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ABSTRACT. We introduce and study the donation center location problem, which has an additional
application in network testing and may also be of independent interest as a general graph-theoretic
problem. Given a set of agents and a set of centers, where agents have preferences over centers and
centers have capacities, the goal is to open a subset of centers and to assign a maximum-sized subset
of agents to their most-preferred open centers, while respecting the capacity constraints.
We prove that in general, the problem is hard to approximate within n1/2−ǫ for any ǫ > 0. In

view of this, we investigate two special cases. In one, every agent has a bounded number of centers
on her preference list, and in the other, all preferences are induced by a line-metric. We present
constant-factor approximation algorithms for the former and exact polynomial-time algorithms for
the latter. Of particular interest among our techniques are an analysis of the greedy algorithm for
a variant of the maximum coverage problem called frugal coverage, the use of maximum matching
subroutine with subsequent modification, analyzed using a counting argument, and a reduction
to the independent set problem on terminal intersection graphs, which we show to be a subclass of
trapezoid graphs.

1 Introduction

Suppose that a charitable organization wishes to open a number of locations where people

can make donations (e.g. donate blood). There is no cost for opening these centers, but they

do have capacities for the number of donors that they can accommodate. We model the

potential donors, whom we call agents, as each having a list of locations where she would

be willing to go tomake a donation. Once some of the centers are opened, each agent goes to

the most convenient open one from her list. However, if that center is full (i.e. has exceeded

its capacity), then the agent gives up and decides not to donate at all. Our goal is to choose

a set of centers to open to maximize the number of collected donations.

Formally, we define the DONATION CENTER LOCATION (DCL) problem as follows. Let

G = (A ∪ L, E) be a directed bipartite graph, with edges directed from the set A of agents
to the set L of donation centers. Every center l ∈ L has a capacity cl ∈ Z

+, and every

vertex a ∈ A has a strictly-ordered preference ranking of its neighbors in L (or, equivalently,
of its outgoing edges). These preferences model either distance or some other measure

of convenience for the agents over the locations. We have to choose a subset L′ ⊆ L of
centers to open, and to assign a subset A′ ⊆ A of agents to centers in L′, in such a way
that the number of agents assigned to any center l ∈ L′ is at most cl, and each a ∈ A′ is
assigned to its highest-ranked neighbor in L′. The goal is to maximize |A′|, the number of
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assigned agents. Note that once a set L′ of locations is selected, it is very easy to find an
optimal assignment of agents: if some open center l ∈ L′ is the first choice of more than cl
agents, then an arbitrary subset of cl of them can be assigned to it (and others will remain

unassigned). Thus, our problem statement requiring an explicit assignment from A′ to L′ is
equivalent to one motivated above, which just asks to find L′ and assumes that each center
l ∈ L will accommodate an unspecified subset of at most cl agents who prefer it.
We use notation l ≻a l′ to indicate that agent a ∈ A prefers center l to center l′, where

both (a, l) and (a, l′) are edges in E. If a solution assigns agent a ∈ A′ to center l ∈ L′, then
we write µ(a) = l. We also define µ−1(l) = {a ∈ A′ : µ(a) = l} to be the set of agents
assigned to l. If an assignment µ satisfies the constraints of the DCL problem, then we call

it valid. Formally, a valid assignment µ : A′ → L′ meets the following conditions:
1. if a ∈ A′, then (a, µ(a)) ∈ E
2. if a ∈ A′, then there is no l ∈ L′ such that (a, l) ∈ E and l ≻a µ(a)
3. if l ∈ L′, then |µ−1(l)| ≤ cl
One special case of DCL that we focus on is the unit-capacity case, where cl = 1 for all

centers. In that case the assignment µ : A′ → L′ is a matching. This special case establishes
a connection between DCL and various matching problems under preferences that have

been extensively studied in both computer science and economics literature. It also has an

application in network testing [6, 19], which is as follows. In awireless network consisting of

transmitters and receivers, the transmitter nodes have to be tested. For one round of testing,

a maximum-cardinality set A′ of transmitters has to be matched to a set L′ of receivers. The
power setting of a transmitter is adjusted based on the distance to its intended receiver,

and the signal reaches this receiver as well as all receivers that are closer to the transmitter

than it is. The preference lists of transmitters over receivers are complete and are induced

by the distance, with closer ones ranked higher. Then Condition 2 for a valid matching

requires that a matched receiver not simultaneously be in the range of two active (matched)

transmitters, thus preventing interference.

1.1 Related work

Matching entities with preferences is an extensively studied topic in the literature. The most

representative is the stable matching (also known as stable marriage) problem [9], where

both sides have preferences and a matching is considered stable if there are no two elements

that both prefer each other to their assignedmatches. Recently, thematching problems in the

context of one-sided preferences have also been studied. Examples include popular match-

ing [2, 13, 15], rank-maximal matching [12, 16], and pareto-optimal matching [1]. A major

distinction in our model is that an unopened center does not influence the feasibility of a

given solution, even if some agent prefers this center to his assigned open one. However,

for instance, in the stable marriage problem, a bachelor and a married woman can disturb

the stability of a matching.

Our model also resembles the well-studied facility location problems [5, 18] and their

capacitated versions [17, 21]. However, in most facility location problems, the algorithm is

allowed to assign clients to arbitrary opened facilities, whereas in our case, each client has to

go to its nearest one. Also, DCL is a maximization problem and does not have a requirement
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of assigning all clients, whereas facility location is usually formulated as assigning all clients

while minimizing cost. Thus, there is no direct way to apply known algorithmic techniques

for it to our setting.

Network testing is a possible application of DCL. Maximum-cardinality matching be-

tween transmitters and receivers has been studied in [6, 19], where the interference between

transmitters is modeled in a more crude way: just the presence of an edge between a trans-

mitter and a receiver in the connection graph represents a possible source of interference.

In contrast, we use the notion of preferences (relative physical distance) to give a more fine-

grained model of interference.

1.2 Our results and techniques

We study the general DCL problem as well as several special cases of it. Most of the ver-

sions that we consider here are NP-complete, in which case we study their approximability,

either by finding good approximation algorithms, or by proving hardness of approximation

results. However, some of the special cases are solvable in polynomial time, and for these

we present exact algorithms. Our results are summarized in Table 1. Some of the proofs are

omitted here and appear in the full version of this paper [11].

unit capacity general capacity

complete preferences n1/2−ε-hard to approximate (§2)
bounded degree APX-hard (§2)
out-degree bound d 1/d (§3.1) 1/2d (§3.3), 1/φd ([11])

out-degree bound d = 2 e
e+1 (§3.2) 1/2 ([11])

line metric polynomial-time (§4)

Table 1: Summary of results

For the general case of DCL, we show that it is hard to approximate to a factor of n1/2−ε,

for any ε > 0. This result also holds for the special case of complete preferences (when G

is a complete bipartite graph). In view of this, we focus on two types of special cases, one

of which is the bounded degree case. Here the degree in G of any vertex a ∈ A is upper-
bounded by a constant d. We show that the problem remains APX-hard, even in the unit-

capacity case with degree bound of 2. For any degree bound d, we give a 1/d-approximation

algorithm for the unit-capacity case. For the special case of degree bound d = 2, we improve
this ratio to e

e+1 ≈ 0.731. To do this, we introduce a new variant of the maximum coverage
problem, called frugal coverage, and analyze the performance of the greedy algorithm on

it. For the problem with general capacities and degree bound d, we present a 1/2d approxi-

mation algorithm that makes use of a maximum matching subroutine. In [11], we improve

the analysis to give a 1/φd approximation, for φ ≈ 1.618, and also improve the ratio to 1/2
for the special case of d = 2.

The second special case that we consider is one in which the preferences are induced

by a line metric. In particular, all nodes of A ∪ L are located on a single line, and each
agent ranks the centers in the order of proximity. For this case, we give an exact linear-time
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algorithm for the unit-capacity setting. Then we extend it to obtain an exact polynomial-

time algorithm for general capacities. To design these algorithms, we reduce the problems

to maximum independent set on a special kind of graphs that we call terminal intersection

graphs. We then show that these graphs form a subclass of trapezoid graphs [3, 4], for which

there are known polynomial-time algorithms that solve maximum independent set [8, 14].

2 Hardness results

Weprove that DCL is hard to approximate to a factor of n1/2−ǫ, and that it remains APX-hard

even in the bounded-degree case. The proof of the first result uses a non-trivial reduction

from the maximum independent set problem, which increases the size of the instance while

approximately preserving the value of the optimal solution. The proof of APX-hardness

uses a different reduction from independent set on 3-regular graphs. Both proofs appear

in [11].

THEOREM 1. DCL problem is hard to approximate within O
(

|A ∪ L|1/2−ǫ
)

for any ǫ > 0,

unless NP=ZPP. This is true even in the case of unit capacities and complete preferences.

THEOREM 2. DCL problem is APX-hard, even with unit capacities, out-degree bound of 2
on A and in-degree bound of 3 on L.

We also show that the special case of DCL in which preferences are induced by a metric

is no easier than the general problemwith complete preferences‡. In fact, arbitrary complete

preferences of A over L can be represented by embedding all points of A ∪ L into a metric
space. To do this, we use the ℓ∞ metric over an |L|-dimensional space. Each element li ∈ L
(for i = 1 to |L|) is mapped to a location xi, with coordinates xij = 0 for j 6= i, and xii = 1.

Each element a ∈ A is mapped to a location xa, with xai = 1
2 −

rank(a,li)
2|L| . Here rank(a, li) is the

rank that agent a assigns to center li, ranging from 1 for the most-preferred center up to |L|.
With this embedding, the ℓ∞ distance from a to li, for each 1 ≤ i ≤ |L|, becomes 12 + rank(a,li)

2|L|
(with |xii − xai | being the largest coordinate difference). This ensures that for each a ∈ A, the
ordering of elements of L by distance is the same as it is by preference.

3 Algorithms for bounded-degree DCL

In view of the hardness results for the general problem, in this section we focus on special

cases in which the lengths of the agents’ preference lists are bounded by a constant d.

3.1 A linear-time 1/d approximation for the unit-capacity case

We partition L into d subsets L1, L2, · · · , Ld. A center l is in group Lk if, among all edges from
agents to l, the highest rank of these edges is k. We now consider each set Lk separately, and

let µk denote an arbitrary matching in which each center in Lk is matched to an agent that

ranks it k. Note that at least one such agent for each center must exist by definition of Lk, and

no agent will be matched twice as it can’t have the same rank for two different centers. We

‡This reduction was suggested to us by Uri Feige
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claim that µk is a valid matching in the original problem. If not, suppose that both (a, l) and
(a′, l′) are part of µk and l

′ ≻a l. Then a ranks l′ higher than k, contradicting the assumption
that l′ ∈ Lk. We output the largest µk, which satisfies |µk| = |Lk| ≥ 1

d |L| ≥ 1
dOPT, and note

that the algorithm can be implemented in linear time.

3.2 A e/(e + 1) approximation for unit-capacity DCL with degree bound d = 2

Here we consider the unit-capacity case in which the out-degree of each agent is at most 2.

Our algorithm in the preceding section gives a ratio of 1/2 in this case, but here we improve

it to e
e+1 ≥ 0.731. We first give an approximation-preserving reduction to a problem that

we call frugal coverage, and then give a e
e+1-factor approximation for frugal coverage. The

input to this problem is the same as for set cover, but the objective function is different. We

wish to maximize the number of elements covered by the chosen sets plus the number of

sets that are not chosen.

DEFINITION 3. In the frugal coverage problem, the input is a universe U of elements and a
collection C of subsets of U. The goal is to select a subset C ′ ⊆ C that maximizes |⋃S∈C ′ S|+
|C \ C ′|.

LEMMA 4. If there is an α-approximation for the frugal coverage problem, then there is an
α-approximation for unit-capacity DCL with degree bound 2.

PROOF. To obtain a reduction, we first do one step of pre-processing on the given DCL

instance. If any center l ∈ L has incoming edges of both rank 1 and rank 2, then we remove
all its incoming edges of rank 2. We claim that the value of the optimum is maintained,

because any feasible solution that uses the edges that were removed can be transformed

into one of the same size which does not use these edges. Suppose a1 ∈ A ranks l first,
and a2 ∈ A ranks l second. Now, if a2 is matched to l in the optimal solution, then a1 is
unmatched, as otherwise it would prefer l to its match. So we can replace the matched pair

(a2, l) with (a1, l), preserving the size and feasibility of the solution.
Now we give a reduction from the DCL instance to frugal coverage, assuming that

no node l ∈ L has both rank-1 and rank-2 incoming edges. We also assume without loss
of generality that there are no nodes in A ∪ L with degree zero. We partition the set L into
subsetsX andY, where X contains all the nodeswith incoming rank-1 edges, andY contains

all the nodes with incoming rank-2 edges. By our assumptions, these sets are disjoint and

cover L. For each l1 ∈ X, we create a set S(l1) ∈ C. For each l2 ∈ Y, we create an element
e(l2) ∈ U. For each agent a ∈ A whose preference list is of length two, with l1 ≻a l2, we
include the element e(l2) into the set S(l1).

Given a valid matching µ for the DCL instance, we create a solution to the derived

frugal coverage instance with value at least |µ|. In particular, this solution C ′ consists of all
sets S(l) that correspond to unmatched nodes l ∈ X. If we let |µ| = x + y, where x is the
number of matches on rank-1 edges, and y is the number of matches on rank-2 edges, then

|C \ C ′| = x and |⋃S∈C ′ S| ≥ y. The equality follows because C corresponds to all nodes
of X, and C ′ corresponds to the unmatched ones. For the inequality, suppose that a rank-2
match (a, l2) is part of µ, and consider the center l1 such that l1 ≻a l2. Then l1 is unmatched,
as otherwise the feasibility of µ is violated, and therefore S(l1) ∈ C ′. Also, by construction,
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e(l2) ∈ S(l1). So we have that for each l2 ∈ Y matched on rank-2 edge, there exists l1 ∈ X
such that e(l2) ∈ S(l1) ∈ C ′, and therefore |⋃S∈C ′ S| ≥ y.

Conversely, given a solution C ′ to the constructed frugal coverage instance, a feasible
solution µ to the original DCL instance, with at least as big a value, can be produced. For

each l ∈ X whose corresponding set is not chosen (S(l) /∈ C ′), choose an arbitrary node
a ∈ A such that (a, l) is an edge, and include (a, l) in µ. For each l2 ∈ Ywhose corresponding
element is covered by the frugal coverage solution (e(l2) ∈ ⋃

S∈C ′ S), find a node l1 ∈ X
whose corresponding set covers e(l2) (i.e. with e(l2) ∈ S(l1) and S(l1) ∈ C ′), choose a node
a ∈ A such that l1 ≻a l2 (which enabled us to include e(l2) in S(l1) when constructing the
instance), and match a to l2. To ensure that no a ∈ A is matched twice, and that µ is a valid

matching, suppose that there is a node a ∈ A with µ(a) = l2, l1 ≻a l2, and l1 also matched.
But this is a contradiction because we only matched (a, l2) if S(l1) ∈ C ′, and only matched
l1 if S(l1) /∈ C ′. Since for each covered element and for each unchosen set we have included
one pair into the matching, the size of µ is at least the objective function value of the frugal

coverage solution.

To obtain an α-approximation for DCL, perform the above construction, producing an

instance of frugal coverage whose optimum is at least |µ∗|, where µ∗ is an optimal valid
matching. Find an α-approximation to frugal coverage of value at least α · |µ∗|, and trans-
form it back to a DCL solution with at least as big a value.

Algorithm for frugal coverage

We analyze the performance of the greedy algorithm for the frugal coverage problem. This

is the same algorithm as is used for set cover [20]: while there is a set that covers at least one

new element, choose the one that covers maximum number of new elements and include it

in the solution. We note that our approximation guarantee for frugal coverage is better than

the best possible factor of e−1e ≈ 0.632 for the maximum coverage problem [7].

LEMMA 5. The greedy algorithm is a e
e+1 approximation for the frugal coverage problem.

PROOF. Let m = |C| be the number of sets in the instance, n = |U| be the total number of
elements, and n′ = |⋃S∈C S| be the number of elements that are contained in at least one set.
Suppose that the greedy algorithm completes after taking l sets. Then its objective function

value is equal to ALG = n′ + (m − l). Let Ck denote the intermediate solution obtained
by the greedy algorithm after including 0 ≤ k ≤ l sets. We observe that the solution Cl is
at least as good as any Ck, because with each step of the algorithm, the number of unused
sets |C \ Ck| decreases by one, and the number of covered elements |

⋃

S∈Ck S| increases by at
least one. By the same reasoning, we know that there is an optimal solution C∗ ⊆ C to the
frugal coverage problem that covers all elements that are contained in at least one set. Let

k∗ = |C∗| be the number of sets chosen by this optimal solution. Then its objective function
value is OPT = n′ + (m− k∗).

We first give an easy proof to show that the greedy algorithm is at least a e−1e approx-
imation, and then improve the guarantee. Consider the intermediate greedy solution Ck∗
(note that l ≥ k∗, as k∗ is the minimum number of sets that can cover all n′ elements). By
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the guarantee of the greedy algorithm for the maximum coverage problem [7], Ck∗ covers at
least e−1e · n′ elements. So the value of the solution is ALG ≥ e−1

e · n′ + (m− k∗) ≥ e−1
e ·OPT.

To improve the guarantee, we observe that l ≤ m, and therefore ALG ≥ n′. Combining
with the previous result, we get ALG ≥ max( e−1e n′ + m − k∗, n′). We now consider two
cases. The first case is that n′ ≥ e−1

e n
′ + (m− k∗), and therefore n′ ≥ e(m− k∗). Then

ALG ≥ n′ =
en′

e+ 1
+
n′

e+ 1
≥ en′

e+ 1
+
e(m− k∗)
e+ 1

=
e

e+ 1
·OPT.

In the second case, n′ <
e−1
e n

′ + (m− k∗), and therefore m− k∗ > n′/e. Then

ALG ≥ e− 1
e
n′ +m− k∗ =

e− 1
e
n′ +

m− k∗
e+ 1

+
e(m− k∗)
e+ 1

>
e− 1
e
n′ +

n′

e(e+ 1)
+
e(m− k∗)
e+ 1

=
en′

e+ 1
+
e(m− k∗)
e+ 1

=
e

e+ 1
·OPT,

so in either case we get the desired approximation.

Combining Lemmas 4 and 5, we arrive at the following result.

THEOREM 6. There is an e
e+1 ≥ 0.731 approximation for unit-capacity DCL with degree

bound 2.

We make two remarks before we close this section. First, by the APX-hardness result

of Theorem 2, the reduction in Lemma 4, and the constant approximation in Lemma 5, it

follows that the frugal coverage problem is APX-complete. Second, the following special

case of DCL is solvable in polynomial time: every agent in A has out-degree at most 2 and

every center in L has at most two incoming rank-1 edges. To see this, observe that in this

setting, under the reduction of Lemma 4, we derive a frugal coverage instance with every

set in C of size at most 2. By the same reasoning as in Lemma 5, there is an optimal solution
that covers all elements in

⋃

S∈C S. Thus, the problem is equivalent to finding an optimal set
cover where every set is of size at most 2 and can be easily shown to be equivalent to the

edge cover problem, which is known to be in P [10].

3.3 A 1/2d approximation for DCL with general capacities

As the hardness results of Section 2 still apply to the problem with general capacities, we

consider the special case in which each agent has at most d outgoing edges in G. Our algo-

rithm consists of the following steps.

1. Using flow techniques, find a maximum-size assignment µ (not necessarily valid) be-

tween A and L on the edges of G, where each agent is assigned to at most one center,

and each center l gets at most cl agents. This assignment disregards the preferences of

the agents, and serves as an upper bound on the optimum.

2. Create a directed graph on the set of centers H = (L, F) based on µ. An arc (l, l′) ∈ F
is drawn if there is some agent that is assigned to center l by µ, but prefers l′ to l. If
H contains a directed cycle, then update µ by transferring one agent along each arc of

this cycle so as to improve the transferred agents’ assignments. Update H, and repeat

until H is acyclic. Note that this process terminates in polynomial time.
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3. Discard all unassigned agents and unused centers from the graph G to produce a

subgraph G′. Furthermore, remove from G′ edges from each agent a to centers which
a ranks lower than µ(a). Also remove unused centers from H.

4. Define a topological order over H so that all directed arcs of H go “from left to right”.

5. Consider each center node l in H, scanning from left to right, and delete it from G′ if
the degree of l in G′ is greater than ξ · cl, where ξ > 1 is a parameter to be optimized

later. To delete l, update G′ by removing l and the agents assigned to it by µ, along

with the incident edges.

6. Return the set U of centers that are still part of G′.

Note that the final solution is not µ, as µ is not necessarily a valid assignment. Instead, it

is the set U ⊆ L of open centers, with the best valid assignment of agents to them, which
is easy to find as mentioned in the introduction. The possible loss in value of this solution

compared to the size of µ is analyzed below.

THEOREM 7. The above algorithm is a 1/2d-approximation for DCL with degree bound d.

PROOF. As mentioned, the number of agents assigned by µ serves as an upper bound on

the optimum. Moreover, step 2 does not alter the size of µ. There are two ways in which the

algorithm can lose agents that are matched in step 1. The first is the deletion of centers in

step 5, as agents assigned to themmay not have any edges to the remaining centers, and thus

be lost to the solution. The second reason is that even from centers in U, the contribution

to the objective function may be smaller than the number of agents assigned to them by µ.

This is because the agents ‘switch’ from their assigned centers to their best centers in U. As

a simple example, consider an instance with two agents and two centers, where both agents

prefer l1 to l2, and cl1 = cl2 = 1. Then µ assigns one agent to each center, and has size two.

But opening both centers produces a solution with objective function of 1.

We let |µ| = nu+ nr, where nu is the number of agents that are assigned by µ (after step

2) to centers in U, and nr is the number of agents assigned by µ to other centers, i.e. ones

removed by the algorithm in step 5. We first lower-bound nu, and then lower-bound the size

of the solution in terms of nu. Observe that for every center l deleted in step 5, its degree in

G′ (at the time of deletion) is greater than ξcl . At most cl of these incoming edges come from

agents assigned to it by µ, and the rest come from agents that are assigned elsewhere by µ,

but prefer l to their current centers (this is because in step 3, we removed edges from each

agent a to centers that rank lower than µ(a)). Let us say that one such agent, a, is assigned
to a center l′ but prefers l to l′. In this case the graph H would contain an edge from l′ to l,
which means that l′ occurs before l in the topological ordering. Furthermore, when l′ was
considered by step 5 of the algorithm (which happened before l was considered), it was not

deleted, since otherwise we would have also deleted all its agents, including a. So any such

center l′ must be part of U. Now, each agent has at most d− 1 edges in G′ to centers other
than its assigned one, so the number of agents assigned to U by µ that contribute the extra

ξcl − cl edges to centers l /∈ U can be bounded as

nu ≥ ∑l/∈U(ξcl − cl)
d− 1 =

ξ − 1
d− 1 · ∑

l/∈U
cl ≥

ξ − 1
d− 1 · nr. (1)
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The value of the final solution that assigns agents from A to centers in U in an optimal

way can only be higher than if we restrict the assignment to only use agents from some

subset Ã ⊆ A. In particular, let Ã be the set of nu agents that are assigned to U by µ. For a

center l ∈ U, consider the set of agents Ãl ⊆ Ã that rank l highest among centers in U. For
any such agent a ∈ Ãl, there is an edge in G′ from a to l. But since the degree of l in G′ is
at most ξcl , the size of Ãl is at most ξcl . Thus, at least a 1/ξ fraction of agents in Ãl can be

assigned to l by a valid assignment. As the sets Ãl partition Ã, overall ALG≥ nu/ξ. Using

(1), the approximation ratio becomes

ALG

OPT
≥ nu/ξ

|µ| =
nu/ξ

nu + nr
≥ nu/ξ

nu + nu
d−1
ξ−1

=
1/ξ

1+ d−1
ξ−1

≡ fd(ξ).

Calculus shows that fd(ξ) is maximized at ξ = 1 +
√
d− 1, and the approximation

guarantee becomes 1/(d+ 2
√
d− 1) ≥ 1/2d. In fact, for large d, it approaches 1/d.

With a more detailed analysis (see [11]), the above algorithm can be shown to deliver

a 1/φd approximation, for φ ≈ 1.618. In addition, for the special case of d = 2, another
algorithm with an improved guarantee of 1/2 appears in [11].

4 DCL on a line

In this section we show how to find optimal solutions to unit-capacity and general DCL, in

the case that preferences are complete and defined according to distances on a line (with

closer points ranked higher). Our algorithms work through a reduction to the independent

set problem on a special class of graphs, which we call terminal intersection graphs. As

we show, terminal intersection graphs are a subclass of trapezoid graphs [3, 4], for which

polynomial-time algorithms for independent set are known. We assume that no two nodes

are co-located on the line, and no two distances are equal. Distance between two points on

the line is denoted by d(x, y).

DEFINITION 8. A graph H = (W, F) is a terminal intersection graph if there exists a set of
intervals I = {Iw = [aw , bw] : w ∈ W} on a line, each with a terminal cw ∈ Iw, such that
there is an edge (w,w′) ∈ F if and only if either cw ∈ Iw′ or cw′ ∈ Iw.

DEFINITION 9. A graph H = (W, F) is a trapezoid graph if there exist two parallel lines
such that each vertex w ∈ W corresponds to a trapezoid Tw defined by the convex hull of
two points on the top line and two points on the bottom line, and (w,w′) ∈ F if and only if
Tw and Tw′ intersect.

LEMMA 10. Every terminal intersection graph is a trapezoid graph, and the trapezoid
model can be found in linear time when a terminal intersection model is given.

Proof of Lemma 10 appears in [11]. We now give the main results of the section.
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THEOREM 11. Unit-capacity DCL on a line can be solved to optimality in linear time.

PROOF. We reduce to the independent set problem on terminal intersection graphs, which

can be solved in linear time using Lemma 10 and the algorithm for independent set on

trapezoid graphs ([14] and the fact that trapezoid graphs are a subclass of co-comparability

graphs [8]). Our reduction is also linear-time, so this gives an overall O(n)-time algorithm.
We start with a useful observation about the structure of an optimal valid matching

on a line. We claim that for any instance, there exists an optimal solution in which every

matched center is matched either to its closest agent to the right of it on the line, or to its

closest agent to the left. To see this, consider a center l, its closest agent to the right a1, and

an agent a2 farther to the right. Suppose that l and a2 are matched. Then there is no other

matched center between l and a2, and there is no matched center within distance d(l, a2)
to the right of a2 (otherwise a2 would prefer those centers to l). This implies that a1 is not

matched, as otherwise it would prefer l to its match. So if, instead of (a2, l), we match (a1, l),
this would also be a feasible solution, since l would be the closest matched center to a1.

Given the above observation, it suffices to only consider two possible matches for each

center l: (al , l) and (ar, l), where al and ar are the nearest agents to the left and to the right,
respectively. So there are at most 2|L| possible matches to consider, and we have to choose
the maximum subset of them which matches each node at most once and fulfills the condi-

tion of a valid matching. We do this by creating a terminal intersection graph H = (W, F) in
which the nodes correspond to possible matches, and edges correspond to pairs of matches

that interfere with each other. Then the maximum independent set in H corresponds to the

maximum valid matching in our instance.

For each center l ∈ L and its potential match ar on the right we create a vertex w in
H specified by the interval Iw = [l, l + 2 · d(l, ar)] and the terminal cw = l (we identify
the nodes in A ∪ L with their coordinates on the line, and hence treat them as numbers).
Similarly, for l and al we create a node with interval [l − 2 · d(al , l), l] and terminal l. This is
an interval that is twice as long as the distance between the agent and the center, centered

at the agent, and with a terminal at the endpoint corresponding to the center.

We now verify that two vertices have an edge in H if and only if both of their cor-

responding pairs cannot be included in the matching. Suppose that H contains an edge

(w,w′). Then either cw ∈ Iw′ or cw′ ∈ Iw, so assume without loss of generality that cw ∈ Iw′ .

Let (aw, lw) be the potential match corresponding to the vertex w, and (aw′ , lw′) be one corre-
sponding to w′. Then, by geometry, d(aw′ , lw) ≤ d(aw′ , lw′). So either lw = lw′ , or aw′ is closer

to lw than to lw′ , and both pairs cannot be matched simultaneously. Conversely, suppose

that two pairs (aw, lw) and (aw′ , lw′) cannot both participate in the matching. This could be
because lw = lw′ , or aw = aw′ , or because they violate the preference condition. In the first

case, immediately cw ∈ Iw′ , so the edge (w,w′) is in H; in the second case, assume lw is closer
than lw′ to aw, but then cw = lw ∈ Iw′ ; in the last case, assume that d(aw′ , lw) < d(aw′ , lw′).
But since Iw′ is an interval of length 2d(aw′ , lw′) centered at aw′ , it includes cw = lw, so again

(w,w′) is an edge in H.

THEOREM 12. DCL on a line can be solved to optimality in polynomial time.

We sketch the ideas for extending the unit-capacity algorithm to general capacities. The

running time is no longer linear, but it remains polynomial. We again construct a terminal



HUANG, SVITKINA FSTTCS 2009 11

intersection graph H, but this time we reduce to the maximum weighted IS problem on it,

which is still solvable in polynomial time for trapezoid graphs [8]. Consider a center u with

cu ≤ n. Any feasible solution assigns kl agents to it that are to the left of u on the line, and
kr agents that are on the right, for some kl and kr with kl + kr ≤ cu. Analogously to the
proof of Theorem 11, we can assume that these agents are the closest kl ones on the left, and

the closest kr ones on the right. So for each center u, and for each possible kl and kr , we

create an interval Iu with a terminal located at u. To specify the endpoints of Iu, we let al
be the kl-th farthest agent to the left of u, and ar be the kr-th agent to the right of u. Then

Iu = [u− 2 · d(al , u), u+ 2 · d(u, ar)]. Finally, we set the weight of the corresponding vertex
in H to kl + kr . As before, it can be verified that a set of vertices in H is independent if and
only if the corresponding assignment in the original problem is valid. Moreover, the weight

of this set is equal to the number of agents assigned in the corresponding solution.

5 Conclusion

We have introduced a new combinatorial problem with a number of applications and made

significant progress toward characterizing its complexity and approximability. In doing so,

we used a variety of techniques, including a non-trivial hardness proof, an analysis of the

greedy algorithm for a new variant of set cover, a counting argument for establishing the

approximation ratio in the general capacity case, and a reduction to geometric graphs. Our

definitions of the frugal coverage problem and the terminal intersection graphs, as well as

our algorithms, may be of more general interest and find applications in other contexts.

One extension of the DCL problem is the non-bipartite version, where G is a general

directed graph, and all vertices have preferences over their outgoing edges. A solution

consists of sets A′, L′, and a valid assignment from A′ to L′ as before, but now A′ and L′ can
be arbitrary disjoint subsets of vertices of G. In the network testing application, the bipartite

problem corresponds to the case that transmitters and receivers are two different types of

devices, whereas the non-bipartite version models a more general setting in which some

or all of devices are capable of performing either function. Our hardness of approximation

results extend to the non-bipartite version, and in the unit-capacity setting it admits a 1/d

approximation for the bounded-degree case as well as a polynomial-time exact algorithm

on a line metric. Full description of these results can be found in [11].

Our results highlight a number of questions and related problems that remain open. For

example, the weighted version of the problem is a possible extension. For network testing,

a natural problem is to minimize the number of rounds required to test all transmitters.

Also, an extension of our algorithm for DCL on a line to the case of Euclidean plane may

be relevant for this setting. Given our hardness results for DCL, it may be worthwhile to

consider alternative formulations, such as minimizing the number of unassigned nodes,

instead of maximizing the number of assigned ones. Finally, we leave for future work the

investigation of similar problems with two-sided preferences.
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