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We present a tight tradeoff between the expected communication com-
plexity C (for a two-processor system) and the number R of random
bits used by any Las Vegas protocol for the list-nondisjointness func-
tion of two lists of n numbers of n bits each. This function evaluates to
1 if and only if the two lists correspond in at least one position. We
show a log(n?/C) lower bound on the number of random bits used
by any Las Vegas protocol, 2(n) < C<0(n?). We also show that
expected communication complexity C, 2(nlog n) < C< 0(n?), can
be achieved using no more than log(n?/C) +[log(2 + log(n?/C)) 1+ 6
random bits. © 1995 Academic Press, Inc.

1. INTRODUCTION

The use of randomness has led, for a variety of problems,
to algorithms which are more efficient than the best known
deterministic algorithms. This suggests the following ques-
tion: How much does a single random bit actually help?

One approach [KPU] to this question is to treat
randomness as a resource and to analyze the amount
of randomness needed to obtain a certain performance.
If successful, this approach leads to tradeoffs between
randomness and other complexity measures such as
computation time and memory requirement. In this paper
we prove such a tradeoff in the context of communication
complexity. Previously a tradeoff between randomness
and computation time was shown for oblivious routing in
computer networks [ KPU] and between randomness and
memory for caching algorithms [ RS89].

Recently, Canetti and Goldreich [CG] investigated
tradeoffs between randomness and communication com-
plexity for Monte Carlo protocols, i.e., protocols which are
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allowed to give wrong answers with some probability less
than half. They proved tight tradeoffs between communica-
tion complexity and the number of random bits. Their
results are related to ours in the following sense: Roughly
speaking, if you truncate a Las Vegas protocol after C bits
you get a Monte Carlo protocol with the same complexity.
Hence lower bounds for Monte Carlo protocols also imply
lower bounds for Las Vegas protocols (but not vice versa!).
In fact, Theorem 2.b) in [CG] in the special setting of
Las Vegas protocols implies our Theorem 4.2.

The communication complexity of Boolean functions is a
complexity measure corresponding to the amount of infor-
mation transfer necessary to compute the function (see
[AUY, F87, F89, HR, LS, MS, PS, and Y79] for detailed
definitions). Let f: X, x X, — {0, 1} be a Boolean function.
Assume that P, and P, are two processors such that P,
knows the argument x,€ X,, i=1, 2. The processors now
exchange messages according to some probabilistic
protocol. The protocol terminates when both processors
have correctly determined the function value f(x,, x,). This
type of protocol is called a Las Vegas protocol (uses ran-
domness but always computes the correct answer). In this
paper we only study Las Vegas protocols so we just call
them protocols.

For a given protocol let r;(x,, x,) be the number of ran-
dom bits used by P; in the worst case on input (x,, X,)
(maximized over all possible sequences of random bits). Let
m(x,, x,) be the number of bits exchanged between P, and
P, on input (x,, x,) in the worst case (maximized over all
possible sequences of random bits) and m(x,, x,) the
expected number of bits exchanged. Let p,(x,, x,) be the
probability that at least ¢ bits are exchanged on input
(x;, x,). The following quantities measure the performance
of a protocol.
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Randomness R, i.e., the maximal number of random bits
used on any input (x;, x,). R=max, ., (r(x,,x;)+
ra(xy, X5)).

Communication complexity C, i.e., a bound on the number
of bits exchanged by the processors in the worst case.
C=max,, ) M(x;, X;).

The deterministic communication complexity (i.e., R=0)
is denoted by Cy,.

Expected communication complexity C, ie., the maximal
expected number of bits exchanged for any input (x,, x,).
C=max,, ,, H(x;, x;).

Failure probability Q,, i.e., the maximum (over all inputs
(x;, x,)) of the probability that the algorithm exchanges at
least ¢ bits. Q, =max,, ., p.{x1, x2).

Another measure for randomness is the entropy of a
random source [KY]. We remark that, analogously to
[KPU ], our lower bounds in Section 4 (as well as the upper
bounds) hold for this measure also instead of R.

We prove a tradeoff between randomness, expected
communication complexity, and failure probability for the
list-nondisjointness (LND) function. Let X,=X,=X"
where X={0,1}". For (x,, .., x,), (¥1, .., y,) € X" define
LND((x,, ..., x,), (V1. ¥»)) :=1 if there exists a j with
x;=y,, and 0 otherwise. Note that the inputs to both pro-
cessors consist of n? bits each. It is known [ MS] that any
deterministic algorithm (i.e., R =0) for LND must exchange
n? bits in the worst case (i.e., Cy, = n?, and if = o(n?) then
0,>0) and that there is a probabilistic algorithm with
C=0(n) [F87]. It is also known that this quadratic gap
between deterministic and Las Vegas protocols is maximal
[AUY].

We show in this paper the following

THEOREM A (Lower Bound). Let 0 <r<logn.'

(a) Any protocol for LND that exchanges less than
t=n?/2" bits with probability at least 1 —Q, 0<Q<]1,
requires randomness R =r —log Q = log(n?*/(tQ)).

(b) Any protocol for LND that exchanges an expected
number of C=n?/2" bits requires randomness R>r=
log(n?/C).

In fact, we show a more general bound which applies to
any function f (see Theorems 4.2 and 4.3).

THeEOREM B (Nonconstructive Upper Bound). For
I<r<logn—loglogn—5 a protocol exists which uses
R=r+T[logr1+4 random bits and exchanges an expected
number of C< n?/2" =2 bits. In other words, R < log(n?/C) +
Mog(2 + log(n?/C))1+6 for 27 -nlogn< C<n’

'log denotes a logarithm of base 2, whereas In denotes the natural
logarithm of base e.
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Theorem B implies that one additional random bit
reduces the expected communication complexity of LND by
nearly a factor of 1 which is optimal by Theorem A. The
proof of Theorem B involves a counting argument and is in
this sense non-constructive. We also have an explicit con-
struction which does not, however, give quite as good
bounds.

THeEOREM C (Explicit Upper Bound). For 1<r<
logn—loglogn—1 a simple protocol with randomness
R =2r and expected communication complexity C <n?/2" 2
exists. In other words, R <2log(n*/C)+4 for 8nlogn<
C<n

This paper is organized as follows. In Section 2 we restate
Fiirer’s protocol for LND [ F87]. In Section 3 we improve
it with respect to the number of random bits used (thus
proving Theorem C) and prove the existence of an even
more efficient protocol (Theorem B). In Section 4 we finally
prove. the lower bounds (Theorem A), and we conclude
with some open problems in Section 5.

2. THE OLD ALGORITHM

Let x,,.., x,, ), V, be n-bit integers (ie, 0<x,,
y;<2"). Then the list-nondisjointness function LND is
defined as

1 if 3j:x,=y;
LND((x,, ..., x,,), y ey Vp)) 1= .
((x, ) (Y1 s Ya)) {0 0 e
Fiirer’s C-optimal Las Vegas algorithm for LND [F87]
uses Q(n) random bits, which is far away from the lower
bound stated in Section 4. However, we will use the main
idea of his algorithm to prove our much more randomness-
efficient results, so we first present Fiirer’s algorithm. We
remark that Fiirer was only interested in an efficient
protocol and did not care about randomness. v
Let 2~ '<n<2*forakeN. Let 2 := { p prime | 227 <
p<2%},ie, all pe 2 have binary length between 2/~ ' +1
and 2".

ALGORITHM A ([F87]).

(0) Ifk <4 then P,sends x,, .., x, to P, which can now
compute the result.

Otherwise:

(1) P, chooses for i=4,..,k—1 a prime p, from & at
random with uniform distribution and sends it to P,. Then
P, computes for all j, 1<;j<n, the sequence x;‘ =X,
xj:=x;*'modp,, i=k—1,.,4. P, does the same with

the y;.
(2) P, continues as follows:
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ji=0;
repeat
j=ji+l
i:=3; ,
repeat (* inner loop checks x; =y, *)
i=i+1;

P, sends x; to P,;
P, answers 1 if x}= yj‘ 0 otherwise;
until x; # yjor i=k;
until x; = yjorj=n; (*xi=yjonlyifi=k,ie,x;=y;*)
if xj’i=yj". then f((x,, .., X,)s (V15 s Y)) i=1
elsef((xl, s X )s (P15 voes )’n)) =0

Observe that x; # y; implies x; # y;. Hence the inner loop

checks x; < y; correctly.

For the analysis of the expected communication com-
plexity of Algorithm A and the other algorithms we need the
following two lemmas which generalize [ F87].

|2 >2¥ "2 fori=4.

Proof. We know by the prime number theorem for
x=12 [G72, HW],

LemMmA 2.1.

|{ primes less than or equal to x} |

S, x L1 x
~2 lnx_2'logx
<12.In4. > —24.
In x log x
Therefore
1 221‘ 221"1
e i =—s
|'Q| 2 21 24 2:—1
PO
T et
22’_22f"+7
> 2i+l
>2%-i2 for i=z4. |

LEMMA 2.2. Ifz, # z, are m-bit integers and P is a set of
primes, each with binary length at least I, then there are at
most |_(m—1)/(I— 1) different primes pe P with z,=z,
modulo each of them.

Proof. Otherwise we would have z, =z, modulo the
product of these primes; but since this product has at least
(I-1)-(Lm—=1)/(I—=1)J+ 1)+ 1>m+1 bits, this would
imply z, = z,.

Analysis of Algorithm A. 1If k<4, then P, uses no

random bits and the communication complexity 1is
n®+1<16n If k=5, then P, uses in step (1) at least
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k- log |2l =Y -4 (2'—i—2)>n/2—6 random bits
and also sends them to P,. On the other hand, it is sufficient
for P, to use 24 +2° + .- + 25~ 1 <2*¥ < 2nrandom bits (of
course, a slightly better bound could be obtained by using
upper bounds on £ similar to the proof of Lemma 2.1).

In step (2) first assume x;# ;. Given xé’i“ #yi+!, the
relative probability for x}= y}is at most 3/2 '~i~2 by Lem-
mas 2.1 and 22 (with m=2"*' and /=2"""+1). In this
case at most 3i* 1 2/< 27+ bits are sent by P, to P, until
x,;# y;is recognized; P, sends only i —2 one-bit answers. x|
and P,’s first answers are always sent. Therefore the
expected communication complexity of the inner loop is less

than 18 if x; # y;:

SR (i—=2) 1)+ 24+ 1

k—1
C)‘ﬁ*)’f< Z 92 —i-2
i=4

< 18.

If x;=y,, then P, sends 3_¥_, 2’ < 4n bits at most (and P,
sends k — 3 one-bit answers), but this can only happen once
because the algorithm stops afterwards. So we have proven

THEOREM 2.3. Ifn>16(ie,k >5) then Algorithm A has
expected communication complexity C<23n and uses
between n/2 — 6 and 2n random bits.

3. IMPROVED ALGORITHMS

It is easy to reduce the number of random bits in Algo-
rithm A as follows:

ALGORITHM B. Run Algorithm A, but do not use
primes with length more than 2["log n7], i.e., restrict i to the
range 4 <i<1+[loglognT.

THEOREM 3.1. Algorithm B has expected communication
complexity C= O(n) and randomness R with 21logn—6<
R<8logn.

Proof. Substitute k' =["log log n']+ 2 for k =["log n’] in
the analysis of Algorithm A. Further observe that the
relative probability for x; =y, mod p,. _, given x; #y, is less
than (n/2M g loen1y/p2 legn—Tloglogn1=3 = 23/p by Lemmas 2.1
and 2.2 (because p, _, has length 2M'°8'°8” T+ 1 at least).
Therefore the expected number of bits exchanged for
checking x;# y; is still O(1). |

However, our main goal is a tradeoff between the number
of random bits and the expected communication com-
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plexity. We will first present an easy algorithm which is
optimal up to a factor of two for the number r of random
bits used (if this number is not too big). It is a direct
generalization of an algorithm proposed by [RY].

ALGOrRITHM C. Let S be any set of 4” primes of length
[n/2"]+ 1 each. S is known to both P, and P,.

(1) P, chooses a prime p from S at random and tells P,
which one was chosen.

(2) P, sends x;mod p to P, for all j, and if x;= y, mod p,
then it also sends x;. If x,= y,, then the algorithm halts.

THEOREM 3.2 (Theorem C). Algorithm C can be applied
ifn>16 and 1 <r<logn—loglogn— 1. It uses 2r random
bits and has expected communication complexity C<
n2/2r—2.

Proof. From 2"<n/2logn and n>16 follows x:=
27215 92len > 28 5 71, Hence we can apply formula (3.8)
of [RS62] and get

|{ primes of length [n/2" 7+ 1}|

r

. X 2&,2"/2',3.
SIn2 logx™ S

=n(2x) —n(x)>

4
2r +log 1 +1
2_.2r oglogn >4r.

5

2logn+r—logn
> o2 g g

(N

Hence the set S of primes exists as required. Observe next
that forpe S

prob(x;=y,mod p if x;#y,) <n——

by Lemma 2.2. Therefore an expected number of [(1n/2"7 +
2+4(1/2") - (n+ 1) bits have to be exchanged to check x; # y,.
Ifx,=y;, then[n/2" ]+ 2+ n+ 1 bits are exchanged. I

Algorithm C uses twice as many random bits as the lower
bound requires (Theorem 4.2). We will now show_that
C = 0O(n?*/2") can already be obtained with r + o(r) random
bits; this is optimal up to lower order terms. Unfortunately,
we have no explicit construction of such an algorithm. We
can only prove its existence by a counting argument.

The algorithm is a refinement of Algorithm A. The main
idea is to restrict the choice of random primes to small sub-
sets of . Also, because we aim at communication com-
plexity O(n?/2"), we only need the modulo cascade from
P, _,to P _, (any pe A _, has 2" <n/2"~ ! bits at most,
so we can afford to send x% ~").

DerINITION 3.3. Let &2 be the set of all sequences
$=(Px_1, - Pr—,) With primes p,e %, and let (x, y) be a
pair of numbers with x # y.

AND MEHLHORN

(1) A sequence se 2 is called i-bad for (x, y) if

(+--(xmod p,_,) - )mod p,
=(---(ymodp,_,) - )mod p,.

Let b,(x, y) be the number of i-bad sequences for (x, y).

(2) A subset & =2 is called bad for (x, y) if an i exists
such that at least Q, - L sequences of & are i-bad for (x, y);
here L :=|%|and Q,:=n/(r - 2"*'*1) <.

THEOREM 3.4. If we restrict Algorithm A to sequences s
of an ¥ =P which is good for all (x,y), x#y, and 0 < x,
y<2", we get expected communication complexity
C<3n?2"+(r+2)-n+llogL and use only [logL"
random bits.

Proof. [log L7 bits are required to transmit the choice
of the sequence s. For fixed x; # y, and all i there are at most
LQ,- L sequences of % which are i-bad for (x;,y)), ie,
x;=y;. Hence P, sends an expected number of

fe=1

+ X

i=k—

k—1

)

=k—r

n-2i+1 3p

rr.2r+i+1 2r

n
r—1
2 i

LO,-L]
L

. h
i+1
2 g2r—1

bits to check x;#y; (and P, sends at most r one-bit
answers).
If x,=y,, then at most 2n + r bits are exchanged. ||

THEOREM 3.5. If r<logn—loglogn—S5, then an
L P, | L =r 274 exists which is good for all (x,y),
x#yand 0<x, y<2”

COROLLARY 3.6 (Theorem B). Ifr<logn—loglogn—S5,
then there exists a protocol for LND with expected
communication complexity C<n?/2"~2 which uses only
r+ [log r71+ 4 random bits.

To prove Theorem 3.5 we first need two technical
lemmas.

Lemma 3.7. b,(x,y)<6-(|2|/|2]) fori=4.
Proof. We have by Lemma 2.2

|2|
b — (x’ )<3
IS
and
bl(x,Y)<b1+1(X,Y)+1%—1|"”%+1|'3'|g}—1|"'|%—r|~

Because of |#,,|=2-]|%| (Lemma 2.1 together with
|P,| <2%') we conclude

Ed
1%l

121
|2l

+ o +@><6

1
|Z

b,~<x,y)<3-(
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LemMa 38. If logn>=izlogn—r2=35,
loglogn—>5, L=r-2"**and 1 <c<min{2’, n*}, then

22n <24 < ¢ >Q1>L<l
0,14l 2r

Proof.

followed by the main proof (3).

(1) Since i <log n and log ¢ <2 log n we have

izlogn—r>loglogn+5

=log(2logn+2logn)+3

>log [logn+ (logn—loglogn—5)+3
+ log(logn —loglogn—5)+logc]l+3

>log(logn+r+logr+logc+3)+3

>log(2i—logn+r+logr+logc+3)+3.

=g @/
Hence 2' —d>2'—2""".
(2) Let
1 r.2r+l logn.zlogn—loglogn—‘t 1
a:=— = < Sz
21.0, n n 16

Then for c<2” and i > 5:

20—i—2 2i=1 4 i+logc+lo
|Z =2 >2 e

228a2"c_a.2i

=c.28/Q1,L

i

Hence Q,-log(Q,;-|#]|/c)>8 and Q,-log(Q,-|1Z|/c)—4 is

positive.
(3) It follows that

2n +log 2r

Q,-log(Q;-|Z|/c) —4
- 2n+1+loglogn
\(n/r~2r+i+l).log((n/r‘2r+i+l).(22'-i~2/c))__4

4.n.r.2r+i+1

< : -
n-(2’—d)—4~r~2’+'+1

(1) n.r.2r+i+3

\n.(zi__zi—})_a.n.zi-#-z

2) r_2r+i+3
< i i—2 i—2
20-217%-2

r<logn—

The proof consists of a long but easy calculation
which is divided into two preliminary parts (1) and (2)

=r.2r+4

=L

| P
= L-<Q,-logw—4>>2n+log2r
c

c
= 2n+4L+L-Q, log——<Io ]

Q;- %]
Proof of Theorem 3.5. We show that the fraction of #’s
which are bad for some pair (x, y), x#y and 0 < x, y <2%
is less than 3.
For fixed (x, y) an % < 2 is bad for (x, y) if there is an i,
k —r<i<k—1, such that at least [ Q, - L7 sequences of &
belong to the at most 6 - |2|/|#]| sequences which are i-bad
for (x, y) (Lemma 3.7). Hence

3'27

# bad & S et <6~I?I/193~l>
#7 <(2 2 gL
o 2
\L-TQ, LT L
<2 ki’ < 6-12|-¢ )erﬂ
i=k—r |'Q||_Q1L~]

|2 - e L-rQi- L7 L L
'<L—FQ,~~L1> '(L%—L)

(because of Sterling’s Approximation () < (n-e/m)™)

kS (6 (L—TQ, LT\ 2
o 5 ()
2 Tire.

i=k—r

( |Zl-e L >L
L-TQ;-L7 |Z|-L

L ko 6 \2Ll
<2 n. ( >
2 EAR

i=k—r

2.e-L L
<L~—_-Q’—L_‘T> (121 =2L)

k—1 5 6 roi-L1 L
5 () e
L 710, Q

i=k—r

)

N|—

<3 (by Lemma 3.8)

ie., atleast halfofall £ = 2, |£| =r-2"**, are good for all
(x,y), x#yand 0<x,y<2" 1

4. THE LOWER BOUND

Our proof of the lower bound is based on the lower
bound proof for deterministic communication complexity
as given in [ MS] and generalized in [ F89]. From the latter
we take the following definition of rank-functions.
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Let F be the functional matrix of some function
f: XxY—{0,1}, ie, F[x,y]:=f(x,y). A function rank:
0/1-matrices — N is called a rank-function if

(1) For F constant, rank(F) is equal to one.

(2) For i=1,2, all aeN, and all partitions X =
X'V .-+ U X% (some of the X/ might be empty) there exists
at least one j with rank(F’) > (rank(F))/2¢, where F’ is the
submatrix of F induced by X”.

(3) The same as (2) with X replaced by Y.

Examples of rank functions are the rank of F over the
field of two elements (or any other field) or the function
2<% ( f), where Cg.(f) is the deterministic communication
complexity of the function f corresponding to the matrix F.
In [F89] (generalizing [MS]) we have shown that
log rank(F) is a lower bound for Cy.,(f).

It is well known that any probabilistic algorithm &/ can
be transformed into an equivalent algorithm ./’ which first
does some random step and afterwards runs deterministi-
cally. If we have r random bits, this means that we first
choose a deterministic algorithm out of a set of 2" algo-
rithms, which then solves the problem.

LemMA 4.1. For any set of 2" deterministic algorithms
for f there exists an input (x,y) such that all of these 2’
algorithms need at least communication complexity
(log rank(F))/2" on that input. Here rank is any rank
Sfunction.

Proof. Let {A,,.., A} be an arbitrary set of deter-
ministic algorithms for /. Assume w.lo.g. that algorithms
A,, .., A, start with processor P, sending the first bit (and
Agiy, Ay with P,). Then the set of all functions
h:{1,..,a} - {0,1} induces a disjunct partition of the
input values X (of processor P,) as follows:

X,:={x€ X | Algorithm A, sends h(i) as its first bit, | <i<a}

i.e., X, is a maximal subset of X with the property that each
algorithm does the same for all x € X,. Because there are
only 27 different functions / there must be one function 4,
such that F restricted to X, has rank at least rank(F)/2°.

In the same way we can find a subset Y, of the input
values Y of processor P, (considering the algorithms
A, 1, Ay which have P, sending the first bit) such that
the resulting functional matrix has rank at least rank(F)/
(29.2% ~9) =rank(F)/2%.

As long as the matrix has rank >1 the computation can-
not stop (because the matrix is not constant). Hence we can
iterate this procedure until (22")'>rank(F), but then all
algorithms have to communicate ¢ bits. ||

From this follows immediately

THEOREM 4.2. Any probabilistic algorithm for f using r

FLEISCHER, JUNG, AND MEHLHORN

random bits has expected communication complexity
C> (log rank(F))/2".

Choosing rank(F) =2 we obtain the well-known
lower bound C > Cy.,(f)/2" which can also be obtained by
simulating all sequences of random bits by a deterministic
protocol (see [CG]). However, we think that Lemma 4.1
is of independent interest because we can use it in the
following theorem to derive a relationship between
communication complexity, failure probability, and
randomness (as suggested by [KPU]).

THEOREM 4.3. Any protocol for f that exchanges less
than t= (logrank(F))/2" bits with probability 1— 0,
0 < Q < 1, requires randomness

log rank(F)

R>r—log Q=log
Q0

Proof. If the probabilistic algorithm exchanges less than
t bits with probability at least 1 — Q on every input, then the
sum of the probabilities given to any set of 2" deterministic
algorithms must be bounded by Q (this follows directly
from Lemma 4.1). However, then there must be at least 2"/Q
deterministic algorithms that are selected with positive
probability. |

CoOROLLARY 4.4 (Theorem A).

(a) Any protocol for LND that exchanges less than
t=n?/2" bits with probability at least 1 —Q, 0<Q<1,
requires randomness R >r —log Q = log(n?/(1Q)).

(b) Any protocol for LND that exchanges an expected

number _of C=n?2" bits requires randomness R>=r=
log(n?/C).

Proof. Mehlhorn and Schmidt [MS] have shown
Cye(LND) = n?.

Let 0<r<logn.

5. FURTHER RESEARCH

(1) We should try to close the gap between the upper
and lower bound (Corollaries 3.6 and 4.4).

(2) The upper bound (Theorem 3.5) applies only for
r<logn—Iloglogn—5. We should also find efficient algo-
rithms for log n —log logn—5 <r<logn.

(3) Halstenberg and Reischuk [HR] exhaustively
studied k-round protocols (i.e., the processors are only
allowed to send a restricted number of messages of arbitrary
length). It should be possible to prove similar results for this
kind of communication complexity (note that all algorithms
presented in this paper may need more than a constant
number of rounds, whereas the lower bound holds for any
number of rounds).

Received February 8, 1991
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