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Abstract. We study rigid motions of a rectangle amidst polygonal obstacles. The best known algor-
ithms for this problem have a running time of Q(n?), where n is the number of obstacle corners. We in-
troduce the tightness of a motion-planning problem as a measure of the difficulty of a planning problem
in an intuitive sense and describe an algorithm with a running time of O((a/b - 1/e.; + 1)n(log n)?),
where a > b are the lengths of the sides of a rectangle and & is the tightness of the problem.
We show further that the complexity ( = number of vertices) of the boundary of n bow ties (see Figure
1) is O(n). Similar results for the union of other simple geometric figures such as triangles and wedges
are also presented.
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1. Introduction. We consider the motion planning problem for a rectangle in the
plane amidst polygonal obstacles. Such a problem is specified by a set of polygons
with a total of n corners, the obstacles, a rectangle R with sides a and b, a > b,
and an initial and a final placement Z, and Z, of R. A placement Z = (x, y, o)
specifies the coordinates (x, y) of the center of R and the angle « between the a-side
of R and the positive x-axis. The question is to decide whether there is a rigid
motion which moves R from Z, to Z, and avoids all the obstacles.

The best known algorithms for this problem have running times of
O(nl4(n) log n) [CK] and O(nie(n)log n) [KS2] respectively, where A(r) is the
maximum length of an (r, s)-Davenport—Schinzel sequence [S]. This is Q(n?) and
hence the algorithms are not feasible for large n.
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It is customary to measure the performance of motion planning algorithms as
a function of the problem size, here, the number of corners of polygonal obstacles.
However, problem size captures only part of the intuitive notion of difficulty of a
planning problem. Another crucial parameter is the tightness of the problem, i.e.,
how small a change in the input changes the state of the problem from solvable
to unsolvable and vice versa. We propose the following definition of tightness:

DEFINITION. Let 2 = (P, R, Z,,Z,) be a motion planning problem. For real
number a« > 0 we use aR to denote the rectangle with sides aa and ab and 2, to
denote the problem (P, aR, Z,, Z,). The tightness ¢, of 2 is now given as follows:

(a) If 2 is solvable, then ¢, = inf{e; 2, ,, is unsolvable}.
(b) If 2 is unsolvable, then &, = inf{e; 2, + is solvable}.

We show:

THEOREM 1. The motion planning problem for a rectangle amidst polygonal
obstacles can be solved in time O((a/b)(1/e,;) + 1)n(log n)?), where n is the number
of corners of the polygons, ¢, is the tightness of the problem, and a > b are the
lengths of the sides of the rectangle.

The running time of our algorithm depends on the tightness of the problem. In
particular, “easy” problems with ¢ ,;, > ¢, for a fixed ¢, > 0 and a/b < k for some
fixed k can be solved in time O(n(logn)?). This is feasible even for large n.
“Difficult” problems with either ¢, close to zero or a/b very large take longer.

Our results can also be phrased as follows. Let ¢ > 0 be fixed. An algorithm
for the motion planning problem is said to be e-approximate if it has the
following property: If the algorithm declares a problem £ solvable, then the
problem is indeed solvable. If the algorithm declares a problem unsolvable, then
the problem £, ,, must indeed be unsolvable. Note that the answers of an
e-approximate algorithm are not completely reliable; there is a margin of error
determined by the parameter .

THEOREM 2. For all ¢ 0<e<./1+ a%/b®— 1, there is an e¢-approximate
algorithm for moving a rectangle amidst polygonal obstacles with running time

O((a/b)1/e)n(log n)?). -

The idea underlying the theorems is simple and by no means new; it was used
in [LPW] to derive motion-planning heuristics. However, our analysis has some
novel features. We discretize rotations and consider only so-called 6-motions,
where 6 is a fixed rotation angle. Let L = {a;,a,} U {if;i=0,...,| 2n/6 ]}, where
o, and a, are the orientations in the initial and final placement, respectively. A 0-
motion consists of a sequence of steps. In each step the rectangle is either rotated
about its center from one orientation in L to an adjacent one or it is translated.
During translation the orientation of the rectangle is kept fixed to an orientation
in L.
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Fig. 1.

Translational movement of a rectangle is a well-studied topic. In [KS1] and
[KLPS] an O(n(log n)?) algorithm and in [LeS] an O(n log n) algorithm for this
problem were given. We use the former algorithm as a subroutine in our algorithm.

An essential technical contribution of this paper is a detailed study of rotational
movement in 6-motions of a rectangle amidst point obstacles. Assume that R’s
a-side is parallel to the x-axis and consider the figure swept out by R by rotating
it from —60/2 to /2 about its center, see Figure 1. Each obstacle point defines a
forbidden region of just this shape. We show that free space ( = complement of the
union of the forbidden regions) consists of O(n) connected components and that
the total number of vertices on the boundary of free space is also O(n).

Using this complexity result we show

THEOREM 3. The existence of a 6-motion amidst n point obstacles can be decided
in time O((1/6) n (log n)®), if 6 < 2 arctan (b/a), where a > b are the lengths of the
sides of the rectangle.

We also show complexity bounds for the free space defined by other simple
geometric figures, e.g., wedges and triangles, which we believe to be of independent
interest. Our bounds on the complexity of free space are based on geometric and
topological reasoning. In contrast, the linear bound for the complexity of the
boundary of a union of circles can be obtained by purely topological reasoning
[LiS], [KLPS].

The paper is organized as follows. In Section 2 we prove Theorems 1 and 2.
Moreover, we prove Theorem 3 using the complexity bounds for free space derived
in Section 3. Section 4 offers a conclusion and some open problems.

2. The Algorithm. In this section we give some further definitions, prove Theo-
rems 1-3, and connect them to the results of Section 3.

LeEMMA 2.1. Theorem 2 implies Theorem 1.
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Proor. Let A4, be an e¢-approximate algorithm with running time

O((a/b)(1/e) n(log n)?). A, exists for 0 < ¢ < /1 + a?/b> — 1 by Theorem 2. Con-
sider the following algorithm:

e« /1 +a*b* -1,

while 4, declares 2 unsolvable and A, declares 2, ., solvable do
e«—¢/2 od

if A, declares £ solvable
then return “solvable”
else return “unsolvable”

fi

The correctness of this algorithm is easy to see. When the algorithm terminates
either A, declares 2 solvable or 4, declares 2, ; . ,, unsolvable. In the former case,
2 is indeed solvable. In the latter case, 2 = (2 +,); +. is indeed unsolvable. The
running time of the algorithm is O((a/b)(1/¢,)n(log n)?), where ¢, is the final value
of &. It remains to relate &, and &, Consider an iteration which is not the last.
Then A, declares 2 unsolvable and hence £, ., is indeed unsolvable, and 4,
declares 2, ; 1+, solvable. If 2 is solvable, then e < ¢ by the unsolvability of
2, .., and if 2 is unsolvable, then 1/(1 + &.;) = 1/(1 + ¢) by the solvability of
P11+ Thus &.; < ¢ in either case. This implies that either &, = / 1+ a?/b*—1
or &, < 2&,. Hence the running time is within O(((a/b)(1/&c;0) + 1)n(log n?). O

We next turn to the proof of Theorem 2. Consider the following algorithm:

Input: # = (P, R, Z,, Z,) with Z; = (x;, y;, o;) and ¢ > 0.

Let 6 = 2 min((b/a)e, n/2 — arctan(b/a));
if a 6-motion exists for 2

then declare £ solvable

else declare 2 unsolvable fi

LEMMA 2.2. The above algorithm is e-approximate.

Proor. We only have to show that if 2 does not allow a f-motion, then #, ,,
does not allow any motion. It is easier to show the contrapositive, i.e., if #, ,, hasa
solution, then 2 allows a 6-motion. The following claim is helpful.

CLAIM. A rectangle R with sides a and b, a > b, can be rotated by 0/2 degrees in
both directions within the rectangle (1 + €)R if

0
&> 4 sin g) -2 sin2<~> and 0 < m — 2 arctan <é>
b 2 4 a
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Fig. 2.

Both conditions hold true for

0=2 min(l—) g, r_ arctan(9>>.
a 2 a

ProOF. Let o = arctan(b/a) and d = \/a® + b?/2. Rotate R by 6/2 degrees, see
Figure 2. Let R’ be the figure obtained. Then the maximal x-coordinate of any
point of R’ is dcos(x — 6/2) if 6 <2« (resp. d if 6 >2a) and the maximal
y-coordinate of any point of R’ is dsin(x + 6/2). Hence R can be rotated by 6/2
degrees within (1 + ¢)R provided that

d cos(max(0, & — 6/2)) dsin(x + 9/2)>

1 + ¢ > max (
a2 b/2

A short calculation shows that this is equivalent to

1+ >coso +asin0 or >asin9 2sin20
€ = ||k = = &>~ =} = - ).
- 2 b 2 ) 2 4

Note that the rotation figure is the disk with radius d if 6 > n — 2 arctan(b/a).
Finally, observe that 6 < 2(b/a)e implies (a/b) sin(6/2) < e. O

Assume now that there is a motion for rectangle (1 + ¢)R. We will construct a
6-motion from it. A placement of (1 + €)R is given by the coordinates (x, y) of the
center and the orientation ¢. A corresponding placement of R is (x, y, ¢) where
¢peL = {a,a,,i0;i=0,...,| 2n/0 |} and |¢ — ¢|is minimal. Then |¢ — ¢| < 6/2.
Also whenever ¢ changes, the translational movement of R is stopped and R is
turned into an adjacent orientation in L. The motion obtained is clearly a
f-motion. It avoids all obstacles as can be seen as follows. Consider a coordinate
system whose origin is the center of (1 + ¢)R and whose x-axis is parallel to the
a-side of (1 + ¢)R, ie., the system moves with (1 + ¢)R. In this system the
coordinates of R are (0, 0, ¢") where |¢’| < 6/2 by the construction of R’s motion
and hence R is always contained within (1 + ¢)R by the claim above. O
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We discuss next how to decide the existence of a f-motion. Let L = {0, ..., 0;_ 1},
where [ < 2 + 27/6, be the set of allowed orientations with 6, < 0; <--- <6,_;.

A placement (x, y, @) of R is free (semifree) if the rectangle does not contain any
obstacle point (in its interior). Let FP denote the set of free placements. A general
motion from placement Z, to placement Z, is possible iff Z, and Z, belong to
the same connected component of FP. Let FP, be the set of free placements of R
in orientation B, i.c., the intersection of FP with « = B. We identify FP; with its
projection on the xy-plane. Furthermore, let FP,_, be the set of placements of the
center of R, where R can be rotated from orientation 6, to orientation 6, without
collision with the obstacie polygons. FP, , is the set of free placements of the
rotation figure R, ,, which is the set of points covered by the rectangle during
the rotation.

Following the classical approach we reduce the decision problem to a search
problem on an undirected graph G = (| JiZ¢ Vi, E). Each vertex of V; represents a
connected component of FP,. Let C, be the connected component of FP,,
represented by ueV;. There is an edge connecting ueV; and veV,,
iff C,nC, N FPy y, , # . Clearly, there is a f-motion of R from placement Z,
with orientation 6,, to placement Z, with orientation 6, iff there is a path in G from
the vertex in Vj, representing the connected component that contains Z; to the
vertex in ¥}, representing the connected component that contains Z,.

For the design of an e-approximate algorithm it is sufficient to consider restricted
O-motions: rotation is allowed only if the smallest rectangle similar to R that
contains the rotation figure of R can be placed at the rotation point without
collision with the obstacle polygons. Hence instead of FP, , , we consider free
space FP; ,  of (1 + ¢)R in orientation (6; + 6;,)/2, where

e = a sin<§> = ) sin2<g>.
b 2 4

By the same argumentation as in Lemma 2.2 such a restricted 6-motion exists,
whenever a motion for (1 + ¢)R exists.

We also change our definition of G slightly. There is an edge connecting u € V;
andveV;, iff C,n C,nFP 4, # & Let E be the set of such edges. The graph
G = (V= J V,, E) can be obtained as follows. It is well known that the complex-
ity of FP,, i.e., the number of vertices and edges on its boundary, is O(n) [KS1],
[KLPS]. Since FP;, ,,, is the free space of a rectangle, the complexity of FP ,, ,
is also O(n). It follows from the results in [KLPS] that FP, and FP;_,  can be
computed in time O(n(log n)?) each. Also, since each FP, has O(n) components,
G’ has O(l-n) vertices. Finally, since each connected component of FPg 4, is
completely contained in a connected component of FP, and a connected com-
ponent of FP, , there are at most O(I- n) edges in G'. Edges between vertices in
V, and V., can be computed in time O(n log n) by a simultaneous plane sweep
over FP,, FP; , ., and FP, . So the construction of G’ has time complexity
O(l - n(log n)?).

If we preprocess each FP, in time O(nlog n), the connected components that
contain the initial and final position can be computed in time O(logn) [EGS].

i+1
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Since | V| + |E'| = O(l- n), the graph exploration takes time O(l-n). Hence the
running time of the restricted 6-motion algorithm is O(l - n(log n)?). This proves
Theorem 2.

Next we prove Theorem 3. We consider n point obstacles. Since #-motions arise
in practice, Theorem 3 has its own merits. We use the algorithm above based on
graph G = (|} V,, E) where ue V; and ve V;, , are connected by an edge in E iff
C.nC,NFPy,  # . Note first that here FP, is the complement of the union
of n copies of R in orientation 6, placed with its centers at the obstacle points and
that FP, ,  is the complement of the union of n copies of the rotation figure
obtained by a rotation of R from orientation 6; to 0, ,. Since two copies of the
rotation figure may intersect six times, the results in [LiS] and [KLPS] cannot
be applied to determine the complexity of FPy, 4 . We show in Section 3 that the
number of vertices and edges on the boundary of FP, ,  is O(n), provided that
0 < 2 arctan(b/a). This implies that each FP, ,  can be constructed in time
O(n(log n)®) [KS1], [GSS]. Thus the graph G can be constructed in time
O(l - n(log n)?). This proves Theorem 3.

3. The Complexity of the Boundary of the Union of Simple Plane Figures. Let
F ={F;1<i<n} be a family of n closed subsets of the plane and let
FP = R* — | ), F; be the free space defined by #. Let C(#) be the number of
connected components of FP and let K(#) be the number of vertices ( = intersec-
tions between boundary curves bd(F;) and bd(F))) on the boundary bd(FP) of FP.
Clearly, if k is the maximal number of intersections between any two boundary
curves, then C(¥) < K(¥) < kn®. For k = 4 this bound is basically the best
possible as the checkerboard example of Figure 3 shows.

In [LiS] and [KLPS] it is shown that C(¥) < K(¥) < 6n — 12 for k = 2. In
this section we prove linear bounds for C(#) and K(%) in three cases:

(1) If the F;s are wedges with the opening angle bounded from below by some
constant, then C(¥) = O(n).

(2) If the F;’s are arbitrarily stretched translational copies of some triangle T and
its image T under a halfturn, then C(%) < K(¥) = O(n).

(3) If the F;s are translational copies of the rotation figure of a rectangle with
sides @ and b, a > b, and rotation angle 6 < 2 arctan(b/a), then C(F) <
K(F) = O(n).

M E e

Fig. 3.
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Fig. 4.

We consider double wedges first. A double wedge W is the set of all points
in R? lying on different sides of two oriented straight lines g, and g¢,, ie.,
W = {PeR? P left of g, and right of g, or P right of g, and left of g,} (see
Figure 4). The angle between g, and g, is called the opening angle of W, the
intersection point of g, and g, is called the center of W.

Consider the dualization 2, that maps point (¥, v) onto the straight line
defined by equation y = ux + v. If the double wedge between the straight lines
y=u;x +v; and y =u,x + v, does not contain a vertical line it is mapped
by 2, onto the line segment P,P,, where P; = (u;, v;), i = 1,2. A double wedge
containing a vertical line is mapped onto the coline segment g\ P, P,, where g is
the straight line through P, and P,. Clearly, a point P lies in the complement
of a double wedge W iff the line 9,(P) dual to point P does not intersect the
(co-)line segment 9 ,(W). Parallel lines are assumed to intersect at infinity. The
two connected components of the complement of W are mapped into the set
of nonvertical lines lying above and below 2 (h), respectively, and not intersecting
2o(W) where h is some fixed straight line contained in W.

Now consider the complement of the union of » double wedges. Two points
0, and Q, lie in the same connected component of free space iff there is a path
connecting @, and Q, avoiding the double wedges. This is the case iff 24(Q,)
can be translated and rotated onto 2,(Q,) without collision with the (co-)line
segments dual to the double wedges. The motion of 2,(Q,) must also avoid
vertical positions (which are dual to points at infinity). In this case we call
20,) and 24(Q,) topologically equivalent. In this way we partition the set
of nonvertical lines which do not intersect (co-)line segments dual to the wedges
into topological equivalence classes.

LEMMA 3.1. Let # = {W,,..., W,} be a set of translational copies of a double
wedge. Then C(W") = O(n).

Proor. We may assume without loss of generality that the double wedges
do not contain a vertical line. The endpoints of the line segments dual to the
wedges lie on two vertical lines (see Figure 5), because the x-coordinates of
them are determined by the slopes of the lines bounding the wedges. It is easy
to see that the number of topological equivalence classes of lines with respect
to the straight line segments dual to the double wedges is O(n) and hence
C(#’) = O(n). O
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If rotational copies are allowed, the number of connected components may
be as large as n? because the checkerboard construction is possible again.
However if we bound the opening angle from below the number of connected
components is linear.

LEMMA 32. Let W = {W,,..., W,} be a set of double wedges with the opening
angle greater than some constant oy. Then C(#") = O(n).

Proor. Again we use dualization 2, and count the number of topological
equivalence classes of lines with respect to the (co-)line segments /,, ..., /, dual
to Wy,..., W,. The requirement on the opening angle implies

OBSERVATION 3.1. There are constants d and e such that for each double
wedge W, either the dual of W, is a line segment of horizontal length greater
than d or the dual of W, is a coline segment and the x-coordinate of one of its
endpoints has absolute value less than e.

Next observe that all topological equivalence classes remain if we shorten
some of the line segments. The topological equivalence classes may become
larger and new classes may appear because of lines that do not cut the shortened
segment any more but did before. Hence we have

OBSERVATION 3.2. Suppose some line segment /, is shortened to a line segment
I # &, I, = I,. Then the number of topological equivalence classes does not
decrease.

Since lines in the different topological equivalence classes with respect to a
coline segment cannot be moved onto each other without going through a
vertical position, even if we omit one ray of the coline segment, we have further

OBSERVATION 3.3. Suppose one ray of some coline segment /, is omitted. Then
the number of topological equivalence classes does not decrease.

Using observations 3.1-3.3 we now show that the number of equivalence
classes with respect to L = {/,,...,1,} is O(n). From each coline segment in L
we omit one ray such that the remaining one has its x-coordinate in [ —e, e].
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Fig. 6.

Now starting from the x-value —e — d/2 we decompose the plane into vertical
stripes of width d/2 up to the x-value e + d/2. By Observation 3.1 it is clear
that each segment /; traverses at least one stripe s completely. We cut from /
the parts outside of s. So we have left a set of line segments each ending
at the left and right boundary of some stripe. We obtain a set of constantly
(depending on «,) many stripes. Let L' be the set of line segments constructed
this way. By Observations 3.2 and 3.3 the number of topological equivalence
classes with respect to L' is an upper bound for the number of topological
equivalence classes with respect to L.

To bound the number of topological equivalence classes with respect to L'
we first bound the number of topological equivalence classes with respect to
line segments in only two vertical stripes and then extend this to the constantly
many stripes containing the lines in L'. Consider the case that we have a
left stripe and a right stripe of width 1 each and distance f between them.
Let n, (n,) be the number of line segments in the left (right) stripe and let
m = n, + n,. We first replace connected sets of intersecting line segments by the
two line segments between the highest left and highest right endpoints and between
the lowest ones (see Figure 6), thereby clearly not decreasing the number of
topological equivalence classes.

Now the line segments divide the stripes into (bounded and unbounded)
trapezoids. We say that a line g leads through a trapezoid T if g intersects T
but misses the line segments bounding T from above and below. In order to
count the number of topological equivalence classes whose lines lead through
bounded trapezoids, we represent each bounded trapezoid by a node in an
undirected bipartite graph G,, = (V, U V,, E), where V,(V,) are the nodes (bounded
trapezoids) in the left (right) stripe. There are m — 2 bounded and 4 unbounded
trapezoids provided that n,, n, > 1. There is an edge between two nodes if a straight
line exists that leads through the corresponding bounded trapezoids. Each trape-
zoid T, in the right stripe that is connected to a trapezoid 7; by an edge of G,
must intersect the trapezoid T ., defined by the right stripe and the lines leading
through 7, with minimal and maximal slope (see Figure 7). At most two trapezoids
in the right stripe connected to 7, in G,, are not completely contained in T ,,.

Some calculation shows that the sum of the lengths of the left and the right
side of T} .. is at most (2 + 3) times the sum of the lengths of the left and
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the right side of T,. We associate with each node u the sum of the lengths of
the left and right sides of the corresponding trapezoid as its weight w(u). For
each node u in V; we delete the edges connecting u to the nodes in V, that
represent the trapezoids that are not completely contained in T ,,,. The same
is done for each node in V,. Note that the number of deleted edges is at most
2(m — 2). Then

(%) 2 wo) < 2f + 3w

{u,v}eE

for all nodes ue V;u V,. Consider the node with smallest weight. It has at most
2f + 3 neighbors. After deletion of this node and all incident edges property (x)
still holds. It follows that G,, has at most (2f + 5)(m — 2) edges. Since there are at
most 2m topological equivalence classes whose lines lead through at least one
unbounded trapezoid, the overall number of topological equivalence classes is
O(fm).

We use this result to derive a bound on the number of topological equivalence
classes with respect to the lines in L". The lines in L’ are distributed over k stripes
with width d/2, where k = 2(2e + d)/d. The maximal distance between two stripes
is 2e. The above result implies that the number of topological equivalence classes
is at most cn for some constant ¢ depending on «, if we consider only the line
segments in any two of the k stripes. For each topological equivalence class with
respect to L' we choose a sample line and a sample point on it. We rotate this
sample line counterclockwise around the sample point as far as possible until one
of the line segments in L’ is touched. Next we rotate counterclockwise around the
touching point until another line segment is touched. If the sample line happens
to be flush with the line segment before touching any other line segment we
continue rotating about the other endpoint. Now each sample line touches at least
two line segments. We assign each topological equivalence class of L’ to the pair of
stripes in which the line segments touched by the corresponding sample line
lie. Observe that for each pair of stripes this defines an injective mapping from
the set of topological equivalence classes with respect to L’ assigned to this pair
into the set of topological equivalence classes with respect to the line segments
in these stripes. Hence the number of topological equivalence classes of L’ is at
most k%cn for constants k and ¢ depending on o,. Thus C(#") = O(n). O
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Fig. 8.

In our next step toward the rotation body of a rectangle we consider double
wedges bounded by vertical lines from left and right (see Figure 8). In fact, we
consider a more general problem.

LEMMA 3.3. Let T be an arbitrary triangle and let T be the image of T under a
halfturn. Let 7 = {T, ..., T,}, where T;=a; + o,T or T;=a;+ o;T for some
a;€R?, ;R and a; + oT = {a; + (ax, oy); (x, y) € T}. Then KT) = O(n).

PrOOF. We classify the corners on the boundary of free space into three types.
Corners of a triangle are of type A. We say that triangles 7; and T have the same
orientation if both are copies either of 7 or T. Intersection points of edges of
triangles of the same orientation are type B corners. Intersection points of edges
of triangles of different orientation are type C corners. Clearly, the number of type
A corners is at most 3n. Next observe that the boundaries of two triangles of the
same orientation intersect only twice. Thus it follows from the results in [KLPS]
that the number of corners of type B is at most 6n — 12. We call all corners of
type A and B countable. The boundaries of two triangles in different orientation
may intersect in six points. Hence the results in [KLPS] cannot be applied. A
corner ¢ of type C is called countable if for at least one of the intersecting edges
it is the leftmost or rightmost intersection point on that edge lying on the boundary
of free space, i.e., there is no other corner on the boundary lying between one of
the endpoints of the edge and corner c. We assign ¢ to this endpoint. There are
at most 6n countable type C corners.

Assume there is a corner ¢, of type C that is not countable. Let 7, and T, be
the intersecting triangles and let e, and e, be the intersecting edges. Start in ¢,
and walk along the edge e, of T, on the boundary of free space (see Figure 9).

Fig. 9.
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Let the next corner ¢, met be the intersection of edge e; of triangle 75 and e,.
Assume that ¢, is not countable. Let e, and e, be the other two edges of T, where
on a traversal of e, starting in the common endpoint of e, and e, we first encounter
¢; and then c,. Since we have assumed that the right endpoint of e, is not covered
by T, line segment e, must intersect es (note that e, | e,). By the same reason e; has
to intersect e,. Hence e, and e, intersect. However, T, and T; have the same
orientation, so the right endpoint of e, is covered by T or the right endpoint of
e; is covered by T, a contradiction to the fact that both ¢; and c, are not
countable. It follows that the number of type C corners on the boundary of the
complement of the union of the » triangles that are not countable is not larger
than the number of countable corners on the boundary. Thus K(7) = O(n). O

Now we are ready to consider bow ties.

LEMMA 34. Let # = {B,,..., B,} be a set of translational copies of the rotation
figure of a rectangle with sides a > b, where the rotation angle is a fixed angle of
size 2 arctan(b/a) at most. Then K(%#) = O(n).

ProOOF. Since the boundaries of two translational copies of a bow tiec may have
six intersection points the result in [KLPS] cannot be applied here. We subdivide
the boundary of the rotation figure in segments (straight line segments and arcs)
as shown in Figure 10.

For each pair of segment types we show that the number of intersection points
lying on bd(| Ji-, B)) is linear. Table 1 contains all cases together with a hint on
the counting argument that is used to show the linearity.

The entries in the table have the following meaning. Entry C means that there
is a convex subset of the rotation figure containing both segments in its boundary.
It is known that the complexity of the union of translational copies of a convex
set is linear [KLPS]. Since intersection points between the corresponding segments
are also on the boundary of the union of the convex subsets, the number of such
intersection points on bd(| ) B) is O(n).

In all cases with entry A Lemma 3.3 can be applied. We expand each segment
to a triangle that is completely contained in the rotation figure such that the
triangle containing the first segment is the image of the triangle of the second
segment under a halfturn (see, for example, Figure 11).

wh nh
wb nb
wv nv
sv ov
sb ob
sh oh

Fig. 10.
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Table 1.
sV sb sh oh ob ov nv nb nh wh wb wv

sV C C C C C @© C C C C — A
sb C © C | 0 C C C C C 0 |

sh C C € A — C C C © C C C
oh C — A C C C C C C C C C
ob © 0 | C C C | 0 © C C C
ov C C C C C C A — @ C C C
nv C C © © — A C C C C @ C
nb C C C C 0 | © C C | 0 C
nh C C C € © © C C C A — C
wh C C C C C C © — A C C ©
wb | 0 © C C C C 0 | C C C
wv A — C © C C C C C C C C

Since all intersection points of the segments on bd(| ) B, are also on the
boundary of the union of these triangles there are O(n) such points by Lemma 3.3.

We next turn to the entries marked — and |. Each entry marked — has the
following property: All other entries in that row are marked C or A and the entry
corresponds to an intersection of a straight line segment and an arc, no two of
which can be contiguous on the boundary of free space. Hence the number of
intersections corresponding to all — entries is bounded by the number of
intersections with C and A entries plus the number of segments. The argument
for | entries is analogous; we only have to replace row by column in the argument
above.

We are left with the entries marked 0. In these cases we can show that at least
one of the endpoints of the intersecting arcs is covered by the other rotation figure,
such that the part of the arc between the intersection point and the endpoint lies
in the interior of the union of the rotation figures. As in the proof of Lemma 3.3
we assign the intersection point to the covered endpoint. It is clear that each
endpoint of an arc gets at most one attributed intersection point. Let us, for
example, consider an intersection point between an nb-arc g; of B; and an ob-arc
a; of B;. Let R, denote the upper endpoint of arc nb in B, and T} the lower
endpoint. Furthermore, let U, denote the upper endpoint of arc ob in B, and S,
the lower endpoint, k = i, j (see Figure 12).

Fig. 11.
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Fig. 12.

We now distinguish cases. Either R, lies on or to the right of R;S; or S; lies to
the right of R;S;. In the former case, R, lies to the left of line segment U R; and
above arc a; and hence R; is contained in bow tie B;. In the latter case, S is
covered by B by the symmetric argument. This proves that the number of
(nb, ob)-intersections is linear. Similar arguments can be used for all type 0 entries.
This completes the proof of Lemma 3.4. O

4. Conclusions. We have introduced the tightness ¢, of the motion planning
problem for a rectangle and have shown that the motion of a rectangle can be
planned in time O(((a/b)(1/¢.;,) + 1)n(log n)?), where n is the size of the polygonal
environment. We have also shown how to plan 8-motions in time O((1/6 - n(log n)?).
The latter result is based on the fact that the complexity of the boundary of the
union of n bow ties is O(n). We believe that similar results can be obtained for
more general motion planning problems.
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