Shapley in their seminal paper [6]. Knuth asked
whether the stable matching problem can be extended to the case of three parites [15], say we have women,
men, and dogs. This fairly general problem allows several formulations. One possibility is that every player
expresses her/his/its preference among thecombinationsof the other two parties. In this formulation, Ng and
Hirschberg [16] proved the existence of stable matchings isNP-complete. Similar NP-completeness results
have been shown in [10, 21].

Ng and Hirschberg mentioned that the reviewers of their paper suggest another formulation, and they
attributed it to Knuth, for the 3-party stable matchings—the CIRCULAR STABLE MATCHING problem that
we will consider in this paper” women have preferneces for dogs, dogs have preferences for men, and men
have preferences for women. The goal is to organize them intostable family units so that people/dogs have
no incentive to desert their assigned family members to joinin a new family. This problem can be seen as
a natural generalization of the well-known 2-partySTABLE MARRIAGE problem and have been investigated
in [3, 5].

A generalized version of theCIRCULAR STABLE MATCHING problem allows each participant to express
preference among all others. The goal is to partition 3n persons into oriented triples so that no three of them
have reasons to deviate from the assignment. Again, this problem can be regarded as a generalization of the
STABLE ROOMMATES problem [6]. This generalized problem has practical interest in the kidney exchange
that has received much attention recently [1, 4, 8, 12, 17, 19, 18, 20]. The “preference” here can be interpreted
as degrees of compatibility between recipients and donors.Figure 1 gives a more visual way of seeing the
connection between circular matching and kidney exchange.In this paper, we call this problem the 3-WAY

KIDNEY TRANSPLANT problem. For ease of presentation, we will refer to all participants in both problems
generically as “players.”

The two problems require a proper definition of stability. Inthe two-partySTABLE MARRIAGE and
STABLE ROOMMATES, a matching is stable if there is noblocking pair: two persons who strictly prefer each
other to their assigned partners. Naturally, one would extend blocking pairs intoblocking triplesto define
the stability of matchings. However, a blocking triple hereis more tricky. To see why this is so, consider the
following.



[h]

Kidney

Kidney

Kidney

(Compatability)
Preference 

(Compatability)
Preference 

Preference 
(Compatability)

Fig. 1.An illustration of kidney exchange with compatibility as preference.

– In CIRCULAR STABLE MATCHING, suppose that we have a matching{(m1,w1,d1),(m2,w2,d2),(m3,w3,d3)}.
If m1 prefersw2 to w1, w2 prefersd3 to d2, andd3 prefersm1 to m3, then(m1,w2,d3) is clearly a blocking
triple. But it may also be the case thatw2 prefersd1 to d2. Then(m1,w2,d1) can also be regarded as a
(weaker) blocking triple, since onlym1 andw2 are really better off in such a triple, whiled1 is indifferent.

– In 3-WAY KIDNEY TRANSPLANT , a matching is composed of oriented triples. Here we write such a
triple as(k1,k2,k3

~) to express thatk2,k3,k1 are the successors ofk1,k2,k3, respectively. Moreover, here
k1 represents a couple (often a married couple) consisting of aperson needing a new kidney and a
potential kidney donor. Ifk2 follows k1 in a triple, then the donor from the couplek2 will be passing a
kidney to the recipient ofk1. Thus, it isk1’s preference (degree of compatibility) that is at issue. Note that
an oriented couple(k1,k2,k3

~) can be a blocking triple itself(k1,k3,k2
~), if k1 prefersk3 to k2, k3 prefers

k2 to k1, andk2 prefersk1 to k3. Such phenomena may appear somehow surprising for researchers long
familiar with stable matching literature.

We allow players to express their indifferences in the form of ties in the preference lists. Now we say a
blocking triple is of degreei if i players are strictly better off in such a triple than in a given matching, while
the remaining 3− i players are indifferent. Note that the indifference can be either because the involved
player is still matched to the same partner (or still having the same successor in the oriented triple), or
because the involved player has a partner/successor who is tied with her/his/its current assignment. We
define a hierarchy of stabilities (which is similar to the onedefined by Irving [11] in the 2-party matching)
as follows.

– Super Stable Matching: a matching not allowing blocking triples of degree 1 or 2 or 3.
– Strong Stable Matching: a matching not allowing blocking triples of degree 2 nor those of degree 3.
– Weak Stable Matching: a matching not allowing blocking triples of degree 3.

Contributions of the Paper

Complexity: We prove the following existence problems are NP-complete: super/strong stable matchings
in CIRCULAR STABLE MATCHING; super/strong/weak stable matchings in 3-WAY KIDNEY TRANSPLANT .
Therefore, it is unlikely that we can design efficient algorithms to solve these problems. The complexity
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of weak stable matchings inCIRCULAR STABLE MATCHING remains open. However, there is empirical
evidence indicating that it probably does not belong to the class of NP-complete problems. We shall discuss
this issue later.

Independently, Biró and McDermid [2] obtained similar NP-completeness results for both of problems
studied in this work.

Structural Results: It is well-known that stable matchings in 2-party stable marriage and stable roommates
have rich structures and sophisticated algorithms have been designed to exploit them [9, 15]. It turns out that
strong stable matchings inCIRCULAR STABLE MATCHING have parallel (but even richer) structures. Briefly,
we show that the set of strong stable matchings form a union ofdistributive lattices.

Counting Results: We prove that counting strong stable matchings in both problems is #P-complete. More-
over, the number of strong and weak stable matchings in both problems can be exponential.

Notation and Paper Roadmap In the paper, we useM ,W ,D to denote the collections of men and women
and dogs inCIRCULAR STABLE MATCHING. Whatever the problem instance, we will always assume that
they are of the same cardinality. Similarly,K means the set of players in 3-way kidney transplant.P(p)
denotes the preference list of playerp. The notation≻ indicates the preference order in the list. The braces
denote a tie. For example,P(m) = {w1,w2} ≻ w3 means that manm prefers bothw1 andw2 to w3 while he
is indifferent between the former two. In general, we useµ to denote a 3-dimensional matching (consisted
of triples). We will need to consider the induced two-party matching ofµ. For example, we writeµ|M ,W to
denote the induced men-women matching by dropping all dogs from the triples ofµ. Finally, πr(X) denotes
an arbitrary permutation of the members in the setX.

Section 2 presents complexity results; Section 3 reports structural results of stable matching; Section 4
concerns the counting of stable matchings. Finally, Section 5 draws conclusions.

2 NP-completeness of Strong Stable Matchings

The reductions we will present share similar ideas to those used in [10]. The main difference lies in the
design of “guard players” (to be explained below).

2.1 Existence Problem of Super Stable Matchings is NP-complete

To prove that the existence of super stable matchings is NP-complete in circular stable matching, we present
a reduction from 3-DIMENSIONAL MATCHING , one of Karp’s 21 NP-complete problems [14]. The problem
instance is given in the formϒ = (M ,W ,D,T ), whereT ⊆ M ×W ×D. The goal is to decide whether
a perfect matchingµ⊆ T exists. This problem remains NP-complete even if every player in M ∪W ∪D

appears exactly 2 or 3 times in the triples ofT [7].
We first explain the intuition behind our reduction. Supposing that manmi appears in three triples

(mi ,wia,dia),(mi ,wib,dib),(mi ,wic,dic) in T , we create threedopplegangers, mi1,mi2,mi3 in the derived cir-
cular stable matching instance with tiesϒ′. We also create four garbage collectors,wg

i1,d
g
i1,w

g
i2,d

g
i2. The aim

of our design is that in the derived instanceϒ′, in a super stable matching, exactly one doppleganger will be
matched to a woman-dog pair with whommi shares a triple inT , while the other two dopplegangers will
be paired off with garbage collectors. In the case that thereare only two triples inT containing manmj , we
create only 2 dopplegangersmj1,mj2 and two garbage collectorswg

j1,d
g
j1. Similarly, the intent is to make
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sure that in a super stable matching, exactly one doppleganger will be matched to a woman-dog pair with
whommj shares a triple inT while the other is matched to the garbage collectors.

Now, we will refer to the set of dopplegangers asM1,M2,M3, the set of garbage collectors asW
g
1 ,W

g
2 ,D

g
1,D

g
2

and the original set of real women and real dogs asW ,D. Collectively, we refer to them asmajor players
Σ = M1∪M2∪M3∪W

g
1 ∪W

g
2 ∪W ∪D

g
1∪D

g
2 ∪D and their preferences are summarized in the left column

of Table 1.
To restrict the possible partners of major players inΣ, we introduce a set of gadgets calledguard players.

They are denoted asm⋆(p),w⋆(p),d⋆(p), for p∈ Σ and their preferences are shown in the right column of
Table 1. Their purpose is to ensure that playerp, sayp= mi1, will never get a partner ranking lower than his
associated guard playerw⋆(mi1) in a super stable matching. How guard players and major players interact
is captured by the following lemma.

Table 1.The preference lists of all players in the derived instanceϒ′. Recall that{} denotes a tie in the preferences. Note also that real womenW
and real dogsD only list real dogs and dopplegangers, respectively, with whom they share triples inT , at the top of their lists.

Major PlayersPreference Lists Guard Players Preference Lists
mi1 ∈ M1 {wg

i1,w
g
i2,wia} ≻ w⋆(mi1) ≻ ··· m⋆(m†),m† ∈ M1∪M2∪M3 w⋆(m†) ≻ ···

mi2 ∈ M2 {wg
i1,w

g
i2,wib} ≻ w⋆(mi2) ≻ ··· w⋆(m†),m† ∈ M1∪M2∪M3 d⋆(m†) ≻ ···

mi3 ∈ M3 {wg
i1,w

g
i2,wic} ≻ w⋆(mi3) ≻ ··· d⋆(m†),m† ∈ M1∪M2∪M3 {m†,m⋆(m†)} ≻ ·· ·

w∈ W {d|(∗,w,d) ∈ T } ≻ d⋆(w) ≻ ··· m⋆(w†),w† ∈ W
g
1 ∪W

g
2 ∪W {w†,w⋆(w†)} ≻ ·· ·

d ∈ D {mi j |(mi ,w,d) ∈ T ,w≻mi j w⋆(mi j )} ≻ m⋆(d) ≻ ··· w⋆(w†),w† ∈ W
g
1 ∪W

g
2 ∪W d⋆(w†) ≻ ···

wg
i1 ∈ W

g
1 dg

i1 ≻ d⋆(wg
i1) ≻ ··· d⋆(w†),w† ∈ W

g
1 ∪W

g
2 ∪W m⋆(w†) ≻ ···

wg
i2 ∈ W

g
2 dg

i2 ≻ d⋆(wg
i2) ≻ ··· m⋆(d†),d† ∈ D

g
1 ∪D

g
2 ∪D w⋆(d†) ≻ ···

dg
i1 ∈ D

g
1 {mi1,mi2,mi3} ≻ m⋆(dg

i1) ≻ ··· w⋆(d†),d† ∈ D
g
1 ∪D

g
2 ∪D {d⋆(d†),d†} ≻ ·· ·

dg
i2 ∈ D

g
2 {mi1,mi2,mi3} ≻ m⋆(dg

i2) ≻ ··· d⋆(d†),d† ∈ D
g
1 ∪D

g
2 ∪D m⋆(d†) ≻ ···

Lemma 1. In the derived instanceϒ′, if a super stable matching exists, then in such a matching, (1) all
major players inΣ will be matched to other major players ranking higher than her/his/its associated guard
players, (2) the set of guard players m⋆(p),w⋆(p),d⋆(p), where p∈ Σ are matched to one another, and
(3) the garbage collectors created for a particular man mi will be matched to one another and the two
dopplegangers of mi (or just one if mi only appears twice in the triples of the given 3-dimensionalmatching
instanceϒ.)

Proof. Without loss of generality, consider the major playerp = mi1. In a super stable matching, ifmi1 is
matched to a woman ranking beloww⋆(mi1), then(mi1,w⋆(mi1),d⋆(mi1)) is a blocking triple of degree at
least 1, a contradiction. Ifmi1 is matched tow⋆(mi1), then(m⋆(mi1),w⋆(mi1),d⋆(mi1)) is a blocking triple of
degree at least 1, again a contradiction.

For the second part, by the above discussion, we know that allmajor players must be matched to one
another. Hence, if(m⋆(p),w⋆(p),d⋆(p)) is not part of a super stable matching, they form a blocking triple
of degree at least 1.

The third part follows straightforwardly from the previoustwo. ⊓⊔

Lemma 2. The given instanceϒ = (M ,W ,D,T ) contains a perfect matching if and only if the derived
instanceϒ′ allows a super stable matching.

Proof. (Sufficiency) If the derived instanceϒ′ allows a super stable matching, then by the third part of
Lemma 1, it is easy to see thatϒ contains a perfect matching.
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(Necessity) Suppose thatµ is a perfect matching inϒ. We construct a super stable matchingµ′ for
the derived instanceϒ′ as follows. Assuming that(mi,wx,dy) ∈ µ, we choose the dopplegangermi j who
rankswx higher than his guard playerw⋆(mi j ) and make(mi j ,wx,dy) a triple in µ′. Further, the other two
dopplegangers ofmi are matched to(wg

i1,d
g
i1) and(wg

i2,d
g
i2) respectively. (If there are only two dopplegangers

of mi, then the other dopplegangermi j ′ 6= mi j is matched towg
i1,d

g
i1). Finally, let the three guard players

created for a particular major player be matched to one another. By this construction, it can be verified that
we only allow blocking triples of degree 0, which are permissible for a super stable matching. ⊓⊔

Theorem 1. Deciding whether a super stable matching exists in a circular stable matching problem with
ties in the preferences is NP-complete. This is true even if all ties are of size at most 3 and they are at the
front of the preference lists.

To prove the existence of strong stable matching is NP-complete, we can use the same reduction as
above with just one alteration: we need a different set of guard players for each major player. Note that in
the proof of Lemma 1, we rely on blocking triples of degree 1; those are not counted as blocking triples
based on the definition of strong stable matching.

The design of guard players for the reduction of strong stable matching is similar to those used in a
reduction in Section 2.3, so we omit the details here.1

2.2 Strong/Super Stability in 3-way Kidney Transplant

We now present a reduction from a circular stable matching instanceϒ = (M ,W ,D,L) (with or without
ties in the preferences) to a 3-way kidney transplant instanceϒ′. Suppose thatm∈ M ,w∈ W ,d ∈ D have
preferencesP(m),P(w),P(d), respectively. Inϒ′, their preferences are transformed into

– P′(m) = P(m) ≻ πr(D) ≻ πr(M −{m})
– P′(w) = P(w) ≻ πr(M ) ≻ πr(W −{w})
– P′(d) = P(d) ≻ πr(W ) ≻ πr(D −{d})

To prove this is a valid reduction, we have to argue that strong/super stable matchings exist inϒ if and
only if they exist inϒ′. It is straightforward to show one direction (fromϒ to ϒ′), but the other direction
takes some argument.

Lemma 3. If a strong/super stable matching µ′ exists inϒ′, the following holds

– Every oriented triple contains exactly one man, one woman, and one dog.
– Given a triple t∈ µ′, t’s orientation must be t= (m,w,d~).

Proof. For the first part, without loss of generality, assume that a triple t ∈ µ′ contains at least two men.
There are three possible cases and all lead to contradiction.

1. Suppose thatt = (m,m′,m′′~). Then there exist two triplest ′ andt ′′, which contain two women and two
dogs, respectively. As a result, a womanw∈ t ′ and a dogd ∈ t ′′ have as successors a woman, and a dog,
respectively. Similarly, there is a manm∈ t whose successor is another man. Then(m,w,d~) is a blocking
triple of degree 3, violating the stability ofµ′.

1 However, in our reduction, ties are allowed. Biró and McDermid gave a stronger reduction showing that the existence of strong
stable matchings is NP-complete even with strictly-ordered preference lists.
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2. Suppose thatt = (m,m′,w~). Then there exists a triplet ′ containing two dogs. At least one dogd ∈ t ′ has
another dog as successor. Then(m,w,d~) is a blocking triple of degree 3, blockingµ′.

3. Suppose thatt = (m,m′,d~). Then the argument is analogous to the previous case.

For the second part, ift = (m,d,w~) ∈ µ′, then the reverse triple(m,w,d~) is a blocking triple of degree 3.
⊓⊔

By Lemma 3, the following theorem is immediate.

Theorem 2. It is NP-complete to decide whether a strong/super stable matching exists in the 3-way kidney
transplant problem.

2.3 Weak Stability in 3-way Kidney Transplant

The reduction we are presenting in this section shares similar basic ideas to those we used in Section 2.1:
reduction from a 3-dimensional matching problem instanceϒ = (M ,W ,D,L), creating dopplegangers
M1∪M2∪M3 and garbage collectorsW g

1 ∪W
g
2 ∪D

g
1 ∪D

g
2, and using sets of guard players to restrict the

potential partners (successors in triples) of the major players. The key difference is the design of the guard
players’ preferences.

We introduce the following gadget for each major playerk ∈ M1∪M2 ∪M3 ∪W
g
1 ∪W

g
2 ∪D

g
1 ∪D

g
2.

(Note that real womenW and real dogsD do not need them.) Letϒk be a 3-way kidney transplant instance
that has the following three properties: (1) It contains 7 players,k#

i ,1≤ i ≤ 7, (2) it does not allow any weak
stable matching, and (3) if one player,k#

1, is removedfrom ϒk, then the remaining 6 players’ preferences
allow at least one weak stable matching. Such an instanceϒk can be found in the appendix. Our plan is to
“embed” instancesϒk into the intended 3-way kidney transplant instanceϒ′.

We now explain in more detail what we mean by embedding ofϒk into ϒ′. For illustration, we first show
the preferences ofmi1 and his six associated guard players inϒ′.

– Pϒ′(mi1) = wg
i2 ≻ wg

i1 ≻ wia ≻ Pϒmi1
(m#

i1,1) ≻ ·· · , wherePϒmi1
(m#

i1,1) is the preference list ofm#
i1,1 in the

instanceϒmi1.
– Pϒ′(m#

i1, j) = Pϒmi1
(m#

i1, j) ≻ ·· · , where 2≤ j ≤ 7 andPϒmi1
(m#

i1, j ) is the preference list ofm#
i1, j in the

instanceϒmi1.

In words, ask = mi1, we let mi1 “play the role” of k#
1(= m#

i1,1). His associated six guard players in
ϒk(= ϒmi1) are added intoϒ′ and, in their new preferences, they still put one another on top of their lists. By
this arrangement, ifmi1 can be matched to some woman ranking higher than his associated guard players,
then in this sense,m#

i1,1(= mi1) is removed from the problem instanceϒmi1; on the other hand, if he is not,
thenϒmi1 will engender at least a blocking triple, disrupting the stability of the matching inϒ′.

Lemma 4. In a weak stable matching µ′ in ϒ′, the successor of mi1 ranks at least as high as wia. Moreover,
the six guard players of mi1 must be matched to one another.

Proof. If mi1 is matched to someone ranking lower thanwia, then whatever the oriented triples ofµ′ involving
the six guard partners ofmi1 andmi1 himself, the situation is identical to one where we have a matchingµφ

for the problem instanceϒmi1, which by design, involves at least one blocking triple of degree 3 to block
µφ, and alsoµ′. The second part of the lemma follows from the first part and the way we chose the gadget
ϒk(= ϒmi1). ⊓⊔
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Table 2.The preference lists of major players in the derived probleminstanceϒ′.

Players Preference Lists Players Preference Lists

mi1 ∈ M1 wg
i2 ≻ wg

i1 ≻ wia ≻ Pϒmi1
(m#

i1,1) ≻ ·· · wg
i1 ∈ W

g
1 dg

i1 ≻ Pϒw
g
i1
(wg,#

i1,1) ≻ ·· ·

mi2 ∈ M2 wg
i2 ≻ wg

i1 ≻ wib ≻ Pϒmi2
(m#

i2,1) ≻ ·· · wg
i2 ∈ W

g
2 dg

i2 ≻ Pϒw
g
i2
(wg,#

i2,1) ≻ ·· ·

mi3 ∈ M1 wg
i2 ≻ wg

i1 ≻ wic ≻ Pϒmi3
(m#

i3,1) ≻ ·· · dg
i1 ∈ D

g
1 mi1 ≻ mi2 ≻ mi3 ≻ Pϒd

g
i1
(dg,#

i1,1) ≻ ·· ·

w∈ W πr({d|(∗,w,d) ∈ T }) ≻ ·· · dg
i2 ∈ D

g
2 mi1 ≻ mi2 ≻ mi3 ≻ Pϒd

g
i2
(dg,#

i2,1) ≻ ·· ·

d ∈ D πr({mi j |mi j ∈ M1∪M2∪M3}) ≻ ·· ·

The detailed preferences of major players can be found in Table 2. Note that Lemma 4 also applies to
other major players who have associated guard players. Thus, in a weak stable matching, they will get a
successor ranking strictly higher than their guard players.

Theorem 3. Deciding whether a weak stable matching exists in a 3-way kidney transplant problem is NP-
complete.

Proof. By Lemma 4, ifµ′ is a weak stable matching inϒ′, we can throw away triples involving guard players
of ϒ′, along with the garbage collectors (and the dopplegangers matched to them). Replace the doppleganger
mi j with the real manmi gives the desired perfect matchingµ in ϒ.

For the other direction, we will construct a weak stable matching µ′ in ϒ′ based on a perfect matchingµ
in ϒ. Suppose that(mi,wx,dy

~) ∈ µ. In µ′, we insert three triples,(mi j ,wx,dy
~), wheremi j is the doppleganger

of mi who rankswx higher than his guard players, and(mi j ′ ,w
g
i1,d

g
i1
~) and(mi j ′′ ,w

g
i2,d

g
i2
~). (Or we only add

the first two triples, provided thatmi only appears twice in the triples ofT .) It can be observed thatµ′

involves only blocking triples of degree at most 2, which areallowed because of the definition of weak
stable matchings. ⊓⊔

3 Structures of Strong Stable Matchings

We first review the definition of distributive lattices.

Definition 1. Let (E ,�) be a poset. Such a poset is a distributive lattice if it fulfills the following three
properties:

1. Each pair of elements a,b ∈ E has an infinum, called meet, denoted as a∧ b ∈ E , such that a∧ b �
a,a∧b� b, and there is no element c∈ E such that c� a,c� b, and a∧b≻ c.

2. Each pair of elements a,b∈E has a supremum, called join, denoted as a∨b∈E , such that a� a∨b,b�
a∨b, and there is no element c∈ E such that a� c,b� c, and c≻ a∨b.

3. Given any three elements, a,b,c∈ E , the distributive law holds, i.e., a∧ (b∨c) = (a∧b)∨ (a∧c), and
a∨ (b∧c) = (a∨b)∧ (a∨c).

Note that in this section, we assume that all preference lists are strictly ordered.
Our major finding regarding the structure of strong stable matchings inCIRCULAR STABLE MATCHING

is that they are a collection of distributive lattices. In particular, consider the subset of strong stable match-
ings in which all players in one group (men,women, or dogs) have the same partners. Such a subset is a
distributive lattice. The following theorem gives a more precise statement.
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Theorem 4. Let ϒ = (M ,W ,D,P ) be a circular stable matching instance and let the set of strong stable
matchings inϒ be denoted asΩ. Given a two-party matching NP ,Q = {(pi1,qi1),(pi2,qi2), · · · ,(pin,qin)}
where pi j 6= pi j ′ ,qi j 6= qi j ′ , pi j ∈ P ,qi j ∈ Q ,P ,Q ∈ {M ,W ,D},P 6= Q , the subset of strong stable match-
ingsΩNP ,Q

= {µ|µ∈ Ω,µ|P ,Q = NP ,Q } is a distributive lattice.

We make two remarks here. First, when we consider a non-emptysubsetΩNP ,Q
= ΩNM ,W

of strong stable
matchings, we impose a partial order on the elements based onthe welfare of one particular group, which,
in this case, isW . (Note that all menM are doing the same in all strong stable matchings inΩNM ,W

). Thus,
if µ,µ′ ∈ ΩNM ,W

, thenµ≻ µ′ if and only if all women inW are getting dogs inµ ranking at least as high as
those they get inµ′. Second, ifΩNP ,Q

= /0, we are assuming that it is (vacuously) a distributive lattice.

Lemma 5. Let µ and µ′ be two strong stable matchings inΩND,M
and man m and woman w belong to the

same triple in µ but not so in µ′. Then one of them prefers µ while the other prefers µ′.

Proof. Let X ,Y be the sets of men and women preferringµ respectively; analogously, letX ′,Y ′ be the set
of men and women preferringµ′ respectively.

We claim that ifm∈ X , then his partnerw in µ must be a member ofY ′. If this is not so, then(m,w,d)
blocksµ′, whered is the dog that hasm as a partner in bothµ andµ′. Thus, we have|X | ≤ |Y ′|. By an
analogous argument, every manm in X ′ must have a womanw∈ Y as a partner inµ′, otherwise,(m,w,d)
blocksµ, whered is the dog that hasmas a partner in bothµ andµ′. So we have|X ′| ≤ |Y |

By the fact that in bothµ andµ′, all dogs have the same partners, so the number of men and women
having different partners must be equal:|X |+ |X ′| = |Y |+ |Y ′|. This, combined with the previous two
facts,|X | ≤ |Y ′| and|X ′| ≤ |Y |, implies that|X | = |Y ′|, |X | = |Y ′|. Now if every man inX has a woman
in Y ′ as a partner inµ, then every man inX ′ must have a woman inY in µ. This gives us the lemma. ⊓⊔

Lemma 6. Let µ and µ′ be two strong stable matchings inΩND,M
. If all men are given the better partners in

the two matching µ and µ′, then the resultant matching, denoted as µ∧µ′, is also a strong stable matching
in ΩND,M

.

Proof. We first need to argue thatµ∧µ′ is really a matching. Suppose, for a contradiction, that both mandm′

are matched tow in µ∧µ′. Without loss of generality, letmandm′ be matched tow in µ andµ′, respectively.
By Lemma 5, sincem prefers matchingµ, thenw must preferµ′. This, combined with the fact thatm′ also
prefersw to his partner inµ, implies that(m′,w,d′), where dogd′ always hasm′ as a partner inΩND,M

is a
blocking triple of degree 2 inµ, a contradiction.

We now argue the stability ofµ∧µ′. Suppose that(m,w,d) is a blocking triple of degree 3. Without loss
of generality, letm′ be the man who getsw as a partner inµ and he prefers (or is indifferent to)µ. In µ, w
also strictly prefersd to her assigned dog partnerd′, who always hasm′ as a partner inΩND,M

, in µ. It is
easy to see that manm and dogd prefersw andm, respectively, to their assigned partner in bothµ andµ′.
Therefore,(m,w,d) is a blocking triple of degree 3 inµ, a contradiction.

Finally, suppose(m,w,d) is a blocking triple of degree 2 toµ∧µ′. There are three cases to consider and
their arguments are similar. We consider only one case. Supposem is the player who is indifferent. Letµ
be the matching in whichm is matched tow andm prefers (or is indifferent to)µ. Then(m,w,d) is also a
blocking triple of degree 2 inµ, a contradiction. ⊓⊔

The lemma below follows analogous arguments to those in the preceding one.

Lemma 7. Let µ and µ′ be two strong stable matchings inΩND,M
. If all women are given the better partners

in the two matching µ and µ′, then the resultant matching, denoted as µ∨µ′, is a strong stable matching in
ΩND,M

.
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Now, armed with Lemma 6 and Lemma 7, we can introduce the lemmathat establishes the distributive
law of the lattice.

Lemma 8. Let µ, µ′ and µ′′ be three strong stable matchings inΩND,M
. Then µ∧(µ′∨µ′′) = (µ∧µ′)∨(µ∧µ′′)

and µ∨ (µ′∧µ′′) = (µ∨µ′)∧ (µ∨µ′′)

Proof. Lemma 6 and Lemma 7 establish that meet and join operations result in a strong stable matching in
ΩND,M

. The distributive law can be easily verified. ⊓⊔

The correctness of Theorem 4 follows from Lemma 6, Lemma 7 andLemma 8.

4 #P-completeness of Strong Stable Matchings

In this section, we present a reduction from the 2-partySTABLE MARRIAGE problem to the 3-WAY KID -
NEY TRANSPLANT problem. Counting the number of stable matchings in a stablemarriage instance is
#P-complete, a fact established by Irving and Leather [13].

To build up some intuition, we first show how to “embed” aSTABLE MARRIAGE instanceϒ = (M ,W ,P )
into aCIRCULAR STABLE MATCHING instanceϒ′ = (M ′,W ′,D ′,P ′). For each playerp∈ M ∪W , we cre-
ate a playerp′ and add her/him/it into the derived instanceϒ′. Suppose a manm′

i ∈ M ′ is created based on
mi ∈M . We let him have the same preference asmi. Precisely, supposing thatP(mi) = wi1 ≻wi2 ≻ ·· · ≻win,
let P′(m′

i) = w′
i1 ≻ w′

i2 ≻ ·· · ≻ w′
in. Furthermore, for each manm′

i ∈ M′, we create a dogd′
i and add it into

D ′ with preferenceP′(d′
i ) = m′

i ≻ ·· · . For a womanw′
i ∈ W ′, her preference is now for dogs, moreover, in

her new preference,the indices are kept the same. To be precise, ifP(wi) = mi1 ≻ mi2 ≻ ·· · ≻ min, we make
P(w′

i) = d′
i1 ≻ d′

i2 ≻ ·· · ≻ d′
in.

By this construction, it is easy to observe that the matchingµ= {(mj1,w j1), (mj2,w j2), · · · ,(mjn,w jn)}
is stable inϒ if and only if the matchingµ′ = {(m′

j1,w
′
j1,d

′
j1),(m

′
j2,w

′
j2,d

′
j2), · · · ,(m

′
jn,w

′
jn,d

′
jn)} is strongly

stable inϒ′. A blocking pair(mjk,w jl ) in the former implies a blocking triple(m′
jk,w

′
jl ,d

′
jk) of degree 2 in

the latter. Conversely, there cannot be a blocking triple ofdegree 3 inµ′ (since every dog is matched to its
top-ranked man). A blocking triple(m′

jk,w
′
jl ,d

′
jk) of degree 2 implies that(mjk,w jl ) blocksµ as well.

From the fact that the number of stable matchings inSTABLE MARRIAGE can be exponential (see
Knuth’s book [15]), the fact that weak stable matchings are asuperset of strong stable matchings, and
the reduction given in Section 2.2, we establish:

Theorem 5. The number of weak and strong stable matchings in circular stable matching and 3-way kidney
transplant problems can be exponential.

Unfortunately, the above construction ofϒ′ is not a reduction, instead, it is merely an embedding. Thereis no
guarantee that some other strong stable matching (in which dogs are not always matched to their top-ranked
men) will not arise inϒ′. To prove the #P-completeness, we need one more twist.

We transformϒ′ into a 3-WAY KIDNEY TRANSPLANT INSTANCE ϒ′′ = (K ′′,L ′′) as follows. We first
make a copy of every player inM ′∪W ′∪D ′ and add it intoK ′′. For each dogd

′′

i ∈ K ′′, we create a set of
guard players to restrict its possible successors in a strong stable matching. The idea here is similar to the one
we used in the reduction of Section 2.3. We need an instanceϒd

′′
i

= (Kd
′′
i
,Ld

′′
i
) which has the properties: (1)

it has four players,k#
d′′

i , j ,1≤ j ≤ 4, and (2) it does not allow strong stable matching itself (see the appendix
for such an instance).

We embedϒd
′′
i

into ϒ′′ by altering the preferences ofd′′
i and its associated three guard players as follows.
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– P′′(d′′
i ) = m′′

i ≻ Pϒd′′i
(k#

d′′
i ,1) ≻ ·· · , wherePϒd′′i

(k#
d′′

i ,1) is the preference list ofk#
d′′

i ,1 in the instanceϒd′′
i

– P′′(k#
d′′

i , j) = Pϒd′′i
(k#

d′′
i , j)≻ ·· · , where 2≤ j ≤ 4 andPϒd′′i

(k#
d′′

i , j) is the preference list ofk#
d′′

i , j in the instance

ϒd′′
i
.

The intent here is to try to remove one player,d′′
i (who plays the role ofk#

d′′
i ,1 ) from ϒd′′

i
to prevent a

potential blocking triple inϒd′′
i

from blocking a strong stable matching inϒ′′.
After adding the 3n guard players intoK ′′, we also have to update the preferences of the men and women

who are the copies of those inM ′∪W ′. Such a player, say,m′′
i , replaces each womanw′

j ∈ W ′ with w′′
j in

his list and attaches other players to the end of his list.
It can be checked that in all strong stable matchings inϒ′′, dogs have their top-ranked men as successors.

Moreover, a matchingµ = {(mj1,w j1),(mj2,w j2), · · · ,(mjn,w jn)} is stable inϒ if and only if a matching

µ′′ = {(m′′
j1,w

′′
j1,d

′′
j1
~), (m′′

j2,w
′′
j2,d

′′
j2
~), · · · ,(m′′

jn,w
′′
jn,d

′′
jn
~)} is strongly stable inϒ′′. Therefore, the reduction

from ϒ to ϒ′′ is correct. Using a similar and slightly more complicated gadget (of guard players), it is also
possible to have a reduction fromϒ to an instance ofCIRCULAR STABLE MATCHING. We omit it here.

We conclude this section with the following theorem.

Theorem 6. It is #P-complete to count the number of strong stable matchings in both circular stable match-
ing and 3-way kidney transplant problems.

5 Conclusion

We have left a complexity issue unanswered: existence of a weak stable circular matching. We were unable
to come up with a NP-complete reduction, for there is no similar gadget (a small instance allowing no weak
stable matchings) to the one we used in Section 2.3. Indeed, the reason may go deeper. Empirical evidence
indicates that the number of weak stable circular matchingsgrows extraordinarily fast with the problem size.
Eriksson, Sjöstrand and Strimling [5] conjectured that weak stable matchings always exist. This is why we
remarked previously that finding one is probably not NP-complete.

Interestingly, Biró and McDermid [2] designed a small instance without weak stable matchings—under
the assumption that players can truncate their preference lists. They were thus able to prove that the existence
of weak stable matchings is also NP-complete in this context.

The obvious open questions are: when preferences are required to be complte, is there an instance in
which no weak stable matchings exist? And if there is no such instance, is there a technique to prove their
perennial existence.
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A Examples of Small 3-way Kidney Transplant Instances without Stable Matchings

We mentioned in Section 2.3 and Section 5 that in the reductions, we need 3-WAY KIDNEY TRANSPLANT

instances without weak/strong stable matchings. Two such instances are given in Table 3 and Table 4 re-
spectively.

Table 3.A 3-way kidney transplant instance of size 7 without weak stable matchings.

Players Preferences Lists
k#

1 k#
2 ≻ k#

5 ≻ k#
4 ≻ k#

6 ≻ k#
3 ≻ k#

7
k#

2 k#
4 ≻ k#

1 ≻ k#
6 ≻ k#

3 ≻ k#
5 ≻ k#

7
k#

3 k#
7 ≻ k#

2 ≻ k#
6 ≻ k#

1 ≻ k#
4 ≻ k#

5
k#

4 k#
5 ≻ k#

6 ≻ k#
3 ≻ k#

7 ≻ k#
1 ≻ k#

2
k#

5 k#
6 ≻ k#

7 ≻ k#
4 ≻ k#

1 ≻ k#
3 ≻ k#

2
k#

6 k#
3 ≻ k#

2 ≻ k#
1 ≻ k#

4 ≻ k#
5 ≻ k#

7
k#

7 k#
2 ≻ k#

4 ≻ k#
5 ≻ k#

3 ≻ k#
6 ≻ k#

1

Table 4.A 3-way kidney transplant instance of size 4 without strong stable matchings.

Players Preferences Lists
k#

1 k#
3 ≻ k#

2 ≻ k#
4

k#
2 k#

4 ≻ k#
1 ≻ k#

3
k#

3 k#
4 ≻ k#

1 ≻ k#
2

k#
4 k#

3 ≻ k#
2 ≻ k#

1
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