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Abstract We consider the interval constrained coloring problem, which appears
in the interpretation of experimental data in biochemistry. Monitoring hydrogen-
deuterium exchange rates via mass spectroscopy experiments is a method used to
obtain information about protein tertiary structure. The output of these experiments
provides data about the exchange rate of residues in overlapping segments of the pro-
tein backbone. These segments must be re-assembled in order to obtain a global pic-
ture of the protein structure. The interval constrained coloring problem is the math-
ematical abstraction of this re-assembly process.

The objective of the interval constrained coloring problem is to assign a color
(exchange rate) to a set of integers (protein residues) such that a set of constraints
is satisfied. Each constraint is made up of a closed interval (protein segment) and
requirements on the number of elements that belong to each color class (exchange
rates observed in the experiments).
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We show that the problem is NP-complete for arbitrary number of colors and we
provide algorithms that given a feasible instance find a coloring that satisfies all the
coloring requirements within ±1 of the prescribed value. In light of our first result,
this is essentially the best one can hope for. Our approach is based on polyhedral the-
ory and randomized rounding techniques. Furthermore, we consider a variant of the
problem where we are asked to find a coloring satisfying as many fragments as possi-
ble. If we relax the coloring requirements by a small factor of (1 + ε), we propose an
algorithm that finds a coloring “satisfying” this maximum number of fragments and
that runs in quasi-polynomial time if the number of colors is polylogarithmic.

Keywords Approximation algorithms · Coloring problems · LP rounding

1 Introduction

Our motivation for the interval constrained coloring problem comes from an applica-
tion in biochemistry. The problem has been introduced recently by Althaus et al. [1].
To be self-contained, we restrict ourselves to a very brief and informal description in
this paper and refer the interested reader to the publication mentioned above.

A challenging and important problem in biochemistry is to determine the tertiary
structure of a protein, i.e. the spatial arrangement, which is indispensable for its func-
tion. There are various approaches each with advantages and drawbacks. One method
for this task is the so-called hydrogen-deuterium exchange, abbreviated by HDX.
This is a chemical reaction where a hydrogen atom of the protein is replaced by a
deuterium atom, or vice versa. To this end, the protein solution is diluted with D2O.
Intuitively, the exchange process happens at a higher rate at amino acids, or residues,
that are more exposed to the solvent. Put differently, the exchange rates for residues at
the outside of the complex are higher than inside. Note that though deuterium is heav-
ier than hydrogen, they are almost identical from a chemical point of view. Hence,
the exchange rate may be monitored by mass spectroscopy while the tertiary structure
remains unaffected by the process. However, this method does not deliver that fine
grained information such that the exchange rate for each residue can be determined
directly. Rather, we get bulk information for fragments of the protein. For example,
we get the number of slow, medium, and fast residues for each of several overlap-
ping fragments covering the whole protein. That is, the experimental data only tells
us how many residues of a fragment react at low, medium, and high exchange rate,
respectively. Moreover, we know the exact location and size of each fragment in the
protein. It remains to find a valid assignment of all residues to exchange rates that
matches the experimentally found bulk information. If the solution is not unique, we
want to enumerate all feasible solutions or a representative subset thereof as a basis
for further chemical considerations.

The problem can be rephrased in mathematical terms as follows. We are given a
protein of n residues and a set of fragments, which correspond to intervals of [n].
The fragments cover the whole protein and may overlap. Furthermore, there are k

possible exchange rates to which we refer as colors in the following. The goal is to
produce a coloring of the set [n] using k colors such that a given set of requirements
is satisfied. Each requirement is made up of a closed interval I ⊆ [n] and a complete
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specification of how many elements in I should be colored with each color class. We
refer to this problem as the interval constrained coloring problem.

More formally, let I be a set of intervals defined on the set V = [n], let [k] be
a set of color classes, and let r : I × [k] → Z

+ be a requirement function such that∑
c∈[k] r(I, c) = |I | for all I ∈ I . A coloring χ : V → [k] is said to be feasible if for

every I ∈ I we have

|{i ∈ I : χ(i) = c}| = r(I, c) for all c ∈ [k]. (1)

Given this information, we would like to determine whether or not a feasible coloring
exists, and if so, to produce one.

The problem is captured by the integer program given below. The binary variable
xi,c indicates whether i is colored c or not. Constraint (2) enforces that each residue
gets exactly one color and constraint (3) enforces that every requirement is satisfied.

∑

c∈[k]
xi,c = 1 ∀i ∈ [n], (2)

∑

i∈I

xi,c = r(I, c) ∀I ∈ I, c ∈ [k], (3)

xi,c ∈ {0,1} ∀i ∈ [n], c ∈ [k]. (4)

Let P be the polytope obtained by relaxing the integrability constraint (4) in the
above integral problem. That is P is the set of values of x obeying (2), (3) and 0 ≤
xi,c ≤ 1 for all i and c.

1.1 Previous and Related Work

The polyhedral description was introduced in [1] and has served there as a basis to
attack the problem by integer programming methods and tools, which perform well
in practice. Moreover, the authors established the polynomial-time solvability of the
two-color case by the integrability of the polytope P and provided also a combina-
torial algorithm for this case. However, the complexity of the general problem was
left open. Very recently, Komusiewicz et al. [2] showed that the problem is fixed-
parameter tractable with respect to parameters such as the maximum fragment length,
and the maximum number of fragments containing a given residue.

A closely related problem is broadcast scheduling, where a server must decide
which data item to broadcast at each time step in order to satisfy client requests. The
literature in broadcast scheduling is vast and many variations of the problem have
been studied (see [3, 4] and references therein). In the variant we are concerned with
here, a client request is specified by a time window I and a data type A. The re-
quest is satisfied if A is broadcast at least once in I . The similarities between the two
problems should be clear with time steps, time windows and data types in broadcast
scheduling playing the respective roles of positions, intervals and colors in interval
constrained coloring. There are, however, important differences. First, whereas in
broadcast scheduling it does not hurt to broadcast an item more times than the pre-
scribed number, in our problem it does. Second, an interval is satisfied only if all the
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requirements for that interval are satisfied exactly, which indicates that our problem
may be harder.

1.2 Contributions of this Paper

As mentioned above, the complexity status for the interval constrained coloring prob-
lem has been open. In Sect. 4 we partly settle this by showing that deciding whether
a feasible coloring exists is NP-complete when k is part of the input.

Although the polytope P is integral for k = 2 [1], it need not be for k ≥ 3. Never-
theless, we can check in polynomial time whether P = ∅. If that is the case then we
know that there is no feasible coloring. Otherwise we can find a feasible fractional
solution. In Sect. 2 we will show how to round this fractional solution to produce a
coloring where all the requirements are satisfied within a mere additive error of one.

In practice, the data emanating from the experiments is noisy, which normally
causes the instance to be infeasible and in some case even forces P to be empty.
To deal with this problem in Sect. 3 we study a variant of the problem in which
we want to maximize the number of requirements that are satisfied. We relax the
coloring requirements by a small factor of (1 + ε) and propose a divide-and-conquer
algorithm that finds a coloring “satisfying” this maximum number of requirements in

time nO( k2
ε

logn logm), for any ε > 0. Another way to deal with noisy data is to model
the noise in the linear programming relaxation to get a new set of requirements on
which to run the algorithm from Sect. 2. The latter approach was explored by Althaus
et al. [1]; the reader is referred to their paper for details.

2 A ±1 guarantee

Let x be a fractional solution in P . We use the scheme of Gandhi et al. [4] to round
x to an integral solution x̂.

Theorem 1 Given a fractional solution x ∈ P we can construct in polynomial time
an integral solution x̂ with the following properties

(P1) For every i ∈ [n] there exists c ∈ [k] such that x̂i,c = 1 and x̂i,d = 0 for all
d 	= c.

(P2) For every I ∈ I and c ∈ [k] we have |∑i∈I x̂i,c − r(I, c)| ≤ 1.

(P3) Every I ∈ I is satisfied with probability at least γk = k(k+1−Hk−1)

(k+1)! , where Hk−1

is the k − 1st harmonic number 1 + 1
2 + · · · + 1

k−1 .

In other words, each position gets exactly one color (P1), every coloring requirement
is off by at most one from the prescribed number (P2), and all the requirements for
a given interval I are satisfied exactly (

∑
i∈I x̂i,c = r(I, c) for all c ∈ [k]) with prob-

ability at least γk . An interesting corollary of this theorem is that if P is non-empty
then there exists always a coloring satisfying at least γk|I| intervals, and such color-
ing can be found in polynomial time.

The high level idea is to simplify the polytope P into another integral polytope
with basic solutions satisfying (P1) and (P2). Then we show how to select a basic
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Fig. 1 How the blocks Bc
j

are constructed. The xi,c values appear on top and the yi,(c,j) values appear
on the edges. Note that a block can only overlap with its predecessor or successor. In this case αc = 0.7

solution satisfying (P3). This is done by defining a set of blocks and then setting up
an assignment problem instance between [n] and the set of blocks, whose polytope
is integral.

For each color class c ∈ [k] we choose a real number αc ∈ [0,1], to be specified
shortly. For a fixed color class c, let bc = 
∑i∈[n] xi,c − αc� + 1. We define blocks
Bc

1,Bc
2, . . . ,Bc

bc
as follows

Bc
j =

{

t ∈ [n] : j − 2 + αc <
∑

i≤t

xi,c and
∑

i<t

xi,c < j − 1 + αc

}

. (5)

For each i ∈ Bc
j we define a variable yi,(c,j). If i belongs to a single block

Bc
j of color c then we set yi,(c,j) = xi,c. Otherwise, i belongs to two adjacent

blocks Bc
j+1 and Bc

j , in which case we set yi,(c,j+1) = ∑
t≤i xt,c − (j − 1 + αc)

and yi,(c,j) = xi,c − yi,(c,j+1). See Fig. 1 for an example of how the blocks and
the solution y are constructed. Another, equivalent, way to define y is to ask that
xi,c = ∑

j yi,(c,j),
∑

i∈Bc
1
yi,(c,1) = αc and

∑
i∈Bc

j
yi,(c,j) = 1 for every 1 < j < bc.

Thus y defines a feasible fractional assignment between [n] and the set of blocks. Let
Q be the polytope of this assignment problem, namely, the set of vectors y such that

∑

Bc
j �i

yi,(c,j) = 1 ∀i ∈ [n], (6)

∑

i∈Bc
j

yi,(c,j) = 1 ∀c ∈ [k] and 1 < j < bc, (7)

∑

i∈Bc
j

yi,(c,j) ≤ 1 ∀c ∈ [k] and j ∈ {1, bc}, (8)

yi,(c,t) ≥ 0 ∀i ∈ [n], c ∈ [k], t ∈ [bc]. (9)

It is well known that the LP matrix defining Q is totally unimodular [5, Chap. 18],
which in turn implies that the extreme points of Q are integral. Therefore, if there
exists a fractional solution y ∈ Q then there must exists another integral solution
ŷ ∈ Q. Furthermore, we can find such an integral solution in polynomial time. Notice
that an integral solution ŷ to Q induces an integral solution x̂ by setting x̂i,c = 1
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if and only if yi,(c,j) = 1 for some j . Constraint (6) implies that x̂ satisfies (P1).
Furthermore, x̂ also satisfies (P2).

Lemma 1 Let ŷ be an integral solution for Q and let x̂ be the coloring induced by ŷ.
Then |∑i∈I x̂i,c − r(I, c)| ≤ 1 for all I ∈ I and c ∈ [k].
Proof Since

∑
i∈I xi,c = r(I, c), the number of blocks of color c that intersect I

is either r(I, c) or r(I, c) + 1. Furthermore, at least r(I, c) − 1 of these blocks lie
entirely within I and at most two blocks intersect I partially. Due to constraints (6)
and (7), each internal block will force a different position in I to be colored c. On the
other hand, the fringe blocks, if any, can force at most two additional positions in I

to be colored c. Hence, the lemma follows. �

Remark In our application domain the goal usually is not to find a single solution, but
to generate a number of candidate solutions. An expert then examines this candidate
set and selects the most biologically relevant one. Our framework is amenable to this
task since there are very efficient algorithms to enumerate all the integral solutions
of Q [6].

It only remains to prove that x̂ obeys (P3). To do so, we need to introduce some
randomization in our construction. First, we will choose the offset αc of each color
c ∈ [k] independently and uniformly at random. Second, instead of choosing any
extreme point of Q, we choose one using a randomized rounding procedure.

Gandhi et al. [4] showed that any fractional solution y ∈ Q can be rounded to an
integral solution ŷ ∈ Q such that the probability that ŷi,(c,j) = 1 is exactly yi,(c,j). It
is important to note that these events are not independent of each other.

Lemma 2 Let ŷ be the solution output by the randomized rounding procedure and
x̂ the coloring induced by it. For any interval I ∈ I , the probability that

∑
i∈I x̂i,c =

r(I, c) for all c ∈ [k] is at least k(k+1−Hk−1)

(k+1)! .

Proof Let I be an arbitrary, but fixed, interval throughout the proof and for the time
being let us concentrate on a fixed, but arbitrary, color c ∈ [k]. Let f and l be the
indices of the first and last blocks of color class c that intersect I and define βc =∑

i∈I∩Bc
f
yi,(c,f ), or, equivalently,

∑
i∈I∩Bc

l
yi,(c,l) = 1 − βc .

Intuitively, the probability that
∑

i∈I x̂i,c = r(I, c) should be greater when the
blocks of c are aligned with I (when βc is close to 0 or 1) and it should be low when
they are not (when βc is around 0.5). By choosing αc uniformly at random, βc also
becomes a random variable uniformly distributed in [0,1]. Thus, we have a decent
chance of getting a “good value” of βc .

Let us formalize and make more precise the above idea. Denote with ξf and ξ l

the events
∑

i∈I∩Bc
f
ŷi,(c,f ) = 1 and

∑
i∈I∩Bc

l
ŷi,(c,l) = 1 respectively. Let β =

(β1, . . . , βk) be the vector of offsets for the color classes. For brevity’s sake we denote
Pr[ξ | β] with Prβ [ξ ].

Prβ

[∑

i∈I

x̂i,c 	= r(I, c)

]

= Prβ [ξf ξ l ∨ ξf ξ l]



Algorithmica

= Prβ [ξf ξ l] + Prβ [ξf ξ l]
≤ min{Prβ [ξf ],Prβ [ξ l]} + min{Prβ [ξf ],Prβ [ξ l]}.

Since Prβ [ξf ] = βc and Prβ [ξ l] = 1 − βc , it follows that

Prβ

[∑

i∈I

x̂i,c 	= r(I, c)

]

≤ 2 min{βc,1 − βc}. (10)

As a warm-up we first show that the probability that all requirements for I are
fulfilled is at least 1

(k+1)! . Denote with τ the event ∀c : ∑
i∈I x̂i,c = r(I, c). Recall

that the vector β is distributed uniformly over the domain D = [0,1]k . Conditioning
on β and averaging over D gives the desired result.

Pr[τ ] =
∫

D

Prβ

[

∀c :
∑

i∈I

x̂i,c = r(I, c)

]

dβ1 · · ·dβk

≥
∫

D

max

{

0,1 −
∑

c∈[k]
Prβ

[∑

i∈I

x̂i,c 	= r(I, c)

]}

dβ1 · · ·dβk

≥
∫

D

max

{

0,1 − 2
∑

c∈[k]
min{βc,1 − βc}

}

dβ1 · · ·dβk

= 2
∫

D

max

{

0,
1

2
−

∑

c∈[k]
min{βc,1 − βc}

}

dβ1 · · ·dβk.

The first inequality follows from the union bound and the second from (10). A mo-
ment’s thought reveals that the function inside the integral is symmetrical in the 2k

orthants around the point ( 1
2 , . . . , 1

2 ) ∈ D. Therefore, setting D′ = [0, 1
2 ]k we get

Pr[τ ] ≥ 2k+1
∫

D′
max

{

0,
1

2
−

∑

c∈[k]
βc

}

dβ1 · · ·dβk.

The right hand side of the above inequality can be interpreted as the volume of a
(k + 1)-dimensional simplex.

Pr[τ ] ≥ 2k+1 Vol

(

λ ∈ Rk+1+ :
∑

i∈[k+1]
λi ≤ 1

2

)

= 2k+1 ( 1
2 )k+1

(k + 1)!
= 1

(k + 1)! .

In order to get the stronger bound in the statement of the lemma we need two more
ideas. First, we claim that we only need to condition on fulfilling k − 1 requirements:
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Because
∑

c∈[k] r(I, c) = |I |, once we get k − 1 colors right, the kth requirement
must be satisfied as well. Second, since we can condition on any k − 1 colors, we had
better condition on the ones with smallest offset, that is, those that are close to 0 or 1.

Pr[τ ] =
∫

D

Prβ

[

∀c :
∑

i∈I

x̂i,c = r(I, c)

]

dβ1 · · ·dβk

≥
∫

D

max
d∈[k]

{

max

{

0,1 −
∑

c 	=d

Prβ

[∑

i∈I

x̂i,c 	= r(I, c)

]}}

dβ1 · · ·dβk

≥
∫

D

max
d∈[k]

{

max

{

0,1 − 2
∑

c 	=d

min{βc,1 − βc}
}}

dβ1 · · ·dβk

= 2k

∫

D′
max
d∈[k]

{

max

{

0,1 − 2
∑

c 	=d

βc

}}

dβ1 · · ·dβk

= 2k+1
∫

D′
max

{

0,
1

2
−

∑

c∈[k]
βc + max

d∈[k]βd

}

dβ1 · · ·dβk.

The last integral can be simplified by assuming that the maximum βd is attained by
the last variable. Of course, the maximum can be any of the k variables, thus these
two quantities are related by a factor of k.

Pr[τ ] ≥ k2k+1
∫ 1

2

0

[∫

[0,z]k−1
max

{

0,
1

2
−

∑

c∈[k−1]
βc

}

dβ1 · · ·dβk−1

]

dz.

Let T (z) denote Vol(λ ∈ Rk+ : ∑k
i=1 λi ≤ 1

2 and λ1, . . . , λk−1 ≤ z). Then we can
rewrite the above integral as

Pr[τ ] ≥ k2k+1
∫ 1

2

0
T (z) dz. (11)

The volume computed by T (z) is not a simplex, but it can be reduced to a summation
involving only the volume of simplices using the principle of inclusion/exclusion.

Let V (ρ) denote the volume Vol(λ ∈ Rk+ : ∑k
i=1 λi ≤ ρ) and recall that V (ρ) =

ρk

k! . Consider what happens when z ∈ [ 1
4 , 1

2 ); clearly T (z) < V ( 1
2 ) since V ( 1

2 ) in-
cludes points λ ∈ Rk+ such that λi > z for exactly one coordinate i ∈ [k − 1] (since
z ≥ 1

4 ). Notice that

Vol

(

λ ∈ Rk+ :
k∑

j=1

λj ≤ 1

2
and λi > z

)

= V

(
1

2
− z

)

.

Thus T (z) = V ( 1
2 )−(k−1)V ( 1

2 −z) for z ∈ [ 1
4 , 1

2 ], but T (z) > V ( 1
2 )−(k−1)V ( 1

2 −
z) for z ∈ [0, 1

4 ) since the volume of points y such the constraint λi ≤ z is violated for
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two coordinates is subtracted twice. To avoid cumbersome notation, assume V (ρ) =
0 if ρ ≤ 0. A simple inclusion/exclusion argument yields

T (z) =
k−1∑

i=0

(
k − 1

i

)

(−1)iV

(
1

2
− iz

)

. (12)

Plugging (12) into (11) we get

Pr[τ ] ≥ 2k+1k

(∫ 1
2

0
V

(
1

2

)

dz +
k−1∑

i=1

(
k − 1

i

)

(−1)i
∫ 1

2i

0
V

(
1

2
− iz

)

dz

)

= 2k+1k

(∫ 1
2

0

( 1
2 )k

k! dz +
k−1∑

i=1

(
k − 1

i

)

(−1)i
∫ 1

2i

0

( 1
2 − iz)k

k! dz

)

= 2k+1k

(
1

k!2k
z

∣
∣
∣
∣

1
2

0
+

k−1∑

i=1

(
k − 1

i

)

(−1)i
( 1

2 − iz)(k+1)

(k + 1)!(−i)

∣
∣
∣
∣

1
2i

0

)

= 2k+1k

(
1

k!2(k+1)
+

k−1∑

i=1

(
k − 1

i

)
(−1)i

(k + 1)!2k+1i

)

= k

(k + 1)!
(

k + 1 +
k−1∑

i=1

(
k − 1

i

)
(−1)i

i

)

.

Using induction on k, it is straightforward to show that the sum in the last line
adds up exactly to −Hk−1, which gives us the desired bound of γk . �

3 Maximum Coloring

In this section we study a variant of the interval constrained coloring to deal with
instances that do not admit a feasible coloring. For these instances we consider the
problem of finding a coloring that maximizes the number of intervals satisfying (1).
More generally, we assume a non-negative weight w(I), associated with each inter-

val I ∈ I , and seek a subset I ′ ⊆ I , maximizing w(I ′) def= ∑
I∈I ′ w(I), such that

there exists a coloring of V satisfying (1) for each I ∈ I ′. We call this problem
MAXCOLORING. Let OPT ⊆ I be a subset achieving this maximum. For α ∈ (0,1]
and β ≥ 1, an (α,β)-approximation of the problem is given by a pair (χ, I ′) of a
subset I ′ ⊆ I , and a coloring χ : V �→ [k], such that

∑
I∈I ′ w(I) ≥ α · w(OPT),

and 1
β
r(I, c) ≤ Nχ(I, c) ≤ βr(I, c), where Nχ(I, c) is the number of positions in I

colored c by χ .
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Theorem 2 Consider an instance (V , I) of MAXCOLORING with |V | = n and
|I| = m. Then we can find a (1,1 + ε)-approximation in quasi-polynomial time

nO( k2
ε

logn logm), for any ε > 0.

Note that the above bound is quasi-polynomial for k = polylog(n,m). To prove
Theorem 2 we use a similar technique as in [7]. Our approach can be divided into
two parts: (i) Reducing the search space to ε-partial assignments (to be defined): An
ε-partial assignment represents a set of colorings, for which we can bound the range
of the number of vertices of a certain color within intervals I ∈ I by a factor of
(1 + ε). Evaluating intervals I ∈ I on the basis of ε-partial assignments then allows
us to limit the violation of their requirements by any of the corresponding colorings
to a factor of (1 + ε). (ii) Developing a divide-and-conquer algorithm that finds an
ε-partial assignment, and thus a coloring, that “satisfies” a maximum weight set of
intervals. We explain these two steps in more details in the next subsections.

3.1 Reducing the Search Space

Let ε > 0 be a given constant. For a vertex u ∈ V and a set of intervals I on V , denote
respectively by IL(u), IR(u) and I(u), the subsets of intervals of I that lie to the left
of u, lie to the right of u, and span u, that is

IL(u) = {[s, t] ∈ I : t ≤ u − 1},
IR(u) = {[s, t] ∈ I : s ≥ u + 1},

I(u) = {[s, t] ∈ I : s ≤ u ≤ t}.
Denote by VL(u) and VR(u) the sets of vertices that lie to the left and right of

u ∈ V , respectively: VL(u) = {i ∈ V : i ≤ u} and VR(u) = {i ∈ V : i > u}.
Our divide and conquer algorithm will reduce the original problem into many

subproblems which are very easy to solve. More precisely, the algorithm constructs a
recursion tree such that, in the subproblems defined at the leaf nodes, the requirements
are essentially defined on intervals that either start or end at the same point. This
motivates the following definition.

Definition 1 (Assignment) Let V ′ = {p,p+1, . . . , q}. An assignment on V ′ is a pair
A = (I, r) of intervals I on V ′ and a function r : I × [k] �→ {0,1, . . . , |V ′|} such
that

(C1) r(I, c) ≤ r(I ′, c) for all I, I ′ ∈ I with I ⊆ I ′ and all c ∈ [k], and
(C2)

∑
c∈[k] r(I, c) = |I | for every I ∈ I .

A is called a left-assignment, respectively right-assignment, if all intervals in I start
at p, respectively end at q .

We will show in Lemma 4 that the subproblem corresponding to a left- or right-
assignment is straightforward to solve. To reduce the original requirements on arbi-
trary intervals into requirements on left- and right-assignments we use a simple idea.
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Suppose that we consider all intervals containing a given vertex u∗. Then an opti-
mal coloring can be used to divide the requirements on any such interval I into two
groups: the requirements on subintervals of I to the left of u∗ and the ones on right
subintervals of I . These two groups define respectively a right- and a left-assignment.
The main observation now (see Lemma 3 and Observation 1 below) is that if we are
willing to have a violation of the requirement by a factor of (1 + ε) then we do not
need to guess all left- and right-assignments; it is enough to guess the ones at which
the number of vertices of a certain color increases by powers of (1 + ε). This re-
striction leads to a logarithmic number of intervals in the assignments. Since the total
number of left- and right-assignments we have to evaluate in the course of our algo-
rithm depends exponentially on the number of intervals these assignments contain,
this restriction is necessary to obtain the desired polylogarithmic time bound. The
resulting guess is represented by an ε-partial assignment, which we will define next.

Definition 2 (ε-Partial Assignment) Let u∗ ∈ V ′ be a given vertex of V ′ = {p,p +
1, . . . , q}. A set of h1 + h2 + 2 intervals I = IA ∪ IB , IA = {I1, . . . , Ih1 , Ih1+1} and
IB = {I ′

1, . . . , I
′
h2

, I ′
h2+1}, together with a function r : I ×[k] �→ {0,1, . . . , |V |}, such

that

(R1) all intervals end at u∗, or start at respectively u∗ + 1: Ij = [uj ,u
∗] for j ∈

{1,2, . . . , h1}, Ih1+1 = [p,u∗], I ′
j = [u∗ + 1, u′

j ] for j ∈ {1,2, . . . , h2}, and
I ′
h2+1 = [u∗ + 1, q], where uh1 < uh1−1 < · · · < u1 < u∗ and u∗ + 1 < u′

1 <

u′
2 < · · · < u′

h2
,

(R2) (IA, r) is a right-assignment on {p, . . . , u∗}, and (IB, r) is a left-assignment
on {u∗ + 1, . . . , q},

(R3) for every I ∈ I \{Ih1+1, I
′
h2+1} there exists a color c ∈ [k] and an integer i ∈ Z+

such that r(I, c) = 
(1 + ε)i�, and
(R4) for every color c ∈ [k] and integer i ∈ Z+ with i ≤ �(log r(Ih1+1, c)/ log(1 +

ε)�, there exists I ∈ IA such that r(I, c) = 
(1+ε)i�; likewise, for every c ∈ [k]
and i ∈ Z+ with i ≤ �(log r(I ′

h2+1, c)/ log(1 + ε)�, there exists I ′ ∈ IB such

that r(I ′, c) = 
(1 + ε)i�,

will be called an ε-partial assignment w.r.t. u∗, denoted by P = (u∗, I, r).

Properties (R3) and (R4) together ensure that the intervals in the left- and right-
assignment defining the ε-partial assignment are exactly those where the number of
vertices of a certain color increases by a power of (1 + ε). From property (C2) of
an assignment (with |I | ≤ n) and property (R3) of an ε-partial assignment it follows
that h1, h2 ≤ 
k logn/ log(1 + ε) − 1�. In Fig. 2 vertices {p,p + 1, . . . , u∗} ⊆ V ′ are
shown along with four intervals from IA, all ending at u∗ (R1). Note that intervals
Ij1 , Ij2 and Ijh

satisfy condition (R4) for color c ∈ [k], since r(Ij1 , c) = 
(1 + ε)1�,
r(Ij2 , c) = 
(1 + ε)2� and r(Ijh

, c) = 
(1 + ε)h�, for h = 
(log r(Ih1+1, c)/ log(1 +
ε) − 1�.

The total number μ(n) of possible ε-partial assignments with respect to a given
vertex u∗ ∈ V with |V | = n can be bounded as follows: There are at most nh1+h2

possible choices for the vertices u1, u2, . . . , uh1 , u
′
1, u

′
2, . . . , u

′
h2

. For each interval
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Fig. 2 The number of vertices in interval [u,u∗] colored c ∈ [k] by χ is monotonically increasing
on |u − u∗|. According to (R4), an ε-partial assignment consistent with χ has to contain intervals
Ij1 , Ij2 and Ijh with r(Ij1 , c) = 
(1 + ε)1�, r(Ij2 , c) = 
(1 + ε)2� and r(Ijh , c) = 
(1 + ε)h�, for
h = 
(log r(Ih1+1, c)/ log(1 + ε) − 1�. Interval Ih1+1 = [p,u∗] is required by (R1)

I ∈ I , the number of non-negative integer requirements r(I, c), c ∈ [k], satisfying
(C2) is

(|I | + k − 1

k − 1

)

=
k−1∏

i=1

(

1 + |I |
i

)

≤
(

1

k − 1

k−1∑

i=1

(

1 + |I |
i

))k−1

=
(

1 + |I |
k − 1

Hk−1

)k−1

≤
(

1 + |I |
k − 1

(1 + ln(k − 1))

)k−1

.

The first inequality follows from the inequality of arithmetic and geometric means,
which states that for any n non-negative real numbers x1, x2, . . . , xn

x1 + x2 + · · · + xn

n
≥ n

√
x1 · · ·x2 · xn. (13)

Letting i1 = |I1|, ij = |Ij \ Ij−1|, for 2 ≤ j ≤ h1 + 1, and similarly i′1 = |I ′
1| − 1,

i′j = |I ′
j \ I ′

j−1|, for 2 ≤ j ≤ h2 + 1, we observe by (C1) and (C2) that

μ(n) ≤ nh1+h2

h1+1∏

j=1

(
ij + k − 1

k − 1

) h2+1∏

j=1

(
i′j + k − 1

k − 1

)
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≤ nh1+h2

h1+1∏

j=1

(

1 + ij

k − 1
(ln k + 1)

)k−1 h2+1∏

j=1

(

1 + i′j
k − 1

(ln k + 1)

)k−1

≤ nh1+h2

×
(∑h1+1

j=1 (1 + ij
k−1 (ln k + 1)) + ∑h2+1

j=1 (1 + i′j
k−1 (lnk + 1))

h1 + h2 + 2

)(k−1)(h1+h2+2)

= nh1+h2

(

1 + lnk + 1

k − 1
· n

h1 + h2 + 2

)(k−1)(h1+h2+2)

≤ n
2k2 logn

log(1+ε)
+4k−2 ·

(

2 · lnk + 1

k − 1

)(k−1)(2k
logn

log(1+ε)
+4)

, (14)

which is npolylog(n) for every fixed ε > 0 and k = polylog(n). The third inequality
follows from (13), and concerning the last step of the calculation, note that the +1
summand in big brackets can be replaced by a multiplicative factor of 2 for suffi-
ciently large n. Using h1, h2 ≤ k logn/ log(1 + ε) + 1 then gives the desired bound.

Definition 3 (Consistent Assignment) Let χ : V �→ [k] be a coloring of V . We say
that an assignment A = (I, r) is consistent with χ if Nχ(I, c) = r(I, c) for all c ∈ [k]
and I ∈ I . Two assignments A1 and A2 are said to be consistent if there exists a
coloring χ with which both are consistent.

Lemma 3 Let χ be a coloring of V ′ and u∗ ∈ V be an arbitrary vertex. Then there
exists an ε-partial assignment P = (u∗, I, r) on V ′ w.r.t. u∗ that is consistent with
χ .

Proof Assume that V ′ = {p,p + 1, . . . , q}. Clearly, for every c ∈ [k] the function
Nχ([u∗ + 1, u], c) is monotonically increasing on u > u∗ with a maximum positive
increment of 1. This allows us to define P as follows. Let u′

0 = u∗ + 1. For j =
1,2, . . . , h2 let

u′
j = min{u > u′

j−1 | ∃i ∈ Z+, c ∈ [k] : Nχ([u∗ + 1, u], c) = 
(1 + ε)i�
and χ(u) = c}. (15)

The highest index j for which such an u′
j < q exists determines the value of h2.

In accordance with condition (R1), we set I ′
j = [u∗ + 1, u′

j ] for j = 1,2, . . . , h2

and Ih2+1 = [u∗ + 1, q]. In a similar way we define h1 and the intervals Ij for j =
1,2, . . . , h1 + 1 (see Fig. 2). Finally, we define r(I, c) = Nχ(I, c) for all c ∈ [k] and
I ∈ I , which naturally satisfies (C1) and (C2). The definition of interval endpoints
according to (15) guarantees (R3) and (R4). �

We observe than an ε-partial assignment P is an effective abstraction of the set
of colorings that P is consistent with:
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Fig. 3 For an ε-partial assignment P w.r.t. u∗ and a given interval I ∈ I , j (I,P) and �(I,P) are
defined to be the smallest and largest indices, respectively, such that [uj (I,P), u

′
�(I,P)

] ⊆ I

Observation 1 Let P = (u∗, IP, rP) be an ε-partial assignment w.r.t. u∗. Given
an interval I = [s, t] ∈ I with u∗ ∈ I , we let j (I,P) and �(I,P) be, respectively,
the smallest and largest indices such that [uj(I,P), u

′
�(I,P)

] ⊆ I , i.e. j (I,P) =
min{i : ui ≥ s} and �(I,P) = max{i : u′

i ≤ t} (see Fig. 3). If either of these indices
does not exist, we set the corresponding value of rP(I�(I,P), c) or rP(Ij (I,P), c) to
0. Then by property (R4) of an ε-partial assignment

rP(I�(I,P), c) + rP(Ij (I,P), c)

≤ Nχ ′(I, c) ≤ (1 + ε)(rP(I�(I,P), c) + rP(Ij (I,P), c)) (16)

holds for any c ∈ [k] and coloring χ ′ : V �→ [k] such that P is consistent with χ .

In the next section we show how to compute an assignment that represents (1,1 +
ε)-approximate colorings by recursively merging consistent ε-partial assignments.

3.2 A Divide-and-Conquer Algorithm

The pseudocode describing our divide-and-conquer (D&C) algorithm is presented
below as a procedure called MAXCOLORINGAPPROX, which takes as parameters
an instance (n, k, I, r) of problem MAXCOLORING and consistent left- and right-
assignments AL and AR . To compute an (1,1 + ε)-approximation, we set AL and
AR to be empty in the initial call.

The algorithm is based on a divide-and-conquer paradigm where a vertex u∗ in
the middle of V is picked and all intervals containing u∗ are evaluated to determine
whether they should be taken into the solution. To do this evaluation conservatively,
the procedure iterates over all ε-partial assignments P w.r.t. to the middle vertex u∗
that are consistent with AL and AR , then recurses on the subsets of intervals to the
left and right of u∗.

Procedure MAXCOLORINGAPPROX uses two subroutines: MAXCOLORING-
SPECIAL checks whether a pair of a left- and a right-assignment is consistent, and if
so, returns a feasible coloring; REDUCE(VL(u∗),P,AL,AR) (REDUCE(VR(u∗),
P,AL,AR)) combines the assignments P,AL and AR into left- and right-
assignments A ′

L,A ′
R on VL(u∗) (respectively, on VR(u∗)). For a more detailed de-

scription of the two subroutines see below.
From the recursive calls in lines 7 and 8 we obtain two independent colorings χ1 :

VL(u∗) �→ [k] and χ2 : VR(u∗) �→ [k], which are combined in line 9 into a coloring
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Algorithm 1: MAXCOLORINGAPPROX(V , I , AL, AR)
Data: An instance (n, k, I, r) of MAXCOLORING

Result: An (1,1 + ε)-approximation (χ, J )

if |I| = 0 then1

χ ← MAXCOLORINGSPECIAL(AL,AR)2

return (χ,∅)3

let u∗ ∈ V be such that |IL(u∗)| ≤ m/2 and |IR(u∗)| ≤ m/24

forall ε-partial assignments P = (u∗, IP, rP) do5

if P is consistent with AL and AR then6

(χ1, J1) ←7

MAXCOLORINGAPPROX(VL(u∗), IL(u∗),
REDUCE(VL(u∗),P,AL,AR))

(χ2, J2) ←8

MAXCOLORINGAPPROX(VR(u∗), IR(u∗),
REDUCE(VR(u∗),P,AL,AR))

χ ← χ1 ∪ χ29

K ← {I ∈ I(u∗) : r(I,c)
(1+ε)

≤ rP(I�(I,P), c) + rP(Ij (I,P), c) ≤ r(I, c) ∀c}10

J ← K ∪ J1 ∪ J211

store (χ, J )12

return the recorded solution with largest w(J ) value13

χ = χ1 ∪ χ2 defined in the obvious way: χ(u) = χ1(u) if u ∈ VL(u∗) and χ(u) =
χ2(u) if u ∈ VR(u∗).

Given a left-assignment AL = (IL, rL) and right-assignment AR = (IR, rR) on
a vertex set V ′ = {p, . . . , q} and an ε-partial assignment P = (u∗, IA ∪ IB, rP),
procedure REDUCE constructs, considering the recursive call on V ′

L(u∗) in line 7,
a left-assignment A ′

L = (I ′
L, r ′

L) and right-assignment A ′
R = (I ′

R, r ′
R) on vertex set

V ′′ = {p, . . . , u∗} by cutting intervals at u∗ as follows (see Fig. 4):

• I ′
L = {[p, t] ∈ IL | t ≤ u∗},

• I ′
R = IA ∪ {[s, u∗] | ∃[s, q] ∈ IR : s < u∗},

• r ′
L(I, c) = rL(I, c) for I ∈ I ′

L and r ′
R(I, c) = rP(I, c) for I ∈ IA, for all c ∈ [k],

• r ′
R([s, u∗], c) = rR([s, q], c) − rP([u∗ + 1, q], c) for [s, q] ∈ IR , s < u∗, for all

c ∈ [k].
In the recursive call in line 8 procedure REDUCE combines the given assignments
according to a symmetric schema. Notice that IL = ∅ in the leftmost and IR = ∅ in
the rightmost path of the recursion tree.

In the following Lemma 4 and Theorem 3 we show how procedure MAX-
COLORINGSPECIAL can check consistency of assignments AL = (IL, rL) and AR =
(IR, rR) on vertex set V in line 2 in time O(k · (|IL| + |IR|)). Note that sets IL and
IR each contain an interval spanning all vertices in V . This is due to intervals Ih1+1

and I ′
h2+1 in Definition 2 of an ε-partial assignment and due to the specific structure

of the assignments constructed by procedure REDUCE (see Fig. 4).
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Fig. 4 For given left-assignment AL = (IL, rL), right-assignment AR = (IR, rR) and an ε-partial as-
signment P = (u∗, IA ∪ IB, rP), in the recursive call on VL(u∗) procedure REDUCE cuts intervals on
the vertical line at index u∗ such that the new left- and right-assignments A ′

L
and A ′

R
contain the intervals

shown by solid lines. Interval [p,q], contained in IR , and interval [p,q], contained in IL , are omitted

Following the terminology introduced before we call a coloring χ feasible for an
assignment A = (I, r), if Nχ(I, c) = r(I, c) for all c ∈ [k] and I ∈ I . In other words,
χ is feasible for A , if A is consistent with χ . We call two assignments A and A ′
equivalent, if they have the same set of feasible colorings.

Lemma 4 Let A = (I, r) be an assignment on V = {1,2, . . . , n} where set I can be
partitioned into two sets I1 and I2, such that for p ∈ {1,2} it holds

(W1) Ii ∩ Ij = ∅,∀Ii, Ij ∈ Ip , i.e. intervals are disjoint and
(W2)

⋃
I∈Ip

I = [1, n], i.e. the intervals span all vertices.

Then it can be decided in time O(k · |I|) whether a feasible coloring χ : V �→ [k] for
A exists, i.e. a coloring χ such that A is consistent with χ .

Proof We represent interval set I1 as sequence ([s1, t1], [s2, t2], . . . , [sl, tl]) and set
I2 as sequence ([s̄1, t̄1], [s̄2, t̄2], . . . , [s̄m, t̄m]), where si = ti−1 + 1 for 2 ≤ i ≤ l, and
similarly s̄i = t̄i−1 + 1 for 2 ≤ i ≤ m. Property (W2) implies s1 = s̄1 = 1 and tl =
t̄m = n. For 1 ≤ i ≤ l we denote [si , ti] by Ii and for 1 ≤ i ≤ m we denote [s̄i , t̄i] by
Īi .

From assignment A we construct an equivalent assignment A ′ = (I ′, r ′), where
intervals in I ′ are disjoint and therefore feasibility of A ′ can be determined by veri-
fying for every interval [s, t] ∈ I ′ that

r ′([s, t], c) ≥ 0, for all c ∈ [k].
We define I ′ to be the partition of {1,2, . . . , n} into a minimal number of intervals,

such that for each interval I ′ ∈ I ′ and each element I ∈ I either I ′ ⊆ I or I ′ ∩ I = ∅
(see Fig. 5(a)). We represent I ′ by sequence ([s′

1, t
′
1], [s′

2, t
′
2], . . . , [s′

r , t
′
r ]) and again

denote [s′
i , t

′
i ] by I ′

i for 1 ≤ i ≤ r .
What remains is the assignment of requirements to intervals in I ′, i.e. the defin-

ition of r ′ : I ′ × [k] �→ {1,2, . . . , n}. We will define function r ′ recursively, i.e. for
c ∈ [k] the value r ′(I ′

i , c) might depend on values r ′(I ′
j , c) for j < i. Due to the min-

imality of I ′, t ′1 = min(t1, t̄1) and interval I ′
1 will coincide with either I1 or Ī1. In

Fig. 5(a) the latter case holds. Therefore any coloring χ feasible for assignment A
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Fig. 5 (a) Set I1 and I2 satisfy (W1) and (W2) in Lemma 4. For each interval I ′ ∈ I′ and each element
I ∈ I , I = I1 ∪ I2, either I ′ ⊆ I or I ′ ∩ I = ∅. (b) In the construction of an equivalent assignment A ′ in
the proof of Lemma 4 the number of vertices that have to be colored c in interval I ′

i
is obtained by (17)

will satisfy (1) for interval I ′
1 if and only if r ′(I ′

1, c) = r(I1, c) or r ′(I ′
1, c) = r(Ī1, c),

respectively, for all c ∈ [k]. Now consider an interval I ′
i for arbitrary 2 ≤ i ≤ r . If

I ′
i ∈ I1 or I ′

i ∈ I2, as e.g. I ′
4 ∈ I2 in Fig. 5(a), for assignment A ′ to be equivalent

with assignment A it must hold r ′(I ′
i , c) = r(I ′

i , c), for all c ∈ [k]. Otherwise, with-
out loss of generality assume s′

i = sq for some Iq ∈ I1 and t ′i = t̄q ′ for some Īq ′ ∈ I2.
Let p be such that I ′

p ∈ I ′ and s′
p = s̄q ′ (see Fig. 5(b)). If we assume that any color-

ing χ feasible for A satisfies (1) for all intervals I ′
j with 1 ≤ j ≤ i − 1, then χ will

satisfy (1) for interval I ′
i if and only if

r ′(I ′
i , c) = r(Īq ′ , c) −

i−1∑

j=p

r ′(I ′
j , c), for all c ∈ [k]. (17)

�

Clearly the above lemma can be generalized to the case where I can be partitioned
into an arbitrary number of sets, each satisfying conditions (W1) and (W2).

Theorem 3 Let V = {1,2, . . . , n}. For given left-assignment AL = (IL, rL) with
[1, n] ∈ IL and right-assignment AR = (IR, rR) with [1, n] ∈ IR , it can be decided
in time O(k · (|IL| + |IR|)) whether AL and AR are consistent.

Proof Let IL = ([1, t1], [1, t2], . . . , [1, tp]) with tp = n and IR = ([s1, n], [s2, n],
. . . , [sq, n]) with s1 = 1 be sorted with respect to “⊆” and “⊇”, respectively, in non-
decreasing order. Then assignments AL and AR are consistent if and only if the
following assignments A ′

L = (I ′
L, r ′

L) (see Fig. 6) and A ′
R = (I ′

R, r ′
R) are consistent:

• I ′
L = ([1, t1], [t1 + 1, t2], . . . , [tp−1 + 1, tp]),

• r ′
L([1, t1], c) = rL([1, t1], c) and r ′

L([ti−1 + 1, ti], c) = rL([1, ti], c) − rL([1, ti−1],
c), for 2 ≤ i ≤ p and c ∈ [k],

• I ′
R = ([s1, s2 − 1], [s2, s3 − 1], . . . , [sq, n]), and

• r ′
R([sq, n], c) = rR([sq, n], c) and r ′

R([si , si+1 − 1], c) = rR([si , n], c) −
rR([si+1, n], c), for 1 ≤ i < q and c ∈ [k].

Interval sets I ′
L and I ′

R satisfy conditions (W1) and (W2) in Lemma 4 and therefore
the claim follows. �
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Fig. 6 Left-assignment AL = (IL, rL) can be transformed into an equivalent assignment
A ′

L
= (I′

L
, r ′

L
). For every interval in I ′

L
\ {[1, t1]} its requirement r ′

L
is equal to the difference between

the requirements rL of its defining intervals in IL (see proof of Theorem 3)

Since intervals in I ′ of assignment A ′ in the proof of Lemma 4 are disjoint, pro-
cedure MAXCOLORINGSPECIAL can determine coloring χ in line 2 on vertices in
each interval I ′ ∈ I ′ independently, respecting only Nχ(I ′, c) = r ′(I ′, c) for all col-
ors c ∈ [k]. Therefore procedure MAXCOLORINGSPECIAL runs in time O(k · |V |).

In line 6 of procedure MAXCOLORINGAPPROX consistency of an ε-partial as-
signment P = (u∗, IA ∪ IB, rP) and left- and right-assignments AL and AR has
to be verified. From the definition of an ε-partial assignment (see Definition 2) it
follows that (IA, rP) forms a right-assignment on VL(u∗) and (IB, rP) a left-
assignment on VR(u∗), where every vertex is spanned by at least one interval. As
such, similar as in the proof of Theorem 3, they can be transformed into equiva-
lent assignments containing only disjoint intervals. As intervals in IA and IB do
not intersect, this transformation results in a single set of intervals Ĩ satisfying con-
ditions (W1) and (W2) in Lemma 4. As shown above in the description of proce-
dure MAXCOLORINGSPECIAL, checking consistency of assignments AL and AR

can be reduced to a feasibility problem of an assignment A ′ = (I ′, r ′) (see proof of
Lemma 4), where I ′ itself satisfies (W1) and (W2) in Lemma 4. In summary, con-
sistency of P , AL and AR can be verified in line 6 by applying Lemma 4 to sets Ĩ
and I ′ in time O(k · (|Ĩ| + |I ′|)), which is, since intervals in the respective sets are
disjoint, O(k · |V |).

Theorem 4 For |V | = n and |I| = m, algorithm MAXCOLORINGAPPROX runs in

time T (n,m) = nO( k2
ε

logn logm).

Proof The number of possible ε-partial assignments is at most μ(n), bounded in
(14). This gives the recurrence

T (n,m) ≤ poly(n,m) + 2μ(n) · T (n,m/2).

The theorem follows. �

Theorem 5 Algorithm MAXCOLORINGAPPROX returns a coloring χ : V �→ [k]
and a subset of intervals J ⊆ I such that w(J ) ≥ w(OPT) and r(I, c)/(1 + ε) ≤
Nχ(I, c) ≤ (1 + ε)r(I, c) for all I ∈ J and c ∈ [k].

Proof Let (χ∗, OPT) be an optimal solution to an instance of the MAXCOLORING

problem. By Lemma 3, there is an ε-partial assignment P consistent with χ∗,
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which will be eventually considered by the algorithm in line 5. If I ∈ OPT[u∗], then
Nχ∗(I, c) = r(I, c) for all c ∈ [k] and thus (16) implies, for χ ′ = χ∗, that I be-
longs to the set K selected by the algorithm in line 10, i.e. OPT[u∗] ⊆ K, and hence
w(K) ≥ w(OPT[u∗]). Since P is consistent with the coloring χ obtained in line 9,
we also know, by using χ ′ = χ in (16), that

r(I, c)/(1 + ε) ≤ Nχ(I, c) ≤ (1 + ε)r(I, c) for I ∈ K.

By induction, we have w(J1) ≥ w(OPTL(u∗)) and w(J2) ≥ w(OPTR(u∗)). Further-
more, we know that r(I, c)/(1 + ε) ≤ Nχ1(I, c) ≤ (1 + ε)r(I, c) for I ∈ J1 and
r(I, c)/(1 + ε) ≤ Nχ2(I, c) ≤ (1 + ε)r(I, c) for I ∈ J2. The theorem follows. �

4 Hardness

In this section we show that, in general, deciding whether a feasible coloring exists
is NP-hard. Furthermore, one can show that problem MAXCOLORING is APX-hard
when k = 2 (see [8]).

Theorem 6 The problem of testing the feasibility of an instance of the interval con-
strained coloring problem is NP-complete when the number of colors is part of the
input.

Proof Clearly, the problem belongs to NP. To prove the problem is NP-hard we re-
duce a known NP-hard problem to it using the approach of Chang et al. [3]. In the
exact coverage problem we are given a ground set U and a collection S of subsets
of U and we want to know whether there exists a sub-collection C ⊆ S of size t ,
which forms a partition of U ; that is,

⋃
S∈C S = U and for any R,S ∈ C if R 	= S then

R ∩ S = ∅. It is well known that exact coverage is NP-complete [9] even when the
cardinality of sets in S is 3.

Let u = |U | and s = |S|. For the instance of the coloring problem we divide V =
[n] into u blocks B1, . . . ,Bu each of length s; thus, n = us and Bi = [(i − 1)s +
1, . . . , is]. Each color c ∈ [k] is associated with a specific set Sc in S ; thus, k = s.
Let U = {x1, . . . , xu} and suppose that xi is contained in ri sets. For every i ∈ [u] we
have

Ii = [s (i − 1) + 1, si] and rIi ,c = 1 for all c ∈ [k]
I ′′
i = [si − t − ri + 2, si − t + 1] and rI ′′

i ,c = 1 if and only if xi ∈ Sc

and for every i ∈ [u − 1] we have

I ′
i = [si − t + 1, s(i + 1) − t] and rI ′

i ,c
= 1 for all c ∈ [k].

Realize that any coloring satisfying all the Ii and I ′
i intervals must use the same

set of t colors for the last t positions of every block and the remaining s − t colors for
the first s − t position of every block. We therefore encode the partition C with the last
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Fig. 7 Interval Ii spans the vertices of block Bi . The colors assigned to the t = 5 vertices in the inter-
section of intervals Ii and I ′

i
encode the partition C . The color of the single vertex in the intersection of

intervals I ′
i

and I ′′
i

(denoted by the filled vertex) will correspond to the unique set in C that contains xi

t colors of each block. To enforce C to be a partition, i.e. every element x ∈ U to be
contained in exactly one set of C , we include the interval I ′′

i = [si − t − ri + 2, si −
t + 1] and require r(I ′′

i , c) = 1 if and only if xi ∈ Sc. Clearly, a feasible coloring
encodes a solution for the exact coverage and vice versa. It follows that testing feasi-
bility is NP-hard. �
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