
Ultra-Fast Load Balancing on
Scale-Free Networks

Karl Bringmann1, Tobias Friedrich2, Martin Hoefer3,
Ralf Rothenberger2 and Thomas Sauerwald4

1 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
2 Hasso Plattner Institute, Potsdam, Germany

3 Max Planck Institute for Informatics, Saarbrücken, Germany
4 University of Cambridge, United Kingdom

Abstract. The performance of large distributed systems crucially de-
pends on efficiently balancing their load. This has motivated a large
amount of theoretical research how an imbalanced load vector can be
smoothed with local algorithms. For technical reasons, the vast majority
of previous work focuses on regular (or almost regular) graphs including
symmetric topologies such as grids and hypercubes, and ignores the fact
that large networks are often highly heterogeneous.
We model large scale-free networks by Chung-Lu random graphs and
analyze a simple local algorithm for iterative load balancing. On n-node
graphs our distributed algorithm balances the load within O((log logn)2)
steps. It does not need to know the exponent β ∈ (2, 3) of the power-law
degree distribution or the weights wi of the graph model. To the best of
our knowledge, this is the first result which shows that load-balancing
can be done in double-logarithmic time on realistic graph classes.

1 Introduction

Load balancing. Complex computational problems are typically solved on large
parallel networks. An important prerequisite for their efficient usage is to balance
the work load efficiently. Load balancing is also known to have applications to
scheduling [19], routing [7], numerical computation such as solving partial differ-
ential equations [18, 21], and finite element computations [14]. In the standard
abstract formulation of load balancing, processors are represented by nodes of a
graph, while links are represented by edges. The objective is to balance the load
by allowing nodes to exchange loads with their neighbors via the incident edges.
Particularly popular are decentralized, round-based iterative algorithms where
a processor knows only its current load and that of the neighboring processors.
We focus on diffusive load balancing strategies, where each processor decides
how many jobs should be sent and balances its load with its neighbors in each
round. As the degrees of the topologies of many networks follow heavy tailed
statistics, our main interest lies on scale-free networks.

Diffusion. On networks with n nodes, our balancing model works as follows: At

the beginning, each node i has some work load x
(0)
i . The goal is to obtain (a good

2

approximation of) the balanced work load x :=
∑n
i=1 x

(0)
i /n on all nodes. On

heterogeneous graphs with largely varying node degrees it is natural to consider
a multiplicative quality measure: We want to find an algorithm which achieves

maxi x
(t)
i = O(x) at the earliest time t possible. Load-balancing is typically

considered fast if this can be achieved in time logarithmic in the number of
nodes. We aim at double-logarithmic time, which we call ultra-fast (following the
common use of the superlative “ultra” for double-logarithmic bounds [5, 11, 20]).

The diffusion model was first studied by Cybenko [7] and, independently,
Boillat [2]. The standard implementation is the first order scheme (FOS), where
the load vector is multiplied with a diffusion matrix P in each step. For regular
graphs with degree d, a common choice is Pij = 1/(d + 1) if {i, j} ∈ E. Al-
ready Cybenko [7] in 1989 shows for regular graphs a tight connection between
the convergence rate of the diffusion algorithm and the absolute value of the
second largest eigenvalue λmax of the diffusion matrix P. While FOS can be de-
fined for non-regular graphs, its convergence is significantly affected by the loops
which are induced by the degree discrepancies. Regardless of how the damping
factor is chosen, FOS requires Ω(log n) rounds on a broad class of non-regular
graphs (cf. Lemma 3.1 and the discussion in Appendix 3).

Scale-free networks. Many real-world graphs have a power law degree dis-
tribution, meaning that the number of vertices with degree k is proportional
to k−β , where β is a constant intrinsic to the network. Such networks are syn-
onymously called scale-free networks and have been widely studied. As a model
for large scale-free networks we use the Chung-Lu random graph model with a
power-law degree distribution with exponent β ∈ (2, 3). (See Section 4 for a for-
mal definition.) This range of β’s is typically studied as many scale-free networks
(e.g. co-actors, protein interactions, internet, peer-to-peer [17]) have a power law
exponent with 2 < β < 3. It is known that the diameter of this graph model is
Θ(log n) while the average distance between two vertices is Θ(log log n) [4].

Results. Scale-free networks are omnipresent, but surprisingly few rigorous in-
sights are known about their ability to efficiently balance load. Most results and
developed techniques for theoretically studying load balancing only apply to
regular (or almost-regular) graphs. In fact, we cannot hope for ultra-fast balanc-
ing on almost-regular graphs: Even for expander graphs of maximum degree d,
there is a general lower bound of Ω(log n/ log d) iterations for any distributed
load balancing algorithms (cf. Lemma 3.2). Our main result (cf. Theorem 4.1)
shows that within O((log log n)2) steps, our simple local balancing algorithm
(cf. Algorithm 1) can balance the load on a scale-free graph with high proba-
bility. The algorithm assumes that the initial load is only distributed on nodes
with degree Ω(polylog n) (cf. Theorem 4.3), which appears to be a natural as-
sumption in typical load balancing applications. As the diameter of the graph
is Θ(log n), ultra-fast balancing is impossible if the initial load is allowed on
arbitrary vertices. As standard FOS requires Ω(log n) rounds (cf. Lemma 3.1),
our algorithm uses a different, novel approach to overcome these restrictions.

Algorithm. The protocol proceeds in waves, and each wave (roughly) proceeds
as follows. First, the remaining load is balanced within a core of high-degree

3

nodes. These nodes are known to compose a structure very similar to a dense
Erdős-Rényi random graph and thereby allow very fast balancing. Afterwards,
the load is disseminated into the network from high- to low-degree nodes. Each
node absorbs some load and forwards the remaining to lower-degree neighbors.
If there are no such neighbors, the excess load is routed back to nodes it was
received from. In this way, the load moves like a wave over the graph in decreasing
order of degree and then swaps back into the core. We will show that each wave
needs O(log log n) rounds. The algorithm keeps initiating waves until all load is
absorbed, and we will show that only O(log log n) waves are necessary.

Techniques. There are a number of technical challenges in our analysis, mostly
coming from the random graph model, and we have to develop new techniques
to cope with them. For example, in scale-free random graphs there exist large
sparse areas with many nodes of small degree that result in a high diameter.
A challenge is to avoid that waves get lost by pushing too much load deep
into these periphery areas. This is done by a partition of nodes into layers with
significantly different degrees and waves that proceed only to neighboring layers.
To derive the layer structure, we classify nodes based on their realized degrees.
However, this degree might be different from the expected degree corresponding
to the weights wi of the network model, which is unknown to the algorithm.
This implies that nodes might not play their intended role in the graph and the
analysis (cf. Definition 6.1). This can lead to poor spread and the emersion of
a few, large single loads during every wave. Here we show that several types
of “wrong-degree” events causing this problem are sufficiently rare, or, more
precisely, they tend to happen frequently only in parts of the graph that turn
out not to be critical for the result. At the core, our analysis adjusts and applies
fundamental probabilistic tools to derive concentration bounds, such as a variant
of the method of bounded variances (cf. Section 2).

2 Probabilistic Tail Bounds

We frequently apply the following Chernoff-type bound.

Theorem 2.1. If X is a sum of independent Bernoulli trials, then for δ < 2e−1
we have

Pr [|X −E [X] | > δE [X]] < exp(−E [X] δ2/4) .

In addition, for δ > 0 it holds

Pr [X > (1 + δ)E [X]] < exp(−E [X] ·min{δ, δ2}/4) .

Our proof of the main result also requires a variant of the method of bounded
variances [9], which seems to be unpublished so far.

For random variables X1, . . . , Xn we write Xi := (X1, . . . , Xi).

Theorem 2.2. Let X1, . . . , Xn be independent random variables taking values
in {0, 1}, and set µ := E [

∑n
i=1Xi]. Let f := f(X1, . . . , Xn) be a function with

4

finite E [f] satisfying for all i ∈ [n] and all Xi−1∣∣E [f | Xi−1, Xi = 0]−E [f | Xi−1, Xi = 1]
∣∣ 6 c,

for some c > 0. Then for any 0 6 t 6 cµ we have

Pr[|f −E [f] | > t] 6 2 exp(− t2

3c2µ).

Note that the tail bound is in terms of µ instead of n. In particular, it is
completely independent of n.

Proof. We closely follow the proof of the method of bounded variances as can be
found in [9]. Consider the Doob martingale Yi := E [f | Xi] and the difference
∆i := Yi − Yi−1. Note that Y0 = E [f] and Yn = f . Thus,

perr := Pr[f −E [f] > t] = Pr[Yn − Y0 > t] = Pr
[n∑
i=1

∆i > t
]
.

For any λ > 0, using Markov’s inequality we obtain

perr = Pr
[
eλ
∑n
i=1∆i > eλt

]
6 e−λtE

[
eλ
∑n
i=1∆i

]
.

Applying basic identities of expectations we can rewrite this as

perr 6 e−λtE
[

E
[
eλ
∑n
i=1∆i | Xn−1

]]
= e−λtE

[
E
[
eλYn−1 · eλ∆n | Xn−1

]]
= e−λtE

[
eλYn−1E

[
eλ∆n | Xn−1

]]
.

We continue by establishing an upper bound Un = Un(λ, t, c, µ) for E [[] eλ∆n |
Xn−1]. Then by induction we obtain

perr 6 e−λtE
[
eλYn−1E

[
eλ∆n | Xn−1

]]
6 e−λtE

[
eλYn−1

]
· Un

6 e−λt
n∏
i=1

Ui. (2.1)

To obtain such upper bounds Ui we use arguments specific to our situation as
follows. By independence of X1, . . . , Xn,

E [f | Xi−1] = Pr[Xi = 0] ·E [f | Xi−1, Xi = 0]

+ Pr[Xi = 1] ·E [f | Xi−1, Xi = 1]

= E [f | Xi−1, Xi = 0] + pizi, (2.2)

where pi := Pr[Xi = 1] and

zi := E [f | Xi−1, Xi = 1]−E [f | Xi−1, Xi = 0] .

5

Recall that∆i = Yi−Yi−1 = E [f | Xi]−E [f | Xi−1]. Note that the randomness
of ∆i depends only on Xi. Hence, (∆i | Xi) is a deterministic value, which we
compute by plugging equation (2.2) into the definition of ∆i, obtaining

(∆i | Xi−1,Xi = 0) = −pizi,
(∆i | Xi−1,Xi = 1) = (1− pi)zi.

These equations allow to compute

E
[
∆k
i | Xi−1

]
= Pr[Xi = 0] ·E

[
∆k
i | Xi−1, Xi = 0

]
+ Pr[Xi = 1] ·E

[
∆k
i | Xi−1, Xi = 1

]
=(1− pi)(−pizi)k + pi((1− pi)zi)k.

This evaluates to 1 for k = 0 and to 0 for k = 1. Since |zi| 6 c by the assumption
on f , for k > 2 we have

E
[
∆k
i | Xi−1

]
6 (1− pi)(pic)k + pi((1− pi)c)k

6 pi · pick + pi · (1− pi)ck

= pic
k.

Hence, we have

E
[
eλ∆i | Xi−1

]
=
∑
k>0

E
[
λk∆k

i /k! | Xi−1
]
6 1 +

∑
k>2

pi(λc)
k/k!

= 1 + pi(e
λc − 1− λc)

6 exp(pi(e
λc − 1− λc)),

since 1 + x 6 ex for any x. Now we plug this upper bound into equation (2.1)
to obtain

perr 6 exp(−λt+

n∑
i=1

pi(e
λc − 1− λc))

= exp(−λt+ µ(eλc − 1− λc)).

Putting λ := 1
c ln(1 + t

cµ) yields

perr 6 exp(−(tc + µ) ln(1 + t
cµ) + t

c)

= exp(−µg(t
cµ)),

where g(x) = (1 +x) ln(1 +x)−x. We note that g(x) 6 x2

3 for x 6 1.81 to prove

Pr[f −E [f] > t] 6 exp(− t2

3c2µ).

Using this inequality on f and −f yields the desired

Pr[|f −E [f] | > t] 6 2 exp(− t2

3c2µ).

6

We generalize the above concentration result to include an error event.

Theorem 2.3. Let X1, . . . , Xn be independent random variables taking values
in {0, 1}, and set µ := E [

∑n
i=1Xi]. Let f := f(X1, . . . , Xn) be a function

satisfying
|f | 6M,

and consider an error event B such that for every Xn ∈ B

|f(Xn)− f(X′n)| 6 c

for every X′n that differs in only one position Xi from Xn, and for some c > 0.
Then for any 0 6 t 6 cµ we have

Pr
[∣∣f −E [f]

∣∣ > t+ (2M)2

c Pr[B]
]
6 2M

c Pr[B] + 2 exp
(
− t2

16c2µ

)
.

Proof. We construct a function g = g(X1, . . . , Xn) as follows. Iteratively sample
X1, . . . , Xn. If after sampling Xi−1, i ∈ [n], we have∣∣E [f | Xi = 1,Xi−1]−E [f | Xi = 0,Xi−1]

∣∣ > 2c, (2.3)

then set g(X1, . . . , Xn) := E [f | Xi−1] for all Xi, . . . , Xn. If this event never
occurs, then we indeed sample X1, . . . , Xn and simply set g(X1, . . . , Xn) :=
f(X1, . . . , Xn).

Claim. Fix any Xn and i ∈ [n]. If (2.3) does not hold for any i′ < i, then

E [g | Xi−1] = E [f | Xi−1] .

Proof. If (2.3) holds for i, then we set g(X1, . . . , Xn) = E [f | Xi−1], so the claim
holds trivially. If i = n and (2.3) does not hold for i then we set g(X1, . . . , Xn) =
f(X1, . . . , Xn), so the claim holds trivially. If i < n and (2.3) does not hold for
i, then we have

E [g | Xi−1] = Pr[Xi = 1]·E [g | Xi = 1,Xi−1]+Pr[Xi = 0]·E [g | Xi = 0,Xi−1] .

Inductively, this equals

E [g | Xi−1] = Pr[Xi = 1] ·E [f | Xi = 1,Xi−1] + Pr[Xi = 0] ·E [f | Xi = 0,Xi−1]

= E [f | Xi−1] ,

which finishes the proof of the claim.

Claim. For all i ∈ [n] and Xi−1 we have∣∣E [g | Xi = 0,Xi−1]−E [g | Xi = 1,Xi−1]
∣∣ 6 2c.

Proof. If (2.3) holds for some i′ 6 i then both (g | Xi = 0,Xi−1) and (g | Xi =
1,Xi−1) are identically E [g | Xi′−1]. Otherwise (2.3) does not hold for i, and
since by the last claim we have E [f | Xi = k,Xi−1] = E [g | Xi = k,Xi−1] for
any k ∈ {0, 1}, the statement follows.

7

Thus, we can use Theorem 2.2 on g, which yields

Pr[|g −E [g] | > t] 6 2 exp(− t2

16c2µ).

In the remainder, we show the upper bound

Pr[f 6= g] 6 2M
c Pr[B] =: U. (2.4)

This then implies |E [g]−E [f] | 6 2M · U , since |f |, |g| 6M . Finally, we have

Pr[|f −E [f] | > t+ 2M · U] 6 Pr[|f −E [g]]| > t]

6 U + Pr[|g −E [g] | > t]

6 U + 2 exp(− t2

16c2µ).

Consider the set S of all outcomes Xi−1 for any i ∈ [n] such that (2.3) holds
for i but not for any i′ < i. Note that

Pr[f 6= g] 6
∑

Xi−1∈S

Pr[Xi−1],

since only when (2.3) holds for the first time we set g to a value that possibly

differs from f . Recall that for any Xn in B we have |f(Xn)−f(X
(i)
n)| 6 c, where

X
(i)
n stems from Xn by flipping Xi. Using this, inequality (2.3), and |f | 6 M ,

for any Xi−1 in S, i ∈ [n], we have

Pr[Xn ∈ B | Xi−1] > c
2M .

Since the sequences Xi−1 in S correspond to disjoint events, we have

Pr[B] >
∑

Xi−1∈S

Pr[Xi−1] · Pr[Xn ∈ B | Xi−1] > c
2M

∑
Xi−1∈S

Pr[Xi−1]

> c
2M Pr[f 6= g].

This proves inequality (2.4), as desired.

3 Lower Bounds for other Load Balancing Algorithms
and Networks

First notice that scale-free networks are not only heterogeneous, but also sparse
in the sense of |E| = Θ(n). One of the motivations of our work is the fact
that double-logarithmic load balancing time is a rare feature in sparse graphs.
To make this observation more tangible, this section presents two logarithmic
lower bounds: First, we show that the standard diffusion protocol is not able to
achieve double logarithmic balancing time in heterogeneous graphs. Second, we
show that heterogeneity is needed to achieve double logarithmic balancing time
for sparse graphs.

8

Recall that FOS diffusion is defined by the diffusion matrix P = I − α · L,
where I is the n by n identity matrix, L is the Laplace matrix, and α < 1

maxdeg(G)

is the damping factor (the smaller α, the more load is retained at a node). The
load vector x(t+1) satisfies x(t+1) = P · x(t), and thus converges towards the
uniform distribution for any connected, possibly non-regular, graph. By x, we
denote the average load.

Lemma 3.1. Let G = (V,E) be a non-regular graph with mindeg(G)
maxdeg(G) < 1 − c′

for a constant c′ > 0 and consider the execution of FOS with matrix P. Let u
be any node with deg(u) 6 (1− c) maxdeg(G) for a constant c > 0. Then if the
initial load vector is one at u and zero elsewhere it holds that

x(t)u > ct.

In particular, the time until u has a load O(x) = O(1/n) is at least Ω(log n).

Proof. It follows by the definition of FOS that Pu,u = 1 − α · deg(u) > 1 −
1

maxdeg(G) · deg(u) > c and therefore

x(t)u > Pu,u · x(t−1)u > c · x(t−1)u ,

and hence x
(t)
u > ct.

While this choice of the diffusion matrix P with all non-zero entries Pu,v
being identical is the most common one [16], there are also other possibilities.
For instance, we could define P = D−1 ·A corresponding to the way we balance
the load in the core (see Section 5). However, this would converge towards a load
distribution where load is proportional to the degree. Furthermore, by using a
similar argument as in the proof of Lemma 3.1 it follows that whenever load is
initially on a node u with degree O(log n) and this node has at least one neighbor
with degree O(log n), then it takes at least Ω(log n/ log log n) rounds before the
load distribution is balanced.

We could see that the high heterogeneity of scale-free networks doesn’t allow
us to use simple FOS diffusion with matrices defined as before if we want to
achieve double logarithmic balancing time. The following Lemma shows that
this heterogeneity is essential for achieving double logarithmic runtime on sparse
graphs.

Lemma 3.2. Let G = (V,E) be any d-regular graph (d > 2 constant), and
consider any iterative load balancing protocol which is being run for τ steps.
Then for any initial load vector which is one at a vertex and zero elsewhere,

there exists a node u with x
(τ)
u = Ω(d−τ). In particular, it takes at least Ω(log n)

rounds until the maximum load is bounded by O(x).

Proof. Consider the number of nodes which can be reached by a path of length

τ from v, where v is the node with x
(0)
v = 1. This number of nodes is at most

d + d2 + d3 + · · · + dτ 6 2dτ . Since only these nodes can have a non-zero load,

it follows by the pigeonhole principle that there must be a node u with x
(t)
u >

x0
u

2dτ = 1
2dτ .

9

4 Model, Algorithms, and Formal Result

Chung-Lu random graph model. We consider random graphs G = (V,E) as
defined by Chung and Lu [4]. Every vertex i ∈ V = {1, . . . , n} has a weight wi
with

wi :=
β − 2

β − 1
dn1/(β−1)i−1/(β−1)

for i = 1, 2 . . . , n. The probability for placing an edge {i, j} ∈ E is then set
to min{wi wj/W, 1} with W :=

∑n
i=1 wi. This creates a random graph where

the expected degrees follow a power-law distribution with exponent β ∈ (2, 3),
the maximum expected node degree is β−2

β−1dn
1/(β−1) and the parameter d can

be used to scale the average expected node degree [4]. The graph has a core of
densely connected nodes which we define as

C :=

{
i ∈ V : degi > n1/2 −

√
n1/2 · (c+ 1) lnn

}
.

Distributing the load in waves. Our main algorithm is presented in Algo-
rithm 1. It assumes that an initial total load of m resides exclusively on the
core C of the network. The first rounds are spent on simple diffusion on the core
with diffusion matrix P = D−1A, where A is the adjacency matrix and D is
the degree matrix. Afterwards, the algorithm pushes the load to all other nodes
in waves from the large to the small degree nodes and the other way around.
To define the direction of the waves, the algorithm partitions the nodes into
layers, where on layer k we have all nodes v of degree degv ∈ (ωk, ωk−1], where

ω0 = n1/2 −
√
n1/2 · (c+ 1) lnn and ωk+1 = ω1−ε

k for a constant

0 < ε < min
{

(3−β)
(β−1) ,

β−2
3 , 1

2

(
1−

√
3

β+1

)}
.

For every layer k we have ωk > 2
1

ε(β−1) . The last layer ` is the first, for which

ω` 6 2
1

ε(β−1) holds. In this case, we define the interval simply to include all
nodes with degree less than ω`−1. Note that in total we obtain at most

L := 1
log(1/(1−ε))

(
log log n+ log ε(β−1)

2

)
layers.

To choose an appropriate ε, we have to know lower and upper bounds on β.
These bounds are either known or can be chosen as constants arbitrarily close
to 2 and 3. The algorithm therefore does not need to know the precise β. Our
main result is then as follows.

Theorem 4.1. Let G = (V,E) be a Chung-Lu random graph as defined above.
For any load vector x(0) ∈ Rn>0 with support only on the core C of the graph,

there is a τ = O((log logn)2) such that for all steps t > τ of Algorithm 1, the

resulting load vector x(t) fulfills x
(t)
u = O(x) for all u ∈ V w. h. p.1

1 w. h. p. is short for “with high probability”. We use w.h.p. to describe events that
hold with probability 1− n−c for an arbitrary large constant c.

10

Algorithm 1: Balance load in waves from core to all other nodes

repeat
for phase t← 1 to log log n do

for 32
3−β rounds do // 1. diffusion on the core

Nodes v with deg(v) > ω0 perform diffusion with P = D−1A

for L rounds do // 2. downward propagation

Every node absorbs at most m/nt2 load
All remaining load is forwarded in equal shares to neighbors on
the next lower layer

for L rounds do // 3. upward propagation

All nodes send their load back to the the next higher layer over
the edges they received it from

until terminated ;

In the analysis of our algorithm we need the following definitions and obser-
vations. We define Vk = {v | wv ∈ (ωk, ωk−1]} as the set of nodes on layer k and
nk = |Vk|. Let Wk =

∑
v∈Vk wv be the total weight of nodes in layer k. For the

sake of simplification, we also define the following value γ := 1
2

(
dβ−2β−1

)β−1
. From

the given weight sequence and the requirements ωk > 2
1

ε(β−1) and ωk < n1/(β−1),
we can easily derive the following bounds. For all 0 6 k < ` it holds that

γ

2
· nω1−β

k 6 nk 6 4γ · nω1−β
k . (4.1)

This implies

Wk >
γ

2
· nω2−β

k . (4.2)

Finally, let d = W
n the expected average degree. After stating the main result,

we will now turn to some probabilistic tail bounds which will be used extensively
throughout the rest of the paper.

Reaching the core. Algorithm 1 and Theorem 4.1 above require that the initial
total load resides exclusively on the core C of the network. As the diameter of the
network is Θ(log n) [4], we cannot hope to achieve a double-logarithmic balancing
time if all the initial load starts at an arbitrary small and remote vertex. However,
we can allow initial load on all nodes with at least some polylogarithmic degree
and run the following simple Algorithm 2 to bring the load to the core.

Algorithm 2: Push load to large nodes in core

for L rounds do
Every node sends all load to any node in next higher layer;

11

In Algorithm 2 all nodes send all their load to an arbitrary neighbor on the
next-highest layer. This local routing algorithm succeeds if all nodes have at
least one neighbor on the next-highest layer. The following lemma states that
this is the case for all nodes of degree at least Ω

(
(lnn)3 + (lnn)2/(3−β)

)
.

Lemma 4.2. For ε < min
{

1/3, 3−β
β−1

}
all nodes with degree at least

max

{
128 (c lnn)

3
+ 3c lnn, 24

3(1−ε)
1−3ε , 72

3(1−ε)
1+3ε(β−1) ,

2

((
8c lnn+

3

d

)
8d

(
d
β − 2

β − 1

)1−β
) 2

3−β

+ 3c lnn

}

have at least one neighbor on the next-highest layer with probability at least
1− 4n−c.

Proof. First we note that due to Theorem 2.1

Pr(|degv −wv| > w2/3
v) 6 exp(−w1/3

v /4)

for all v ∈ V . This means that all nodes with wv > 64(c lnn)3 fulfill

|degv −wv| 6 w
2/3
v with probability at least 1 − n−c. Especially, nodes v ∈ Vk

with wv ∈ (ωk + ω
2/3
k−1, ωk−1 − ω

2/3
k−1) do not leave layer k. Let V ′k the set of these

nodes and W ′k =
∑
v∈V ′k

wv their total weight. We now want to show that each

node on layer k has at least one neighbor in V ′k. Due to equations (6.4) and (6.6)
it holds that

|V ′k| >
(
d
β − 2

β − 1

)β−1
n

(
1

2
ω1−β
k − 3ω

1−β+ 3ε−1
3(1−ε)

k − 6ω
1−β− 1

3

k−1

)
− 3

=

(
d
β − 2

β − 1

)β−1
n · ω1−β

k

(
1

2
− 3ω

3ε−1
3(1−ε)
k − 6ω

3ε(1−β)−1
3(1−ε)

k

)
− 3.

The requirement degv > max
{

24
3(1−ε)
1−3ε , 72

3(1−ε)
1+3ε(β−1)

}
ensures

|V ′k| >
1

4

(
d
β − 2

β − 1

)β−1
n · ω1−β

k − 3

and therefore

W ′k > ωk · |V ′k| >
1

4

(
d
β − 2

β − 1

)β−1
n · ω2−β

k − 3ωk.

12

Let D′v the number of edges node v ∈ Vk has to V ′k−1. For v ∈ Vk it holds that

E [D′v] = wv
W ′k−1
W

> ωkω
2−β
k−1

(
dβ−2β−1

)β−1
4d

− 3ωkωk−1

dn

> ω
3−β
2

k

(
dβ−2β−1

)β−1
4d

− 3

d
,

where we used ωk 6 n1/2 and ωkω
2−β
k−1 > ω

3−β
2

k , which holds for ε 6 3−β
β−1 as in

the proof of Lemma 6.3. Again, we apply a Chernoff Bound and show

Pr(D′v <
1

2
E [D′v]) 6 exp

(
−E [D′v]

8

)
.

For ωk >

((
8c lnn+ 3

d

)
4d
(
dβ−2β−1

)1−β) 2
3−β

it holds that E [D′v] > 8c lnn. This

implies D′v > 4c lnn > 1 with probability at least 1− n−c.
For nodes v ∈ Vk \V ′k we have to show that they have enough edges into both

layers they might end up in. Nodes v ∈ Vk with wv ∈
[
ωk, ωk + ω

2/3
k−1

]
can end

up in layer k or k + 1. So we have to show, that they have enough edges to V ′k
as well. The expected number of these edges is

wv
W ′k
W

> ωkω
2−β
k

(
dβ−2β−1

)β−1
4d

− 3ωkωk

dn
.

Since this lower bound is even bigger than the one for E [D′v], the same bounds
hold in this case.

Nodes v ∈ Vk with wv ∈
[
ωk−1 − ω2/3

k−1, ω
2/3
k−1

]
can end up in layer k or k−1.

The expected number of edges from such a node v to V ′k−2 is

wv
W ′k−2
W

> ωk−1

(
1− ω−1/3k−1

)
ω2−β
k−2

(
dβ−2β−1

)β−1
4d

−
3ωk−1

(
1− ω−1/3k−1

)
ωk−2

dn
.

For ωk > 8 it holds that ωk−1

(
1− ω−1/3k−1

)
> 1

2ωk−1. Again we can use ε 6

3−β
β−1 to show ωk−1ω

2−β
k−2 > ω

3−β
2

k−1 , which gives us the same results as above if

ωk−1 >

((
8c lnn+ 3

d

)
8d
(
dβ−2β−1

)1−β) 2
3−β

.

A last thing we need to ensure is that the nodes with the required minimum
degree also have the minimum weight they need. This part is easily shown by a
Chernoff Bound, which states

Pr (degv > 2wv + 3c lnn) < exp

(
−3c lnn

3

)
= n−c

13

for all v ∈ V . This means, each node v ∈ V has a weight of at least degv −3c lnn
2 .

Together with our requirements for ωk this establishes the requirements of the
lemma. At last we utilize a union bound to collect all failure probabilities and
establish the result as desired.

The following statement is a simple corollary of the above lemma.

Theorem 4.3. Let G = (V,E) be a Chung-Lu random graph as defined in
section 4. For any load vector x(0) ∈ Rn>0 with support only on nodes with degree

Ω((log n)max(3,2/(3−β)), Algorithm 2 reaches after L = Θ(log log n) steps a load

vector x(L) such that x
(L)
u has support only on the core C w. h. p.

The rest of the paper proves Theorem 4.1.

5 Analysis of Load Balancing on the Core

We start our analysis of Algorithm 1 with its first step, the diffusion on the core.
Recall the definition of the core C of the network and consider the core subgraph
G̃ = (Ṽ , Ẽ) induced by C. The following lemma provides an upper bound on

the spectral gap of G̃’s normalized Laplacian, which will be used in Lemma 5.2
to bound the convergence rate of the diffusion process in the core.

Lemma 5.1. The core subgraph G̃ of G fulfills

|1− λk(L)| 6 Θ

(√
(c+ 1) ln(4n)

n(3−β)/4
+

(2(c+ 1) lnn)
1/4

n1/8

)

for all eigenvalues λk(L) > λmin(L) of the normalized Laplacian L(G̃) w. h. p.

Proof. First of all, we note that ω0 is chosen in such a way, that, according to
a Chernoff bound, all nodes with weight at least n1/2 remain in the core with
probability at least 1− 1/nc+1. We will henceforth denote the set of these nodes
by C. Additionally, with probability at least 1− 1/nc+1 only nodes with weight

bigger than or equal to n1/2 −
√
n1/2 · 2(c+ 1) lnn = n1/2

(
1−
√

2(c+1) lnn

n1/4

)
can possibly join the core. Let

C ′ =

{
v ∈ V | wv ∈

[
n1/2

(
1−

√
2(c+ 1) lnn

n1/4

)
, n1/2

)}
the set of potential additional core nodes. To bound the number of these ad-
ditional nodes, we observe that the number of nodes with weight at least

n1/2
(

1−
√

2(c+1) lnn

n1/4

)
is at most

(
β − 2

β − 1
d

)β−1
· n(3−β)/2

(
1−

√
2(c+ 1) lnn

n1/4

)1−β

.

14

The number of nodes with weight at least n1/2 is at least(
β − 2

β − 1
d

)β−1
· n(3−β)/2 − 1.

This gives us

|C ′| 6
(
β−2
β−1d

)β−1
· n(3−β)/2

((
1−
√

2(c+1) lnn

n1/4

)1−β

− 1

)
+ 1.

We can now bound((
1−
√

2(c+1) lnn

n1/4

)1−β

− 1

)

=

((
1 +

√
2(c+1) lnn

n1/4−
√

2(c+1) lnn

)β−1
− 1

)

<

(
1 + 2

√
2(c+1) lnn

n1/4−
√

2(c+1) lnn
+ 2(c+1) lnn(

n1/4−
√

2(c+1) lnn
)2 − 1

)

6 6

√
2(c+1) lnn

n1/4 ,

where the second last line follows with β < 3 and the last line holds for sufficiently
large n.

For each possible set S ⊆ C∪C ′ of core nodes, we look at the Chung-Lu graph
induced by those nodes. These graphs can be interpreted as Chung-Lu random
graphs of their own if we scale the node weights by a factor of WS

W , where WS

denotes the total weight of the nodes from S. By doing so, all edge probabilities

remain the same. We already know that WS > n1/2
((

β−2
β−1d

)β−1
· n(3−β)/2 − 1

)
and W = d ·n. This means, that the minimum rescaled weight of a node from S
is at least

wmin :=
1

d

(
1−

√
2(c+ 1) lnn

n1/4

)((
β − 2

β − 1
d

)β−1
· n(3−β)/2 − 1

)
= Θ

(
n(3−β)/2

)
.

Now we can use Theorem 2 from [13] with the failure probability set to
ε := 2−|C

′| · n−c. This gives us

|1− λk(L)| 6 2

√
3 ln(4n/ε)

wmin

= Θ

√√√√ ln(4nc+1) + n(3−β)/2

√
2(c+1) lnn

n1/4 ln 2

n(3−β)/2

= Θ

(√
(c+ 1) ln(4n)

n(3−β)/4
+

(2(c+ 1) lnn)
1/4

n1/8

)
(5.1)

15

for the eigenvalues λk(L) > λmin(L) of the normalized Laplacian L of the induced
subgraph on S. As we consider only 2|C

′| many subsets, we can utilize a union
bound to show that with probability at most 2|C

′|ε = n−c one of these subgraphs
does not fulfill bound 5.1. Collecting the n failure probabilities for the node
degrees and the one for the eigenvalues gives us the desired result with probability
at least 1− 2

nc .

The following lemma states that after only a constant number of diffusion
rounds in G̃, the load of node v ∈ C is more or less equal to m · wv/W0.

Lemma 5.2. After 32
3−β rounds of diffusion with P = D−1A in the core sub-

graph G̃, each node v ∈ C has a load of at most O
(

wy∑
x∈C wx

m
)

w. h. p.

Proof. Recall that we perform diffusion with a diffusion matrix P = D−1A,
where A is the adjacency matrix and D is the degree matrix. We now show that
the eigenvalues of D−1A and D−1/2AD−1/2 are the same. Indeed, let v be an
eigenvector with eigenvalue λ of D−1A. Then D1/2 · v is an eigenvector with
eigenvalue λ of D−1/2AD−1/2, since(

D−1/2AD−1/2
)
·D1/2 · v = D1/2D−1A · v = D1/2λv = λD1/2v.

Since the diffusion matrix P is reversible, we can use the following result (see
book by Peres [15] eq. 12.11): ∣∣∣∣Pt

x,y

πy
− 1

∣∣∣∣ 6 λtmax

πmin

for λmax = max {|λk| : λk eigenvalue of P, λk 6= 1}. Since the normalized
Laplacian is defined as L = I − D−1/2AD−1/2, we know λmax =

Θ

(√
(c+1) ln(4n)

n(3−β)/4 + (2c lnn)1/4

n1/8

)
due to Lemma 5.1. Now we choose t := 32

3−β to

obtain that
Pt
x,y = πy ± n−4.

It now holds that
πy = degG̃(y)/

∑
x∈C

degG̃(x)

and

degG̃(y) 6 2·wv
W
WG̃ = O

wv
W
n

(
n1/2

(
1−

√
2(c+ 1) lnn

n1/4

))2−β
 = O

(
wv · n

2−β
2

)
due to Theorem 2.1, the fact that by not allowing self-loops and using
min

{wiwj
W , 1

}
the edge probabilities only decrease and the observation from

Lemma 5.1 that only nodes of weight at least n1/2
(

1−
√

2(c+1) lnn

n1/4

)
can join

16

the core w.h.p.
Furthermore it holds that∑

x∈G̃

degG̃(x) > Θ

((
n · n

1−β
2

)2)
= Θ

(
n3−β

)
since the core contains a complete sub graph of nodes with weights at least√
W = Θ(n1/2). We also know that

W0 6

(β−2
β−1d)

β−1
n

(
n1/2

(
1−
√

2(c+1) lnn

n1/4

))1−β∑
i=1

β − 2

β − 1
d
(n
i

) 1
β−1

= O
(
n · n

2−β
2

)
.

It now holds that

πy = degG̃(y)/
∑
x∈C

degG̃(x)

= O

(
wv ·

n
2−β
2

n3−β

)
= O

(
wv · n · n

2−β
2

)
= O

(
wy
W0

)
.

Since also πy = degG̃(y)/
∑
x∈C degG̃(x) = O

(
wy/

∑
x∈C wx

)
for all y ∈ C

with probability at least 1− 1/nc, it follows that

Pt
x,y = O

(
wy/

∑
x∈C

wx

)
± o(n−1) = O

(
wy/

∑
x∈C

wx

)

after 32
3−β rounds.

An implication of the lemma is, that there is a constant ε0 > 0 such that
each node v ∈ C has a load of at most (1 + ε0) wvW0

m after the first phase of
Algorithm 1.

6 Analysis of Top-Down Propagation

We continue our analysis of Algorithm 1. This section studies the down-
ward/upward propagation.

First note that our algorithm deals with a random graph and therefore it
might happen that some of the nodes’ neighborhoods look significantly different
from what one would expect by looking at the expected values. We call these

17

nodes dead-ends as they can not be utilized to effectively forward load. This
definition will be made precise in Definition 6.1 below.

Only for the sake of analysis we assume that dead-ends do not push load to
neighbors on the next lowest layer, but instead keep all of it. In reality the algo-
rithm does not differentiate between nodes which are dead-ends and nodes which
are no dead-ends. We also assume in this section that nodes do not consume any
load during the top-down distribution.

The main goal of this section is twofold. We first show that no node which
is not a dead-end, gets too much load. Then we show that the total load on all
dead-ends from the core down to a layer with nodes of a certain constant degree
is at most a constant fraction of the total load. The converse means that at least
a constant fraction of load reaches the nodes of the last layer we are considering.

For a node v ∈ Vk we consider two partial degrees. Let Dh
v be the number of

edges to nodes in the higher layer k− 1, and D`
v is the number of edges to nodes

in the lower layer k + 1. Note that Dh
v and D`

v are random variables, composed
of sums of independent Bernoulli trials:

Dh
v =

∑
u∈Vk−1

Ber
(wv · wu

W

)
and D`

v =
∑

u∈Vk+1

Ber
(wv · wu

W

)
.

In our proofs we will apply several well-known Chernoff bounds which use the
fact that partial degrees are sums of independent Bernoulli trials.

We now define four properties which will be used throughout the analysis.

Definition 6.1. A node v ∈ V is a dead-end if one of the following holds:

〈D1〉 In-/Out-degree: A node v ∈ Vk has this property if either

|Dh
v −E

[
Dh
v

]
| > E

[
Dh
v

]2/3
or |D`

v −E
[
D`
v

]
| > E

[
D`
v

]2/3
.

〈D2〉 Wrong layer: A node v ∈ Vk has this property if it has a degree that

deviates by at least w
2/3
v from its expected degree.

〈D3〉 Border: A node v ∈ Vk has this property if it does not fulfill property 〈D2〉
and if it is of weight at least ωk−1 − ω2/3

k−1 or at most ωk + ω
2/3
k−1 and if it

is assigned to the wrong layer.
〈D4〉 Induced Out-degree: A node v ∈ Vk has this property if it fulfills none

of the properties 〈D1〉 – 〈D3〉 and if it has at least (ωkWk+1/W)2/3 many
lower-layer neighbors with properties 〈D2〉 or 〈D3〉.

The next lemma shows that for a non-dead-end node v ∈ Vk the received load xv
in phase k is almost proportional to the “layer-average load”m·wv/Wk. For dead-
ends, the received load can be higher, but the probability to receive significantly
higher load is small.

Lemma 6.2. For vk ∈ Vk and the received load xv in phase k the following
holds. If v is not a dead-end,

xv 6 (1 + εk) ·m · wv
Wk

,

18

where for every layer k the error term εk is given by

(1 + εk) = (1 + εk−1) · (1 +O(ω
−1+β/3
k)) · (1 +O(ω

−(3−β)/6
k)) ,

so εk 6 εk+1 and εk = O(1).

Proof. Every node u ∈ Vk−1 that sends load to v is not a dead-end. This means,

that u has at least E
[
D`
u

]
−E

[
D`
u

]2/3
many edges to Vk as it does not fulfill

〈D1〉. Due to 〈D2〉 and 〈D3〉 we know, that u is assigned to the correct layer. Now
it is possible that u’s neighbors in Vk are assigned to layers different than k, but

due to the fact that u does not fulfill 〈D4〉, there can be at most
(
ωk−1

Wk

W

)2/3
6

E
[
D`
u

]2/3
of those nodes. This means, that u has at least E

[
D`
u

]
−2E

[
D`
u

]2/3
many edges to nodes which are correctly assigned to Vk and a load of at most
(1 + εk−1) ·m · wu/Wk−1.

Then the load on v ∈ Vk becomes at most

∑
u∈V ′k−1

Ber
(wuwv

W

)
· (1 + εk−1) ·m · wu

Wk−1
· 1

E [D`
u]−E [D`

u]
2/3

=
∑

u∈V ′k−1

Ber
(wuwv

W

)
· (1 + εk−1) ·m · wu

Wk−1
· 1

E [D`
u]
·

(
1 +

1

E [D`
u]

1/3 − 1

)

=
∑

u∈V ′k−1

Ber
(wuwv

W

)
· (1 + εk−1) ·m · wu

Wk−1
· W

wu ·Wk
·

(
1 +

1

E [D`
u]

1/3 − 1

)

6
∑

u∈V ′k−1

Ber
(wuwv

W

)
· (1 + εk−1) ·m · W

Wk ·Wk−1
·

1 +
1(

γ

2d
ω3−β
k

)1/3
− 1

 ,

where the last equality uses the expressions for E
[
D`
u

]
derived in the proof

of Lemma 6.3. Using the assumption that v is not a dead-end, the number
of incoming edges from the higher layer which actually forward any load is at

most E
[
Dh
v

]
+ E

[
Dh
v

]2/3
. Note that there can not be any additional edges by

wrongly assigned nodes as these nodes would be dead-ends and therefore would

19

not forward any load. Thus we can simplify

W

Wk ·Wk−1
·
∑

u∈V ′k−1

Ber
(wuwv

W

)
(6.1)

6
W

Wk ·Wk−1
· (E

[
Dh
v

]
+ E

[
Dh
v

]2/3
)

=
W

Wk ·Wk−1
·E
[
Dh
v

]
(1 + E

[
Dh
v

]−1/3
)

=
W

Wk ·Wk−1
· wv ·Wk−1

W
· (1 + E

[
Dh
v

]−1/3
)

= (1 + E
[
Dh
v

]−1/3
) · wv
Wk

6

1 +
1(

γ

2d
ω
(3−β)/2
k

)1/3
 · wv

Wk
,

where the last line follows with ε 6 3−β
β−1 .

Finally, we prove that the εk values do not grow arbitrarily large for the
final layer k = O(log log n). We define a constant ν = 21/ε(β−1) and a constant
r = 1/(1 − ε) > 1. Note that for the last layer of interest ωk−1 > ν, and, more
generally, ωi = ωri+1. Hence, by reversing the index, we observe that

(1 + εk) 6 (1 + ε0) ·
k−1∏
i=1

1 +
1(

γ

2d

)1/3 (
νri−k

)(3−β)/3 − 1

·

1 +
1(

γ

2d

)1/3 (
νri−k

)(3−β)/6

To bound the product, we apply the natural logarithm and note that

k−1∑
i=1

ln

1 +
1(

γ

2d

)1/3 (
νri−k

)(3−β)/3 − 1

+ ln

1 +
1(

γ

2d

)1/3 (
νri−k

)(3−β)/6

6
2(

γ

2d

)1/3 · k−1∑
i=1

(ν(3−β)/6)−r
i

<
2(

γ

2d

)1/3 · ∞∑
i=1

(ν(3−β)/6)−r
i

.

20

This series converges to a constant value, and thus the overall product is also
bounded by a constant. We obtain

(1 + εk) 6 (1 + ε0) · (1 +O(1)) = 1 +O(1) ,

as ε0 measures the relative load differences in the core subgraph G̃, for which
ε0 = o(1).

Now we want to show that on each layer with sufficiently large constant
weight at most a small fraction of the total load remains on dead-ends. To do so,
we show that for each property 〈D1〉 – 〈D4〉 the nodes with these properties only
contribute a small enough fraction to the total dead-end load of each layer. We
begin by bounding the contribution of 〈D1〉-nodes to the total dead-end load.

Lemma 6.3. If ε 6 (3− β)/(β − 1) and ωk >

(
2d
γ

(
1

2e−1

)3)2/(3−β)

, the prob-

ability that a node v ∈ Vk is a 〈D1〉-node is at most

2 exp(−c · ω(3−β)/6
k),

for c = 1
4

(
γ

2d

)1/3
.

Proof. We apply the Chernoff bound from Theorem 2.1 and choose δ =

E
[
Dh
v

]−1/3
. This yields

Pr
[∣∣Dh

v −E
[
Dh
v

]∣∣ > E
[
Dh
v

]2/3]
< exp

(
−1

4
·E
[
Dh
v

]1/3)
and

Pr
[∣∣D`

v −E
[
D`
v

]∣∣ > E
[
D`
v

]2/3]
< exp

(
−1

4
·E
[
D`
v

]1/3)
as long as E

[
Dh
v

]−1/3
,E
[
D`
v

]−1/3
< 2e− 1.For the expected degrees E

[
Dh
v

]
and E

[
D`
v

]
we have

E
[
Dh
v

]
= wv ·

Wk−1

W
and E

[
D`
v

]
= wv ·

Wk+1

W
.

From inequality 4.2 we get

E
[
Dh
v

]
> wv ·

γ

2

nω2−β
k−1

d · n
= wv ·

γ

2d
ω2−β
k−1 .

With a similar derivation, we obtain that

E
[
D`
v

]
> wv ·

γ

2d
ω
(1−ε)2(2−β)
k−1 .

21

As β > 2, we see that the lower bound for E
[
Dh
v

]
dominates. Thus, by using a

union bound and observing that wv > ωk, the probability for a node v becoming
a dead end is at most

2 exp

(
−1

4
·
(
γ

2d
ω2−β
k−1ωk

)1/3
)

.

Note that ω2−β
k−1 · ωk > ω

3−β+ε(2−β)/(1−ε)
k with equality for all but the last layer.

The latter exponent is at least (3 − β)/2 if we pick a sufficiently small ε 6
(3− β)/(β − 1). In this case, the overall probability becomes at most 2 exp(−c ·

ω
(3−β)/6
k)for the constant c = 1

4 ·
(
γ

2d

)1/3
as desired. We also see now, that

E
[
Dh
v

]−1/3
6 2e− 1 is fulfilled, if ωk >

(
2d
γ

(
1

2e−1

)3)2/(3−β)

.

An implication of the former lemma is that there are no 〈D1〉-nodes on layers
with weight at least polylog(n). Now that we have an understanding of which
layers actually contain 〈D1〉-nodes, we can start to derive high probability upper
bounds on the total load that is left on these nodes throughout the top-down
phase.

Lemma 6.4. If v ∈ Vk is a 〈D1〉-node, then

Pr

[
xv > α · m · wv

Wk

]
< exp

(
−Ω(ω

(3−β)/2
k ·min{α− 1, (α− 1)2})

)
.

Proof. To prove the upper bound on the probability for 〈D1〉-nodes, we apply
a Chernoff bound. In particular, given that the load for every node v ∈ Vk is
upper bounded by (6.1), a 〈D1〉-node v ∈ Vk can receive a total load of more than
α ·m · wvWk

only if this number is larger than the bound in (6.1), or, equivalently

Dh
v >

∑
u∈V ′k−1

Ber
(wuwv

W

)
>

α

(1 + εk−1)(1 +O(ω
−1+β/3
k))

· wv ·
Wk−1

W

=
α

(1 + εk−1)(1 +O(ω
−1+β/3
k))

·E
[
Dh
v

]
>
α

c
·E
[
Dh
v

]
,

for an appropriately chosen constant c. By the Chernoff bound above, we have

Pr

[
xv > α · m · wv

Wk

]
< exp

(
−E

[
Dh
v

]
·min

{
α

c
− 1,

(α
c
− 1
)2}

/4

)
= exp

(
−Ω(ω

(3−β)/2
k ·min{α− 1, (α− 1)2})

)
.

22

Now we use the tail bound from Lemma 6.4 and overestimate the load dis-
tribution of 〈D1〉-nodes with an exponential distribution. In particular, for each
node v ∈ Vk we introduce the following variable that measures the “〈D1〉-load”
of this node, i.e. the load that each 〈D1〉-node keeps.

Definition 6.5. The load of a node v ∈ Vk under the condition that it has
property 〈D1〉 is upper-bounded by the following random variable

Xv =

{
0 with prob. 1− pv
svD

h
v with prob. pv ,

where pv is an upper bound for the probability that v fulfills 〈D1〉 and
sv = (1 + εk)mW/(WkWk−1) is an upper bound on the load per edge between
layers k − 1 and k.

We can now show that for each node v ∈ Vk the following random variable
stochastically dominates the 〈D1〉-load Xv.

Definition 6.6. For a node v ∈ Vk let

X̂v =

{
0 with prob. 1− p̂v
`v

(
1 + Exp(λv) + E

[
Dh
v

]−2/3)
with prob. p̂v ,

where p̂v = 2 exp

(
−E[Dhv]

1/3

4

)
is an upper bound for the probability pv,

λv = 1
4E
[
Dh
v

]
and `v = 2(1 + εk)m wv

Wk
.

Note that our 〈D1〉-load overestimates the contribution of v to the total load
left on 〈D1〉-nodes during the top-down phase. In particular, if v is not a 〈D1〉-
node, then no 〈D1〉-load is left on v and consequently the contribution is 0.
Otherwise, we use the tail bound from Lemma 6.4 as follows. We overestimate
the load by assuming that at least twice the layer-average load is present on v. For
the additional load, we can apply the tail bound under the condition α > 2, which
implies that this excess load is upper bounded by an exponentially distributed
random variable with a parameter λv = 1

4E
[
Dh
v

]
.

We first obtain a high probability bound on the total load left on 〈D1〉-nodes
in each layer k during the top-down phase.

Lemma 6.7. For every constant c > 0 and any k the total load left on 〈D1〉-
nodes in layer k is at most

4(1 + εk)m
ωk−1
Wk

c lnn+ 40(1 + εk)m
ωk−1
Wk

nk exp

(
−1

4

(
ωk
Wk−1

W

)1/3
)

with probability at least 1− n−c.

23

Proof. We begin by observing that

Pr

[∑
v∈Vk

Xv > t

]
= Pr

[
exp

(
α
∑
v∈Vk

Xv

)
> exp(αt)

]

6 E

[
exp

(
α
∑
v∈Vk

Xv

)
/ exp(αt)

]

=
1

exp(αt)

∏
v∈Vk

E [exp(αXv)]

6
1

exp(αt)

∏
v∈Vk

E
[

exp(αX̂v)
]

for every α > 0. The last equality was shown by using independence. The next
stop is now bounding the expectation of exp(αX̂v), which amounts to

E
[

exp(αX̂v)
]

=

(1− p̂v) + p̂v

(
exp

(
α`v

(
1 + E

[
Dh
v

]−2/3)) ·E [exp(α`v · Exp(λv))]
)

We analyze the remaining expectation in the right-hand side by explicitly looking
at the definition of the exponential distribution. This yields

E [exp(α`v · Exp(λv))] =

∫ ∞
0

exp(α`vx) · λv exp(−λvx)dx

=
λv

λv − α`v
· [− exp((α`v − λv)x)]

∞
0

=
λv

λv − α`v
.

It has to be noted that for this expectation to hold, we need 0 < α`v < λv.
Using this in our expression above, we see

E
[

exp(αX̂v)
]

= (1− p̂v) + p̂v

(
exp

(
α`v

(
1 + E

[
Dh
v

]−2/3)) · λv
λv − α`v

)
We can further bound this expression by choosing α small enough such that
α`v and α/λv become small as well. In particular, we denote by ` = 2(1 +
εk)mωk−1/Wk and observe `v 6 ` for all v ∈ Vk. We choose α = 1/2`, which
implies that α`v 6 1/2 < αv for all v with E

[
Dh
v

]
> 2. We can safely assume,

that E
[
Dh
v

]
> 4 if wv is a big enough constant. In this case, we can bound

exp(α`v

(
1 + E

[
Dh
v

]−2/3)
) 6 exp

(
1
2

(
1 + 4−2/3

))
< exp(1) and λv

λv−α`v 6 2.

Using these bounds, we arrive at the following expression for our expectation

E
[

exp(αX̂v)
]
< (1− p̂v) + p̂v · 2 exp(1)

6 1 + 5 · p̂v
6 exp(5 · p̂v) .

24

This expression is now a suitable bound for the sum of dead-end loads. We apply
this bound as follows

Pr

[∑
v∈Vk

Xv > t

]
6 exp

(
5
∑
v∈Vk

p̂v − αt

)

6 exp

(
10nk exp

(
−1

4

(
ωk
Wk−1

W

)1/3
)
− αt

)

As we chose α = 1/2 (2(1 + εk)mωk−1/Wk), we can see, that

t = 4(1 + εk)m
ωk−1
Wk

c lnn+ 40(1 + εk)m
ωk−1
Wk

nk exp

(
−1

4

(
ωk
Wk−1

W

)1/3
)

is sufficient to obtain the high probability bound.

Now we take a closer look at nodes with property 〈D2〉. We can employ
a Chernoff Bound to show that nodes with polylogarithmically large weights

do not deviate by w
2/3
v from their expected degree with high probability. This

means that none of these nodes fulfills property 〈D2〉 with high probability. In
the following analysis we can therefore concentrate on nodes with weight at most
polylog(n). This observation is crucial for the proof of Lemma 6.8.

Lemma 6.8. For any k all nodes v ∈ Vk with property 〈D2〉 contribute at most

O
((

1 + ω
−2/3
k

)3
ω

4−β+ε(β−1)
1−ε

k · exp
(
−ω1/3

k /4
)
m

)
+O

(
polylog(n)√

n
m

)
to the total dead-end load of all layers with probability at most 1 − 3

nC
, for a

constant C > 1 + (β − 2)
(

1 + 1
1−ε

)
.

Proof. We use Theorem 2.3 to show this result. In the context of the theorem,
the Xe are random variables indicating the existence of edge e in the graph.
This means µ = dn/2 since the expected average degree is d. The function f is
defined as the total load all nodes from Vk with property 〈D2〉 get. Then we can
bound

|f | 6 nk
(1 + εk) d

γ2
n1+(β−2)(1+ 1

1−ε)m

n

6
4γ · (1 + εk) · d

γ2
ω1−β
k n1+(β−2)(1+ 1

1−ε)m

=: M

due to equation (6.2) and the trivial bound degv 6 n.
As the error event B we define that any of the nodes v ∈ Vk fulfills degv >

wv

(
1 + cB lnn

wv

)
for wv < cB lnn or degv > 2 · wv for wv > cB lnn. To unify

25

this bound, we can assume degv < 2 · wv + cB lnn. A Chernoff Bound from [1]
states, that this is fulfilled with probability at most n−cB/3 for every v ∈ Vk. By
applying a union bound we get Pr[B] 6 n−cB/3+1.

To bound the differences |f(Xn) − f(X′n)| for every X′n that differs in only
one position Xe from Xn, we observe the following: By changing one edge, only
two nodes can change their degree by one. We can now trivially upper bound
|f(Xn)− f(X′n)| by two times the maximum dead-end load a 〈D2〉-node can get
while B does not hold. This gives us

c := 2
(1 + εk) d

γ2
(2 · ωk−1 + cB lnn)

1+(β−2)(1+ 1
1−ε) m

n
.

If we set t = 4c
√
µ · C lnn for an arbitrary constant C > 0 we get the following

result from Theorem 2.3

Pr
[∣∣f −E [f]

∣∣ > 4c
√
µ · C lnn+

(2M)2

c
Pr[B]

]
6

2M

c
Pr[B] + 2n−C .

We can now conclude

2M

c
Pr[B] 6

4γ

2
ω1−β
k n

(
n

2 · ωk−1 + cB lnn

)1+(β−2)(1+ 1
1−ε)

n−cB/3+1.

For cB > 3C + 9 + 3(β − 2)(1 + 1
1−ε) and sufficiently large n this is at most

n−C . We obtain an upper bound of E [f] + 4c
√
µ · C lnn + (2M)2

c Pr[B] on the
dead-end load of nodes v ∈ Vk. We can see that

4c
√
µ · C lnn 6 2

(1 + εk) d

γ2
(2 · ωk−1 + cB lnn)

1+(β−2)(1+ 1
1−ε) m

n
·
√
d · n · C lnn

= Θ

(
polylog(n)√

n
m

)
for ωk = O (polylog(n)). This is acceptable since nodes with property 〈D2〉 can
only appear for polylogarithmically small ωk. We can also see that

(2M)2

c
Pr[B] 6 2Mn−C

6 2
4γ · (1 + εk) · d

γ2
ω1−β
k n1+(β−2)(1+ 1

1−ε)m · n−C ,

which is arbitrarily small for C > 1 + (β − 2)
(

1 + 1
1−ε

)
. The only thing missing

now is an upper bound on E [f], the expected total dead-end load of nodes
v ∈ Vk with property 〈D2〉.

Let L
(2)
v the load of node v with property 〈D2〉. Suppose the node v ∈ Vk

lands on layer k. Then it gets a load of at most

(1 + εk)
W

WkWk−1
m 6

dn

γnω2−β
k γnω2−β

k−1
m =

(1 + εk) d

γ2
ωβ−2k ωβ−2k−1

m

n

26

from each neighbor on layer k − 1 according to Lemma 6.2. We observe that

ωk 6 degv and ωk−1 6 deg
1

1−ε
v . If we trivially bound the number of v’s neighbors

on layer k − 1 by degv, we get an upper bound of

L(2)
v 6

(1 + εk) d

γ2
deg

1+(β−2)(1+ 1
1−ε)

v
m

n
(6.2)

if degv deviates by at least w
2/3
v from wv. The probability of this is at most

exp

(
−w

1/3
v

4

)
by using the Chernoff Bound 2.1.

We can see now that deg(2)
v , the degree of v if it has property 〈D2〉, is stochas-

tically dominated by the following random variable

d̂eg
(2)

v =

{
0 with prob. 1− p̂v
2wv

(
1 + Exp(wv4) + w

−2/3
v

)
with prob. p̂v ,

where p̂v = exp
(
−w

1/3
v

4

)
. This means that L

(2)
v is stochastically dominated by

L̂(2)
v :=

(1 + εk) d

γ2

(
d̂eg

(2)

v

)1+(β−2)(1+ 1
1−ε) m

n
.

From our proof of lemma 6.3 we know that ε 6 (3− β)/(β − 1). This gives us

1 + (β − 2)

(
1 +

1

1− ε

)
6

3

2
(β − 1) < 3.

Since each value of d̂eg
(2)

v is either 0 or at least 1, we conclude that

E

[(
d̂eg

(2)

v

)1+(β−2)(1+ 1
1−ε)

]
6 E

[(
d̂eg

(2)

v

)3
]

= Θ

((
1 + ε

(2)
k

2)3
w3
v · p̂v

)
.

This gives us

E
[
L(2)
v

]
6 Θ

(
m

n

(
1 + w−2/3v

)3
w3
v · exp

(
−w1/3

v /4
))

.

Now let E
[
L
(2)
k

]
the expected total dead-end load of nodes v ∈ Vk with property

〈D2〉. We can now use the result above to show

E
[
L
(2)
k

]
6
∑
v∈Vk

Θ

(
m

n

(
1 + w−2/3v

)3
w3
v · exp

(
−w1/3

v /4
))

6 4γ · ω1−β
k · n ·Θ

(
m

n

(
1 + ω

−2/3
k

)3
ω3
k−1 · exp

(
−ω1/3

k /4
))

6 Θ

(
m
(

1 + ω
−2/3
k

)3
ω

4−β+ε(β−1)
1−ε

k · exp
(
−ω1/3

k /4
))

. (6.3)

27

Putting all upper bounds together gives us the desired result.

After successfully bounding the contribution of nodes with properties 〈D1〉
and 〈D2〉 to dead-end load, we will now turn to the border nodes with property
〈D3〉. We already know that these nodes cannot deviate too much from their
expected degrees, because they do not fulfill property 〈D2〉 by definition. There-
fore they can only be on one of two layers. We still have to differ between nodes
in the upper half of a border and those in the lower half. The following lemma
bounds the contribution of nodes in the upper half of a border.

Lemma 6.9. For any k all nodes v ∈ Vk with property 〈D3〉 and

ωk 6 wv 6 ωk + ω
2/3
k−1 contribute at most

Θ

(
ω
−ε(β−2)
k +

ωβ−2k ωβ−2k+1 · c lnn

n

)
m

to the total dead-end load of layer k + 1 w. h. p.

Proof. In the worst case, all considered nodes change layer. Then we simply
have to bound the number of edges these nodes have into layer k. Let Buk the
total weight of nodes from the upper half of the border around ωk. The expected
number of edges these nodes have to other nodes from Vk is at most Buk

Wk

W and at

least Buk
Wk−Buk
W . By utilizing a Chernoff Bound, we get that the number of edges

in consideration is at most Buk
Wk

W +c lnn (if the expected value is asymptotically

smaller than c lnn) or 2Buk
Wk

W (if the expected value is bigger) w. h. p.

The load per edge from layer k is at most (1 + εk+1) W
WkWk+1

m. This gives

us an upper bound of

(1 + εk+1)
W

WkWk+1

(
Buk

Wk

W
+ c lnn

)
m

6 (1 + εk+1)

(
Buk
Wk+1

+
d · n · c lnn(

γ
2

)2
n2ω2−β

k ω2−β
k+1

)
m

on the total dead-end load of nodes with property 〈D3〉 from the upper half of
the border around ωk. As Buk is trivially bounded by Wk this amounts to at most

Θ

((
ωk
ωk+1

)2−β
+

ωβ−2
k ωβ−2

k+1 ·c lnn
n

)
m = Θ

(
ω
−ε(β−2)
k +

ωβ−2
k ωβ−2

k+1 ·c lnn
n

)
m.

The following lemma about the contribution of nodes in the lower half of a
border uses the smoothness of the weight distribution.

Lemma 6.10. For any k all nodes v ∈ Vk+1 with property 〈D3〉 and

ωk − ω2/3
k 6 wv 6 ωk contribute at most

(1 + εk)

6
(
dβ−2β−1

)β−1
γ
2

ω
−1/3
k +

2 · ωβ−1k
γ
2n

+
d · ωβ−2k ωβ−2k+1 · c lnn(

γ
2

)2
n

m

28

to the total dead-end load of layer k w. h. p.

Proof. Again, all nodes change layer in the worst case. Let Blk denote the total
weight of nodes from the lower half of the border around ωk. The expected
number of edges these nodes have into Vk−1 is exactly Blk

Wk−1

W . With the same
Chernoff bound as in the proof of lemma 6.9, we get that the number of these
edges is at most Blk

Wk−1

W + c lnn with high probability. The load per edge from

layer k − 1 is at most (1 + εk) W
Wk−1Wk

m. This gives us an upper bound of

(1 + εk)
W

Wk−1Wk

(
Blk

Wk−1

W
+ c lnn

)
m

6 (1 + εk)

(
Blk
Wk

+
d · n · c lnn(

γ
2

)2
n2ω2−β

k ω2−β
k+1

)
m

on the total dead-end load of nodes with property 〈D3〉 from the lower half of
the border around ωk. Now we can bound Blk as follows. A node is of weight at
least ωk iff

i 6

(
d
β − 2

β − 1

)β−1
· n · ω1−β

k

and of weight at most ωk − ω2/3
k = ωk

(
1− ω−1/3k

)
iff

i >

(
d
β − 2

β − 1

)β−1
· n · ω1−β

k

(
1− ω−1/3k

)1−β
This means the number of nodes in the lower half of the border can be at most(

d
β − 2

β − 1

)β−1
· n · ω1−β

k

((
1− ω−1/3k

)1−β
− 1

)
+ 2.

We can see
(

1− ω−1/3k

)1−β
=

(
1 + 1

ω
1/3
k −1

)β−1
. Together with the fact, that

β < 3, we get that the number of nodes in the lower half of the border is at most

(
d
β − 2

β − 1

)β−1
· n · ω1−β

k

 2

ω
1/3
k − 1

+
1(

ω
1/3
k − 1

)2
+ 2

6

(
d
β − 2

β − 1

)β−1
· n · ω1−β

k

6

ω
1/3
k

+ 2 (6.4)

for ωk > 8. Since the maximum weight of these nodes is ωk, it holds that

Blk 6 6

(
d
β − 2

β − 1

)β−1
· n
ω2−β
k

ω
1/3
k

+ 2 · ωk, (6.5)

29

which implies

Blk
Wk

6
6
(
dβ−2β−1

)β−1
γ
2

ω
−1/3
k +

2 · ωβ−1k
γ
2n

,

giving us the result.

At last we have to show that the dead-end load of nodes with property 〈D4〉
is properly bounded. We already know that each of these nodes obeys the upper
bound from Lemma 6.2. Therefore it is sufficient to bound the number of these
nodes. To bound the number of 〈D4〉-nodes in Vk, we simply have to bound the
total number of edges lost between nodes from Vk and nodes with properties 〈D2〉
or 〈D3〉 from Vk+1. Then we divide this total number of edges by the minimum
number of edges a node v ∈ Vk has to lose to obtain property 〈D4〉. The following
two lemmas give upper bounds on the the total number of edges between nodes
from Vk and nodes with properties 〈D2〉 and 〈D3〉 from Vk+1 respectively.

Lemma 6.11. For ε < 1/3 the number of edges from nodes v ∈ Vk+1 with
property 〈D3〉 to nodes from Vk is at most12

d

(
d
β − 2

β − 1

)β−1
ω2−β
k

ω
1/3
k

+
4 · ωk
d · n

+ 2

ωk+1

(
1 + ω

3ε−1
3(1−ε)
k+1

)
d · n

+
6

d

(
d
β − 2

β − 1

)β−1
ω2−β
k+1ω

3ε−1
3(1−ε)
k+1

(
1 + ω

3ε−1
3(1−ε)
k+1

))
Wk w. h. p.

Proof. We consider border nodes v ∈ Vk+1 from the border around ωk and ωk+1

independently. Let Blk the total weight of nodes v ∈ Vk+1 from the border around
ωk. The expected number of edges between this border and Vk is Blk

Wk

W . We

already know W = d · n, Wk = Θ
(
nω2−β

k

)
and, from the proof of Lemma 6.10,

Blk = Θ

(
n
ω2−β
k

ω
1/3
k

)
. Therefore, the expected value is at least c lnn as long as ωk

is small enough. This allows us to apply a Chernoff Bound to show that the
number of edges between this border and Vk is at most 2Blk

Wk

W with probability

at least 1−n−c/3. Otherwise, the number of edges is at most Blk
Wk

W + c lnn with

probability at least 1− n−c/3. From equation (6.5) we know

Blk 6 6

(
d
β − 2

β − 1

)β−1
· n
ω2−β
k

ω
1/3
k

+ 2 · ωk,

which gives us the first term of our result.
Now let Buk+1 the total weight of nodes v ∈ Vk+1 from the border around

ωk+1. Again, the expected number of edges between this border and Vk is
Buk+1

Wk

W . Using a Chernoff Bound, we get at most 2Blk
Wk

W edges with proba-

bility at least 1−n−c/3 or at most Blk
Wk

W + c lnn edges with probability at least

30

1−n−c/3. Note that in this border there are all nodes with weight at least ωk+1

and at most ωk+1 + ω
2/3
k = ωk+1

(
1 + ω

3ε−1
3(1−ε)
k+1

)
. As in the proof of Lemma 6.10

we can bound the number nuk+1 of these nodes to∣∣∣∣∣nuk+1 −
(
d
β − 2

β − 1

)β−1
n · ω1−β

k+1

(
1−

(
1 + ω

3ε−1
3(1−ε)
k+1

)1−β
)∣∣∣∣∣ 6 1. (6.6)

Some simple calculations and the observation β < 3 give us

(
1−

(
1 + ω

3ε−1
3(1−ε)
k+1

)1−β
)

6

 2ω
3ε−1

3(1−ε)
k+1 + ω

2 3ε−1
3(1−ε)

k+1

1 + 2ω
3ε−1

3(1−ε)
k+1 + ω

2 3ε−1
3(1−ε)

k+1

6 2ω

3ε−1
3(1−ε)
k+1 + ω

2 3ε−1
3(1−ε)

k+1

6 3ω
3ε−1

3(1−ε)
k+1 ,

where in the last line we used the assumptions ε < 1/3, which gave us 3ε−1
3(1−ε) < 0,

and ωk+1 > 1. Together with our bound of ωk+1

(
1 + ω

3ε−1
3(1−ε)
k+1

)
on the maximum

weight of these nodes this results in

Buk+1 6
3

d

(
d
β − 2

β − 1

)β−1
· ω2−β

k+1ω
3ε−1

3(1−ε)
k+1

(
1 + ω

3ε−1
3(1−ε)
k+1

)
+

ωk+1

(
1 + ω

3ε−1
3(1−ε)
k+1

)
d · n

and therefore establishes the second term of our result.

Lemma 6.12. For all k the number of edges from nodes v ∈ Vk+1 with property
〈D2〉 to nodes from Vk is at most

6 exp
(
−ω1/3

k+1/4
)
Wk+1 +

(
4ωk

Wk

W
+ 6(c′ + 3) lnn

)
d
√
c′√
2

√
n lnn+ n−1

with probability at least 1− 3 · n−c′ for some constant c′ > 3.

Proof. As in the proof of Lemma 6.8 we are overestimating the number of edges
of a node v ∈ Vk+1 with property 〈D2〉 to nodes from Vk by deg(2)

v . We already

know from that Lemma, that deg(2)
v is stochastically dominated by the following

random variable

d̂eg
(2)

v =

{
0 with prob. 1− p̂v
2wv

(
1 + Exp(wv4) + w

−2/3
v

)
with prob. p̂v ,

31

where p̂v = exp
(
−w

1/3
v

4

)
. This means

E
[
Dh
v | v fulfills 〈D2〉

]
6 E

[
deg(2)v

]
6
(

2wv + 8 + 2w1/3
v

)
exp

(
−w

1/3
v

4

)

6 6wv exp

(
−w

1/3
v

4

)
for wv > 4. As wv > ωk+1, this gives us

6 exp
(
−ω1/3

k+1/4
)
Wk+1

as an upper bound on the expected number of edges from 〈D2〉-nodes on layer
k + 1 to nodes on layer k.

Now we want to show concentration using Theorem 2.3. In the context of the
Theorem, the Xe are random variables indicating the existence of edge e in the
graph. This means

µ = dn/2,

since the expected average degree is d. The function f is defined as the total
number of edges from all nodes from Vk+1 with property 〈D2〉 to nodes from Vk.
Then we can bound

|f | 6 nk · nk+1 := M,

since nk and nk+1 are the number of nodes on layers k and k + 1 respectively.
As the error event B we define the event, that any node v ∈ Vk+1 has more than
max

{
2E
[
Dh
v

]
,E
[
Dh
v

]
+ cB lnn

}
edges to Vk. This results in

Pr (B) 6 n−cB/3+1.

We can now assume, that each v ∈ Vk+1 with property 〈D2〉 has at most
2E
[
Dh
v

]
+cB lnn many edges to Vk. Especially, this means that for every Xn ∈ B

|f(Xn)− f(X′n)| 6 4ωk
Wk

W
+ 2cB lnn =: c

for every X′n that differs in only one position Xe from Xn. The former inequality
holds, because in the worst case changing one edge results in two new nodes with
property 〈D2〉. Each of these nodes can only have 2ωk

Wk

W +cB lnn edges to Vk as
we have seen before. If we choose t = 4c

√
µ · c′ lnn � cµ for a constant c′ > 0,

we get the following result from Theorem 2.3

Pr
[∣∣f −E [f]

∣∣ > c
√
µ · c′ lnn+ (2M)2

c Pr[B]
]
6 2M

c n
−cB/3+1 + 2n−c

′
.

Let cB = 3(c′+ 3). As M � n2 and c > 1 this gives us that the number of edges
between nodes v ∈ Vk with property 〈D2〉 and nodes in Vk+1 is upper-bounded
by

E [f] + c
√
µ · c′ lnn+ (2M)2

c Pr[B]

32

with probability at least 1−3 ·n−c′ . With c′ > 3 it holds that (2M)2

c Pr[B] < n−1.
We also know that

c
√
µ · c′ lnn 6

(
4ωk

Wk

W
+ 6(c′ + 3) lnn

)
d
√
c′√
2

√
n lnn.

Together with the upper bound on the expected number of edges from earlier in
this proof, we get the result as desired.

Lemma 6.13. Let ε < min
{
β−2
3 , 12

(
1−

√
3

β+1

)}
. Then the following state-

ments hold:

(1) For all k > 0 the total load of nodes v ∈ Vk with property 〈D4〉 is at most

O

(
ω

2−β
3(1−ε)
k + ω

(2β2−11β+14)(β−2)
27(1−ε)

k + n
3+1−ε+2(β−2)(1−ε)2

6 −1

+ exp
(
−ω

1−ε
3

k /4
)
ω

1
1−ε+(β−2)
k +

polylog(n)√
n

)
m w. h. p.

(2) For k = 0 there are no 〈D4〉-nodes w. h. p.

Proof. First we want to show the second statement, i.e. that there cannot be any
〈D4〉-nodes in the core. To become a 〈D4〉-node, a node from the core has to lose

at least
(
ω0

W1

W

)2/3
= Θ

(
n

1+(1−ε)(β−2)
3

)
edges. As we already observed that there

are no 〈D2〉-nodes in V1 w.h.p., these edges can only be lost by 〈D3〉-nodes. Now
we only need to show that there are not enough 〈D3〉-nodes in V1. The number
of 〈D3〉-nodes in V1 is at most

6

(
d
β − 2

β − 1

)β−1
· n · ω

1−β
0

ω
1/3
0

+ 3

(
d
β − 2

β − 1

)β−1
· n · ω1−β

1 · ω
3ε−1
3(1−ε)
1 + 2

due to Lemma 6.10 and Lemma 6.11. This term is dominated by n · ω1−β
1 ·

ω

3ε−1
3(1−ε)
1 = n · ω(1−β)(1−ε)+ε− 1

3
0 . Recall ω0 = Θ(n1/2). Now we only need to show

(1−β)(1−ε)+ε−1/3
2 + 1 < 1+(1−ε)(β−2)

3 . Then the number of 〈D3〉 nodes on V1 will
be asymptotically smaller than the number of edges a core node needs to lose to
have property 〈D4〉. The inequality we need to show is equivalent to the following

5(2− β) + ε(β − 4) < 0,

which holds since 2 < β < 3 and 0 < ε < 1. This shows the second statement of
the Lemma.

To get the number of 〈D4〉-nodes in Vk we simply have to divide the number
of edges between Vk and 〈D2〉- or 〈D3〉-nodes in Vk+1by the number of edges a

node has to lose to become a 〈D4〉-node, which is
(
ωk

Wk+1

W

)2/3
. As each 〈D4〉-

node v ∈ Vk gets a load of at most (1 + εk) wv
Wk

m 6 (1 + εk) ωk−1

Wk
m due to

33

Lemma 6.2, we have to multiply the resulting number of 〈D4〉-nodes by this
value. For the sake of readability we want to calculate the resulting dead-end
load for each term independently.

We begin with the load lost by 〈D3〉-nodes. Recall the bound from
Lemma 6.11. The requirement for this bound was ε < 1/3 which is ensured

by ε < min
{
β−2
3 , 12

(
1−

√
3

β+1

)}
. The share of load lost due to missing nodes

in the border around ωk is at most(
12

d

(
d
β − 2

β − 1

)β−1
ω2−β
k

ω
1/3
k

+
4 · ωk
d · n

)
Wk · (1 + εk)

ωk−1(
ωk

Wk+1

W

)2/3
Wk

m.

If we apply the lower bound Wk+1 > γ
2nω

2−β
k+1 and use ωk+1 = ω1−ε

k and ωk−1 =

ω
1

1−ε
k , we get an expression as follows

(
2 · d
γ

)2/3

(1 + εk)

(
12

d

(
d
β − 2

β − 1

)β−1
ω
1−β+ 1

1−ε+
2
3 (1−ε)(β−2)

k

+
4 · ω

1
3+

1
1−ε+

2
3 (1−ε)(β−2)

k

d · n

m. (6.7)

We can see that

1− β + 1
1−ε + 2

3 (1− ε)(β − 2) =
1

1− ε
(
(β − 2)

(
2
3 (1− ε)2 − 1

)
+ ε(β − 1)

)
=

2

3

β − 2

β − 1
ε2 +

(
1− 4

3

β − 2

β − 1

)
ε− 1

3

β − 2

β − 1
.

This is a quadratic expression in ε, which is at most (2β2−11β+14)(β−2)
27(1−ε) if

0 < ε < β−2
3 . It now holds that (2β2−11β+14)(β−2)

27(1−ε) < 0 for all 2 < β < 3.

Now we look at the share of load lost due to missing nodes in the border
around ωk+1. This value is at most

(
6

d

(
d
β − 2

β − 1

)β−1
ω2−β
k+1ω

3ε−1
3(1−ε)
k+1

(
1 + ω

3ε−1
3(1−ε)
k+1

)

+2

ωk+1

(
1 + ω

3ε−1
3(1−ε)
k+1

)
d · n

Wk · (1 + εk)
ωk−1(

ωk
Wk+1

W

)2/3
Wk

m.

34

If we apply the same substitutions and lower bounds as before, we get the ex-
pression(

2 · d
γ

)2/3

(1 + εk)

(
12

d

(
d
β − 2

β − 1

)β−1
ω

(1−ε)(2−β)
3 +

1
1−ε−

2
3+

3ε−1
3

k

+
4 · ω

(1−ε)− 2
3+

1
1−ε+

2
3 (1−ε)(β−2)

k

d · n

m. (6.8)

We can see that

(1− ε)(2− β)

3
+ 1

1−ε −
2

3
+

3ε− 1

3
=

3− (β + 1)(1− ε)2

3(1− ε)
.

This is a quadratic expression in ε which is at most 2−β
12(1−ε) < 0 if

0 < ε < 1
2

(
1−

√
3

β+1

)
.

The former bounds only account for the first terms of equation (6.7) and
equation (6.8). Now we want to show that the second terms are asymptotically
small in poly(n), too. We can easily see, that the term

(
2 · d
γ

)2/3

(1 + εk)
4 · ω

1
3+

1
1−ε+

2
3 (1−ε)(β−2)

k

d · n

from equation (6.7) dominates the term from equation (6.8). For ωk 6 n
1−ε
2 it

holds that

ω
1
3+

1
1−ε+

2
3 (1−ε)(β−2)

k

n
6 n

1−ε
6 +

1
2+

1
3 (β−2)(1−ε)

2−1.

Now we only need to show 1−ε
6 + 1

2+ 1
3 (β−2)(1−ε)2 < 1, which clearly holds, since

β− 2 < 1 and 1− ε < 1. This means that the second terms from equations (6.8)

and (6.7) only account to a load of Θ

(
n

3+1−ε+2(β−2)(1−ε)2
6 −1m

)
for all layers

but the core.

Now we need to take care of the contribution of load lost due to 〈D2〉-nodes
from Vk+1. From Lemma 6.12 we know that the number of edges to these nodes
is at most

6 exp
(
−ω1/3

k+1/4
)
Wk+1 +

(
4ωk

Wk

W
+ 6(c′ + 3) lnn

)
d
√
c′√
2

√
n lnn+ n−1

with probability at least 1 − 3 · n−c′ for some constant c′ > 3. As before we
multiply this value with (1 + εk) ωk−1(

ωk
Wk+1

W

)2/3

Wk

m to get an upper bound on the

35

load lost due to these missing edges. The first term of this expression amounts
to

Θ

(
exp

(
ω

1−ε
3

k /4
)
ω
(1−ε) 2−β

3 + 1
1−ε+β−2−

2
3

k m

)
= O

(
exp

(
ω

1−ε
3

k /4
)
ω

1
1−ε+(β−2)
k m

)

using the bounds Wk = Θ(n ·ω2−β
k), the substitutions ωk−1 = ω

1
1−ε
k and ωk+1 =

ω1−ε
k and W = d · n. This is only a small fraction of m for sufficiently large

constant ωk. The second term of the expression amounts to

Θ

(
ω

1
3+

1
1−ε+

2
3 (β−2)(1−ε)

k

√
n lnn

n
+ ω

β−2− 2
3+

1
1−ε+

2
3 (1−ε)(β−2)

k

√
n(lnn)3/2

n

)
m

using the same bounds and substitutions as before. We may now assume
ωk = O(polylog(n)), as only for those layers 〈D2〉-nodes may appear. This means

that the former expression is bounded by O
(

polylog(n)√
n

m
)

. The last term n−1 is

clearly dominated by the term before and can therefore be ignored.
Putting all load contributions together we get the first statement as desired.

Finally, we bound the total load left on dead-ends during the top-down phase.

Lemma 6.14. For every constant c, there exists a constant c′ such that if we run
the top-down phase on layers with ωi > c′, then with probability at least 1−1/n−c

we obtain a total load of at most m/2 on all dead-ends on these layers.

Proof. The upper bound on the dead-end load from Lemma 6.7 gives us a frac-
tion

O

(
ωk−1
Wk

lnn ·m+
ωk−1
Wk

nk exp

(
−1

4

(
ωk
Wk−1

W

)1/3
))

= O

(
ωk−1ω

β−2
k lnn

n
+ ω

ε
1−ε
k exp

(
−1

4

(
1

2d

)1/3

ω
(3−β)/6
k

))

of m, where we used the bounds for the Wk and nk we established at the
beginning of section 6. As we know that 〈D1〉-nodes only appear for ωk =
O(polylog(n)), the first term is a small constant fraction for large enough n
if we sum up over all O(log log n) layers. For a large enough constant ωk the
first term sums up to a small constant fraction over all layers, as it shrinks
exponentially fast with growing ωk.

Lemma 6.8 states that the contribution of 〈D2〉-nodes from Vk to all layers
is at most a fraction

O
(
ω

4−β+ε(β−1)
1−ε

k · exp
(
−ω1/3

k /4
)

+
polylog(n)√

n

)

36

of m. Again, the first term sums up to a small constant fraction over all layers
for ωk > ŵ, where ŵ is a large enough constant. The second term is a small
constant fraction for large enough n if we sum up over all O(log log n) layers. As
we already argued in section 6, we still need to take care of nodes with load at
most ŵ. To deal with them we stop analysis at a constant ŵ2 > ŵ. For all nodes
with weight at least ŵ we demand property 〈D2〉, but for nodes v with wv < ŵ
we now demand a degree of at least ŵ2, because otherwise they would end up
in one of the lower layers which we ignore. As the weight of these nodes is at
most ŵ this results in a degree deviation of at least wv

ŵ2−ŵ
ŵ . Then the fraction

of load these nodes contribute is at most

O
(
ŵ

4−β+ε(β−1)
1−ε · exp

(
− ŵ2 − ŵ

4ŵ

)
+

polylog(n)√
n

)
for all nodes with wv > 1. If we choose a big enough constant ŵ2 > ŵ this
becomes a small constant fraction

Lemma 6.9 and Lemma 6.10 give us a fraction of at most

O

(
ω
−ε(β−2)
k +

ωβ−2k ωβ−2k+1 lnn

n

)

of the total load m per layer. If we choose a large enough constant ωk the
first terms sum up to at most a small constant fraction of over all layers. As
ωk+1 < ωk < n1/2, the second term is at most nβ−3, which is a small constant
fraction for large enough n if we sum up over all O(log log n) layers.

Lemma 6.13 shows that 〈D4〉-nodes contribute at most a fraction of

O

(
ω

2−β
3(1−ε)
k + ω

(2β2−11β+14)(β−2)
27(1−ε)

k + exp
(
ω

1−ε
3

k /4
)
ω

1
1−ε+(β−2)
k

+ n
3+1−ε+2(β−2)(1−ε)2

6 −1 +
polylog(n)√

n

)
of m to the total dead-end load. As the exponents of ωk in the first two terms
are negative constants and the third term shrinks exponentially with growing
ωk, these terms sum up to a small constant fraction over all layers for ωk at least
a large enough constant. Note that the exponent of the fourth term is negative.
Therefore, the last two terms sum up to at most a constant fraction over all
O(log log n) layers for large enough n.

As all four node types give arbitrarily small constant fractions for ωk at least
a large enough constant and n sufficiently large, the total load left on dead-ends
during the downward distribution is at most a small constant fraction of m. The
fact that all these results hold with probability at least 1−n−c for an arbitrarily
large constant c gives us the result as desired.

The last lemma implies that with high probability, for a suitably chosen key
layer at most half of the load is left on dead-ends during the top-down phase

37

on this and the above layers. In particular, our upper bound on the load of
non-dead-end nodes in Lemma 6.2 implies that on this layer, every such node
gets at most a load of (1 + εk) ·m · wv/Wk. On the other hand, a load of m/2
passes through this layer w.h.p. In the worst case all non-dead-ends get the

maximum load of (1 + εk) ·m ·wv/Wk. This results in at least n γ
4(1+εk)

ωk
− β−1

(1−ε)

nodes which absorb m/n load each, causing a decrease of unassigned load by a

constant fraction of at least γ
4(1+εk)

ωk
− β−1

(1−ε) . Here, ωk > c′ where c′ is as chosen

in Lemma 6.14.

7 Analysis of Iterative Absorption

Algorithm 1 sends all unassigned load back to the top, balances it within the top
layer, and restarts the top-down distribution step. Observe that all the arguments
made for the analysis of the downward propagation can be applied for any value
of m. The absorption of load during these iterations is adjusted according to the
following scheme. We let each of the nodes absorb at most a load of m/(n · t2)
in round t. This scheme is executed for t = log log n rounds and then repeated
in chunks of log log n rounds until all load is assigned. We will show that with
high probability after a constant number of repetitions, all load is assigned. In
addition, as

∑∞
t=1 1/t2 = Π2/6, each node receives a load of (1 +O(1)) ·m/n.

In particular, our aim is to show that using this scheme we need only
O(log log n) top-down distribution steps to reduce the total unassigned load in
the system to m′ = m/ logc n, for any constant c. This is shown in the lemma
below. Given this result, we run the protocol long enough such that c becomes
a sufficiently large constant. We want to show that, if this is the case, each node
on a layer with polylogarithmic degree gets a load of at most m/n, resulting in
all remaining load being absorbed. As each non-dead-end on this layer gets a

share of at most wv
Wk

W m′ = polylog(n)
n m′ = m/n they fulfill the requirement. The

same bound holds for 〈D4〉-nodes by definition. As 〈D1〉- and 〈D2〉-nodes do not
appear on layers of at least polylogarithmic degree, we can ignore them as well.
All we need to care about now are 〈D3〉-nodes. We can derive upper bounds on
their load similar to the ones for non-dead-ends using results on the expected
number of edges these nodes have into both of the possible next-highest layers
as in the proof of Lemma 4.2. It now remains to show the following lemma.

Lemma 7.1. Using the repeated absorption scheme of Algorithm 1, for any
constant c, only O(log log n) rounds suffice to reduce the unassigned load in the
network to m/ logc n.

Proof. In the analysis of the top-down distribution step above, we saw that for
arbitrary m we absorb a constant fraction of the load within a key layer. We
denote by mt the total unassigned load in round t. If the nodes would know mt,
they could absorb a load of mt/n in each round, which would decrease the load
to m/ logc n in O(log log n) rounds w.h.p. However, we assume that nodes do not
know the current load. Still, we can use this imaginary process as a benchmark
process for our protocol.

38

Instead, in our scheme we absorb a load of at most m/(nt2) in round t. We
denote by ε > 0 a lower bound on the constant fraction of load that is absorbed
in any round of the benchmark process. Note that for large t, our absorption
of m/(nt2) per node is actually more than the m(1 − ε)t/n that would at best
result from the benchmark process. Thus, let t∗ be the value such that

(t∗)2(1− ε)t
∗

= 1 .

Obviously, after round t∗, the absorption in our process dominates the one in
the benchmark process, and we obtain at least the same load reduction. For
the first t∗ rounds, we simply restrict our attention to the first round of the
first t∗ repetitions of our scheme. In each of these rounds, a load of m/n is
absorbed, which dominates the absorption of the first t∗ rounds of the benchmark
process. Then, starting in the next repetition, we consider round t∗ and the
following (including also the next repetitions of our scheme). In these rounds the
absorption dominates the absorption of the remaining rounds of the benchmark
process. Thus, within O(log log n) rounds of our repeated scheme, for each round
of the benchmark process there is a round in our process, which dominates in
terms of load absorption. Hence, after this many rounds, we obtain the same
result as the benchmark process.

8 Discussion

To the best of our knowledge, we have presented the first double-logarithmic
load balancing protocol for a realistic network model. Our algorithm reaches a
balanced state in time less than the diameter of the graph, which is a common
lower bound for other protocols (e.g. [10]). Note that our Theorem 4.1 can be
interpreted outside of the intended domain: It reproves (without using the fact)
that the giant component is of size Θ(n) (known from [4]) and that rumor
spreading to most vertices can be done in O(log log n) (known from [11]).

Our algorithm works fully distributed, and nodes decide how many tokens
should be sent or received based only on their current load (and those of its
neighbors). We expect our wave algorithm to perform very robust against node
and edge failures as it does not require global information on distances [10] or
the computation of a balancing flow [8].

Our Theorem 4.3 allows initial load on nodes with degree Ω(polylog n). Fu-
ture work includes a further relaxation of this assumption, for instance, by em-
ploying results about greedy local-search based algorithms to find high degree
nodes [3, 6]. Another interesting direction is to translate our load balancing
protocol into an algorithm which samples a random node using the analogy be-
tween load and probability distributions. Such sampling algorithms are crucial
for crawling large-scale networks such as online social networks like Facebook,
where direct sampling is not supported [12].

39

Bibliography

[1] D. Angluin and L. Valiant. Fast probabilistic algorithms for hamiltonian
circuits and matchings. J. Comput. Syst. Sci., 18:155–193, 1979.

[2] J. E. Boillat. Load balancing and poisson equation in a graph. Concurrency:
Pract. Exper., 2:289–313, 1990.

[3] C. Borgs, M. Brautbar, J. T. Chayes, S. Khanna, and B. Lucier. The power
of local information in social networks. In 8th Intl. Workshop Internet &
Network Economics (WINE), pp. 406–419, 2012.

[4] F. Chung and L. Lu. The average distances in random graphs with given
expected degrees. Proceedings of the National Academy of Sciences, 99:
15879–15882, 2002.

[5] R. Cohen and S. Havlin. Scale-free networks are ultrasmall. Phys. Rev.
Lett., 90:058701, 2003.

[6] C. Cooper, T. Radzik, and Y. Siantos. A fast algorithm to find all high
degree vertices in graphs with a power law degree sequence. In 9th Intl.
Workshop Algorithms and Models for the Web Graph (WAW), pp. 165–178,
2012.

[7] G. Cybenko. Load balancing for distributed memory multiprocessors. J.
Parallel and Distributed Comput., 7:279–301, 1989.

[8] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest
neighbor load balancing. Parallel Computing, 25:789–812, 1999.

[9] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009.

[10] R. Elsässer and T. Sauerwald. Discrete load balancing is (almost) as easy
as continuous load balancing. In 29th Symp. Principles of Distributed Com-
puting (PODC), pp. 346–354, 2010.

[11] N. Fountoulakis, K. Panagiotou, and T. Sauerwald. Ultra-fast rumor spread-
ing in social networks. In 23rd Symp. Discrete Algorithms (SODA), pp.
1642–1660, 2012.

[12] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking in Face-
book: A case study of unbiased sampling of OSNs. In 29th IEEE Conf.
Computer Communications (INFOCOM), pp. 2498–2506, 2010.

[13] F. C. Graham and M. Radcliffe. On the spectra of general random graphs.
Electr. J. Comb., 18, 2011.

[14] K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom. The Finite
Element Methods for Engineers. Wiley, 2001.

[15] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times.
AMS, 2008.

[16] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First- and second-order
diffusive methods for rapid, coarse, distributed load balancing. Theory Com-
put. Syst., 31:331–354, 1998.

[17] M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45:pp. 167–256, 2003.

[18] R. Subramanian and I. D. Scherson. An analysis of diffusive load-balancing.
In 6th Symp. Parallelism in Algorithms and Architectures (SPAA), pp. 220–
225, 1994.

40

[19] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I. Stoica. Load
balancing in dynamic structured peer-to-peer systems. Performance Eval-
uation, 63:217–240, 2006.

[20] R. van der Hofstad. Random graphs and complex networks. Available at
www.win.tue.nl/~rhofstad/NotesRGCN.pdf, 2011.

[21] D. Zhanga, C. Jianga, and S. Li. A fast adaptive load balancing method
for parallel particle-based simulations. Simulation Modelling Practice and
Theory, 17:1032–1042, 2009.

www.win.tue.nl/~rhofstad/NotesRGCN.pdf

	Ultra-Fast Load Balancing on Scale-Free Networks

