Exercise 1. (total: 6 points)
(a) (2 points) In the lecture, we say that when a buyer has a CES utility function of the format
\[u(y) = \left[a_1 \cdot (y_1)^\rho + a_2 \cdot (y_2)^\rho + \cdots + a_n \cdot (y_n)^\rho \right]^{1/\rho}, \]
for some \(\rho > 0 \), then at price vector \(p \), her demand \(y \) is unique, and is given by:
\[y_j = m \cdot \frac{(a_j)^{1-c} \cdot (p_j)^{c-1}}{\sum_{i=1}^n (a_i)^{1-c} \cdot (p_i)^c}, \]
where \(c := \rho / (\rho - 1) \). Show steps to derive the above equality.

(b) (4 points) In the lecture, we say that in a Fisher market with all buyers having CES utility functions with \(\rho \) parameters between 0 and \(\rho < 1 \), the income and demand elasticity satisfy
\[E_I^{\text{min}} = E_I^{\text{max}} = 1 \quad \text{and} \quad E_D = 1 / (1 - p). \]
Explain why the above equalities hold.

Exercise 2. (total: 8 points)
In this exercise we show that Linear Arrow Debreau Markets are more general than Linear Fisher Markets.

(a) (3 points) Consider a Linear Arrow-Debreau market with \(n \) agents and \(n \) goods, such that

- Agent \(i \) owns only good \(i \) completely (i.e., no other agent owns any amount of good \(i \)).
- Let \(\hat{B} \subset [n] \) be a subset of agents and \(\hat{G} \subset [n] \) be a subset of goods. Let \(V_{ij} \) denote the utility of buyer \(i \) by having one unit of good \(j \).
- The utility that every buyer in \(\hat{B} \), derives from one unit of good \(j \in \hat{G} \), is \(c_j \) for some positive constant \(c_j \). (In other words, \(V_{ij} = c_j \) for every \(i \in \hat{B} \) and \(j \in \hat{G} \). This suggests that \(\hat{B} \) is a set of identical buyers — all of them have same valuation for the goods in \(\hat{G} \)).
- Additionally \(V_{ij} = 0 \) for every \(i \in [n] \setminus \hat{B} \) and \(j \in \hat{G} \), i.e., no other agent outside \(\hat{B} \) is interested in \(\hat{G} \).

Let \(p \) be a market equilibrium. Show that for every \(j \in \hat{G} \), \(p_j = c_j \cdot k \) for some positive constant \(k \).

(b) (5 points) Now consider a Linear Fisher Market instance with \(\ell \) buyers and \(n \) goods, a utility matrix \(V \in \mathbb{R}^{\ell \times n} \) and a budget vector \(m \in \mathbb{R}^\ell \) of the buyers. Let \(p \in \mathbb{R}^n \) denote the market equilibrium of this Fisher market. Construct a Linear Arrow-Debreau Market instance with \(n + \ell \) buyers and \(n + \ell \) goods and a utility matrix \(\hat{V} \in \mathbb{R}^{(n+\ell) \times (n+\ell)} \), such that we can determine \(p \) from \(\hat{p} \) in time \(O(n + \ell) \), where \(\hat{p} \) is the market equilibrium of the Arrow-Debreau Market.

Exercise 3. (9 points)
In the lecture note concerning Orlin’s weakly polynomial-time algorithm for computing market equilibrium of Linear Fisher Markets, there are six claims. Prove them.
Exercise 4. (total: 6 points)
In the lecture note concerning Orlin’s weakly polynomial-time algorithm for computing market equilibrium of Linear Fisher Markets, there is a proposition stating that each equilibrium price can be written as a positive rational number of the form \(a/b \), with \(a \leq \ell \cdot U^{n^2+1} \) and \(b \leq (n + 1) \cdot U^{n^2} \).

(a) (3 points) Prove the proposition.
(b) (3 points) Prove that every equilibrium price is at least \(\frac{1}{U^{(n-1)+1}} \).

Exercise 5 (*). (total: 10 points)
In this exercise, we will present you some Linear Fisher Markets in which the denominator of one of its equilibrium prices has to be large.

Let \(U \geq 4 \) be a positive even integer. Let \(\mathcal{P}(U) \) denote the set of all prime numbers which are strictly larger than \(U/2 \) but strictly less than \(U \). By some standard results in analytic number theory, it is known that for all sufficiently large \(U \),

- the product of all primes in \(\mathcal{P}(U) \) is more than \(2^{U/2} \); and
- the cardinality of \(\mathcal{P}(U) \) is more than \(\frac{U}{3 \log U} \), but less than \(\frac{2U}{\log U} \).

You can use the above results.

Let \(d \) denote the cardinality of \(\mathcal{P}(U) \). We construct a LFM with \(d \) buyers and \(d + 1 \) goods as below:

- For each prime \(q \in \mathcal{P}(U) \), we have one distinct buyer denote by \(B_q \), and we have one distinct good denoted by \(G_q \). This constructs \(d \) goods; the remaining good is called \(G_\# \).
- Each buyer \(B_q \) has budget of amount 1.
- Each buyer \(B_q \) is interested in two goods only, namely \(G_q \) and \(G_\# \). In the utility function of the buyer, the coefficient of good \(G_q \) is \(\frac{q+1}{2} \), while the coefficient of good \(G_\# \) is \(q \). All other coefficients in the utility function are zero.

(a) (6 points) Prove that for all sufficiently large \(U \), in the market constructed above, when the equilibrium price of good \(G_\# \) is written as a rational number \(a/b \), where \(a, b \) are positive integers, then \(b \geq \Omega(2^{U/2}) = U^{\Omega(d)} \).

Note for (a): If you have some other construction of LFM that achieves similar or better bound, i.e., when there are \(n \) goods in the market, the lower bound is of the format \(U^{\Omega(n)} \), you are most welcomed to submit it.

(b) (4 points) Can you construct a family of LFM such that the denominator of one of its equilibrium prices has to be \(U^{\Omega(n^2)} \), where \(n \) is the number of goods?

Note for (b): If you can find any number theory result from literature which will help you with such construction, state it with citation, then feel free to use it.