One of the reasons that topological methods have a limited popularity for the visualization of complex 3D flow fields is the fact that their topological structures contain a number of separating stream surfaces. Since these stream surfaces tend to hide each other as well as other topological features, for complex 3D topologies the visualizations become cluttered and hardly interpretable. One solution of this problem is the recently introduced concept of saddle connectors which treats separation surfaces emanating from critical points. In this paper we extend this concept to separation surfaces starting from boundary switch curves. This way we obtain a number of particular stream lines called boundary switch connectors. They connect either two boundary switch curves or a boundary switch curve with a saddle. We discuss properties and computational issues of boundary switch connectors and apply them to topologically complex flow data.



List of all publications