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Abstract: In this paper we introduce a gencral framework for compaction on a torus.
This problem comes up whenever an array or row of identical cells has to be compacted.
We instantiate our framework with several specific compaction algorithms: one-dimensional
compaction without and with automatic jog insertion and two-dimensional compaction.

I. Introduction

A compactor takes as input a VLSI-Layout and produces as output an equivalent layout
of smaller area. An effective compaction system frees the designer from the details of the
design rules and hence increases his productivity and on the other hand produces high quality
layouts. For these reasons, compaction algorithms have gained widespread attention in the
VLSI-Literature ([4],[7],(9],[10],[12],(15],[17]), and are the basis for several computer-aided
circuit design systems ([2],[4],[11],[19],[20]).

Regular layouts composed of rows or arrays of identical cells arise frequently in practice,
e.g., bit slice architecture or systolic arrays. Let S be the cell to be replicated. We adress
the following problem:

Compact S into a cell S’ such that cell S’ still can be used to tile the plane (or an
infinite strip)

This problem is called the compaction problem on the torus, because a layout S can be used
to tile an array iff its left and right, and top and bottom boundaries are compatible, i.e.
if the cell S can be drawn on a torus, cf. figure 1. The compaction problem on a torus is
interesting for three reasons.

(1) Row-like and array-like arrangements of a single cell arise frequently in practice. In
such an arangement it is desirable to compact all instances of the cell identically to

(2) guarantee identical electrical behavior of all instances and to

(3) allow further hierarchical processing.

Our own interest in compaction on a torus was stimulated by a Kulisch-arithmetic-chip
designed by P. Lichter [14]. A central component of this design is an accumulator consist-
ing of 1152 identical cells which are arranged into a 36 by 32 array, cf. fig. 2. The fully
instantiated layout overstrained the compactor of the HILL-system (although it can handle
100 000 rectangles) and so compaction on a torus was called for. Several simple-minded
approaches failed. Compacting a single cell does not guarantee tileability, compacting the
layout using the algorithm for hierarchical compaction by Lengauer ([13]) does not guar-
antee that the instances stay identical, and compacting a single cell and insisting that the
boundary stays rectangular wastes area, although it guarantees tileability. Finally, the ap-
proach of Eichenberger/Horowitz ([3]) works only for constraint based compaction without
jog insertion.

In this paper we describe a framework for compaction on a torus. It can be combined
with several known compaction algorithms, e.g. one-dimensional compaction ([4],[12]), one-
dimensional compaction with automatic jog insertion ([15],[17]), and two-dimensional com-
paction ([7]), to yield specific compaction algorithms.

Our approach is very simple. Let the cell S have length L and height H. We draw £ on
a cylinder of circumference L and height H. If S is supposed to tile the plane (instead of
a strip) then we also identify the upper and lower rim of the cylinder and obtain a torus.
We now let the circumference shrink. In this way the features of the cell will move closer
together until a tight cut, i.e., two features reaching their minimum separation, arises. These
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two features are kept at their mimimum separation from now on. We continue in this fashion
until a cycle of saturated cuts around the cylinder (or torus) arises. At this point we have
minimized the z-width of the cell but still guarantee that it can tile a strip (or the plane).

In section II we describe our approach in more detail and fill in some algorithmic details. We
stay however on the generic level. In section 1II we instantiate our framework in three spe-
cific cases: one-dimension compaction without jog insertion (section III.1), one-dimensional
compaction with jog insertion (section 111.2) and two-dimensional compaction (section IIL.3).

II. Definitions and Results

We give a precise definition of the cylindrical compaction problem. A cylindrical sketch
is a quadruple (F,W, P, L) consisting of a cylinder 7 of circumference L, a finite set F' of
features, which are points (= point feature) and open straight line segments (= line feature)
on the surface of Z, a finite set W of wires, which are simple paths on the surface of Z, and
a partition P of the features F. Each block of the partition is called a module. Figure 3
shows an example of a sketch. When the partition P and the period L are understood we
will refer to a pair (F,W) as a sketch. The features and wires of a sketch must satisfy the
following conditions:

(1) Distinct features do not intersect and the endpoints of each line feature are point features.

(2) No wire may cross itself.

(3) Each wire touches exactly two features, which are point features lying at the endpoints
of the wire. They are called the terminals of the wire.

A point in a sketch is a point lying on a feature. Modules form the rigid part of a layout
and wires represent the flexible interconnections.

Sketches comprise the information of placement and global routing. A (detailed) routing of
a sketch (F,W, P,L), W = {p1,...,Pm}, is a sketch (F,W’,P,L),W’ = {q1,...,qm}, such
that g; is homotopic to p;, i.e., p; and ¢; have the same endpoints and p; can be transformed
continuously into ¢; without moving its endpoints and without allowing its interior to touch
a feature in F, and such that the ¢;’s satisfy the constraints of the particular wiring model
used. We consider only the grid model in this paper; our results extend however to any
polygonal wiring norm. In the grid model wires are rectilinear paths with a minimum
vertical and horizontal separation of 1.

A cut C is any open line segment connecting two points of the sketch, say p and ¢, and not
intersecting any feature. The density of cut C is the number of crossings of C' by wires which
are enforced by the topology of the sketch, cf. figure 4. Crossings of C' which can be removed
by deforming the wires do not contribute to the density. The capacity of a cut in the grid
model is given by max{z-length(C), y-length(C)} — 1, where z-length(C) (y-length(C)) is
the length of C in horizontal (vertical) direction, cf. figure 5. A cut is called safe if its
density does not exceed its capacity and it is called tight or saturated if its density is equal
to its capacity. The following theorem was proved by Cole/Siegel ([1]) and Leiserson/Maley
([8]) for the grid model.

Theorem 1. A sketch has a routing iff all cuts of the sketch are safe.
Actually, the results are slightly stronger. Let us call a cut pg critical, if either p and ¢
are point features or at most one of them lies on a line feature and the line segment pq is

perpendicular to that line feature. Then a sketch is routable iff all critical cuts are safe.
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With every cylindrical sketch S we can associate an infinite planar sketch S* as follows.
Let R be any vertical line on the cylinder. Then S is obtained by unrolling the cylinder
and then tiling a strip with the unrolled cylinder, cf. figure 5.

We are now ready to define the one-dimensional cylindrical compaction problem. The goal
of compaction is to displace the modules in z-direction such that the resulting sketch is
routable and has minimal period. Let S = (F,W, P, L) be a routable cylindrical sketch and
let S be the associated planar sketch. We denote the different instances of a feature f by
fiyi1 € Z. A displacement (or configuration) of S is given by a vector d € [RFXZ; d(f;)is the
displacement of feature f;. Of course, not all displacements make sense. Firstly, features
in the same module must be displaced by the same amount and therefore we must have
d(f;) = d(g;) for any two feature instances in the same module. Secondly, features should
not cross over during compaction and we therefore must have z, +d(f;) < z4+d(g;) for any
two points p = (zp,y,) and ¢ = (zg4,y,) where z, < x4 and y, = y, and p lies on a feature
fi and q lies on a feature g;. Let d be a configuration satisfying the two constraints above.
We can now define the sketch S°°(d) in a natural way. A point p on feature instance f;
with coordinates (z,,y,) in the sketch S has coordinates (z, +d(f;),yp) in S°°(d) and the
wires in §°°(d) have the “same” homotopies as in S°°; cf. [15] for a more precise definition.
The configuration space C(S) C RF x R of a cylindrical sketch S consists of all pairs
(d,6),d € RF,6 € R, such that the configuration d € RF*Z with d(f;) = d(f)+i6, f € F and
i € Z, satisfies the two constraints above and $°°(d) is routable. Note that the pair (0, L),
where 0 is the zero-vector, belongs to C(S), since the sketch S is assumed to be routable.
Also note that the sketch S°°(d) can be wrapped around a cylinder of circumference § and
hence gives rise to a cylindrical sketch which we denote S(d,é). The essential configuration
space Cy(S) of a sketch S consists of that connected component of C(S) which contains
the pair (0, L), i.e., a configuration (d,é) belongs to Co(S) if the cylindrical sketch S(d,é)
can be obtained from S = S(0, L) by continuously shrinking the cylinder and deforming the
layout drawn on its surface whilst maintaining the routability of the sketch.

Definition: One-dimensional cylindrical compaction problem
Input: A routable cylindrical sketch S = (F,W, P, L)
Output: A configuration (d,8) € Co(S) such that é is minimal.

Theorem 2. Let S = (F,W,P,L) be a routable cylindrical sketch. Then the essential
configuration space Cy(S) of the sketch S is a convex polyhedron.

Proof: In [15] the analogous result for planar sketches was proved. Because of the corre-
spondence between cylindrical sketches and periodic planar sketches described above the
result carries over. ]

We now state our main results. Let m = |F| be the number of features.

Theorem 38 (Cylindrical Compaction with Automatic Jog Insertion) .
In the grid model the cylindrical compaction problem can be solved in time

O(m*W?2__logm + K logm) = O(m*W?2__log m)

max maz

where Wpoe = 1+ |H/Anin], H is the height of the sketch S, A,,in is the period of the
compacted layout and K is the number of times a feature moves across a critical cut during
compaction. 1



The quantity K is a measure of how much the sketch changes during compaction. We believe
that the bound K < m*W? __ which we derive in section IV is overly pessimistic.

max

Compaction without jog insertion is a special case of theorem 3. Let us assume that wires are
specified as rectilinear polygonal paths; view vertical wire pieces as modules and horizontal
wire pieces as wires in the sense of the definition of a sketch, cf. figure 6. Then the
conipaction of such a sketch is tantanount to compaction without jog insertion.

Theorem 4.
Cylindrical compaction without jog insertion can be solved in time O(m? log m).

Cylindrical compaction without jog insertion was previously considered by Eichenberger/
Horowitz [3]. They did not analyse their algorithm.

Our approach can also handle maximum and minimum distance constraints which are spec-
ified by the user as long as the constraints are satisfied by the initial layout S. Since toroidal
compaction amounts to cylindrical compaction in the presence of equality constraints be-
tween the upper and the lower cell boundary our algorithms carry over to toroidal com-
paction with unchanged running time. Finally, we want to mention that the algorithm
underlying theorem 4 can be used for Kedem/Watanabe-like two-dimensional compaction

([7])-

ITI. Compaction on a Torus: the Framework

In this section we describe the general framework for compaction on a torus. For simplic-
ity, we deal only with the cylinder. Let S = (F,W, P, L) be the cylindrical sketch to be
compacted, cf. fig. 3; let A = L.

The central concept of our approach is shrinking which we define next. Let S(A) be the
sketch obtained for the circumference A of the cylinder and let R be a vertical line on the
cylinder which we call the reference line. For a feature f let p(f, A) be the distance from
f to the reference line when going to the left starting in f. The local meaning of “left”
and “right” is defined by viewing the cylinder from the outside. We refer to p(f, A) as
the position of f in the sketch S(A). For a cut C let the wrapping number w(C, A) be
the number of intersections between C' and the reference line R. We extend the concept
of wrapping number to features as follows. Consider an auxiliary digraph G4 with vertex
set F'U {R}. For every feature f there is an edge (R, f) of cost 0 and for every saturated
cut C' with endpoints f and g, where the left-to-right orientation is from f to g, there is
an edge (f,g) of cost w(C,A). We denote such a cut C by fg; note that this notation
is ambiguous since only the endpoints together with the wrapping number identify a cut.
Let us assume for the moment that the auxiliary graph G4 is acyclic; the other case is
treated in the proof of lemma 3 below. Let T(A) be a longest path tree with root R in the
auxiliary graph G4, let w(f,A) be the length of a longest path from R to f in G4 and let
d(f,A) = A - w(f,A) +p(f,A), cf. figure 7 for an illustration. We refer to w(f,A) as the
wrapping number of f and to d(f,A) as the distance from R to f in S(A). With these
concepts it is now easy to define the sketch S(A — €¢). The position p(f, A — €) of feature f
in S(A — ¢) is given by d(f,A) mod (A — ¢). The wire homotopy in S(A — €) is defined in
the natural way by considering the continuous transformation (e grows starting at 0) from
the positions p(f, A) to the positions p(f,A —¢), f € F.

Shrinking the circumference of the cylinder can be visualized as follows. We cut the cylinder
at the reference line R and obtain a single copy of the sketch with left boundary R and right
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boundary R’. We then move each feature f to the right by an amount € - w(f,8) and move
R’ to the left by ¢, cf. fig. 8. For small € no feature will cross R’ and hence a cylindrical
layout is obtained by identifying R and R’.

Lemma 1. a) Let C = fg be a cut and let =(C,A) := p(g,A) — p(f,A) + w(C,A) - A be
the z-length of C in S(A). Then the z-length of C in S(A — €) is given by z(C,A —¢) =
z(Cs A) =t E(’U)(g, A) - w(fv A) - w(C, A))

b) If T(A) exists then S(A — €) is legal for € > 0 sufficiently small.

Proof: a) Let A’ = A — ¢. Then

m(CaA,) = P(g, A,) - p(f’ A’) + w(Ca AI) -A!
= (p(g,A) + w(g,A) - A) mod A" — (p(f,A) + w(f,A) - A) mod A’
+w(C,A") - A’
= (p(9,8) + w(g,A) -€) mod A" — (p(f,A) + w(f,A) - €) mod A’
+w(C,A") - A —w(C,A") €

Let us assume for simplicity that p(g,A) + w(g,A) - € < A’ and p(f,A) + w(f,A) € < A;
the other case is similar and left to the reader. Then w(C,A’) = w(C,A) and hence
.'L'(C, A') = :L'(C,A) + €(w(ga A) - w(f’ A) - w(Ca A))

b) Let C = fg be any cut. Clearly, if C is not tight in S(A) then C is not tight in S(A —¢)
for € sufficiently small. If C is tight in S(A) then there is an edge (f, g) of cost w(C,A) in
the auxiliary graph and hence w(g,A) > w(f,A) + w(C,A) by the definition of wrapping
number. Thus z(C, A —¢€) > z(C, A). Since the y-coordinates of the features do not change
during shrinking the capacity of C does not go down when passing from S(A) to S(A — ¢).
Also, the density of C does not change for ¢ sufficiently small. Thus S(A — €) is legal for €
sufficiently small. ]

Lemma 1 is the basis for our compaction algorithm. If T(A) exists, then the shrinking
process yields a legal sketch of smaller period. This leads to the following algorithm.

A —~ w; S(A) «— S ( the initial sketch S has period w *)
while T'(A) exists
do let € > 0 be maximal such that S(A — ¢) is legal;

compute S(A —¢€) and T(A — ¢€);

Ae—A-—g¢
od;

It remains to prove termination (lemma 2) and correctness (lemma 3).

Let Wiaz(A) = max{w(C,A);C = fg is a tight cut and there is no sequence fo,..., fi
such that f = fo,9 = fi, Ci = fifiy1 is tight for 0 < i < k, and w(C,A) = Y, w(C;,A)},
i.e., Wnae(A) is the maximal wrapping number of any cut which cannot be replaced by
a sequence of tight cuts of smaller wrapping number. We prove upper bounds for W,, .,
in various compaction models in section IV. In particular, W,,,.(A) = 1 for compaction
without jog insertion and Wy, (A) < 1+ |H/A] for compaction with jog insertion in the
grid model.




Lemma 2. a) 0 < w(f,A) < m - Wy,a(A) for all fand A and w(f,A) is non-decreasing
for every f.

b) The number of iterations is bounded by m*W,,qz(Amin) Where Ap,in is the period
of the final sketch.

Proof: a) The bounds 0 < w(f,A) and w(f,A) < m - Wpa:(A) follow immediately from
the definition of wrapping numbers. We show next that w(f, A) is non-decreasing for every
f. Consider any S(A) and let ¢ be maximal such that S(A — ¢) is legal. Then there must
be a cut C = fg which is tight in S(A — ¢) and oversaturated in S(A — € — 6) for 6§ > 0.
Thus w(g,A) — w(f,A) — w(C,A) < 0 by lemma 1la.

Consider the layouts S(A — §) where 0 < § < €. In these layouts exactly the cuts D = hk
with w(k,A) = w(h,A) +w(D, A) are tight. This follows from lemma 1a and the definition
of . In particular, all cuts in T(A) stay tight. Moreover, the tree T(A — §),0 < 6 < ¢, is
independent of 6. This can be seen as follows. As we increase § from O to €, the wrapping
number of a feature h increases by one whenever h moves across the reference line R on the
cylinder. Note that in this case the wrapping number of all cuts incident to A and leaving h
to the left goes up by one and the wrapping number of the cuts leaving & to the right goes
down by one. Thus the longest path tree does not change. The argument also shows that
the quantity w(g, A — 6) — w(f,A — 8) — w(C, A — §) is a constant independent of §.

In S(A — ¢€) the cut C becomes tight and is added to the auxiliary graph. Since w(g,A —
6)—w(f,A—=06)—w(C,A-6)=w(g,A)—w(f,A) —w(C,A) < 0 and hence w(f, A —6)+
w(C,A—86) > w(g,A—6) for all 5,0 < § < ¢, there is now a longer path to g in the auxiliary
graph. Thus we obtain T'(A — ¢) by replacing in T(A) the edge (= cut) currently ending in
g by an edge corresponding to C. Also, w(g,A —¢€) = w(f,A —€) + w(C, A — ¢).

b) We have shown in part a) that the values w(f, A) are non-decreasing, that at least one
such value is increased in each iteration and that 0 < w(f,A) < m+Wiaz(Amin). Thus the
number of iterations is bounded by m2W,, 42 (A pmin). ]

Lemma 3. The algorithm constructs a sketch of minimum period.

Proof: Let Sy, be the final sketch. It is clearly reachable (the algorithm shows how)
from the initial sketch S by a continuous transformation which only passes through legal
configurations. Thus Syin = S(do, Ao) for some (do, Ag) € Co(S). In Syin there must be a
sequence fo,..., fi of features such that f, = fi, and the cuts C; = f;fi+1,0 < i < k, are
tight. Let =; be the z-length of C; and let w; be its wrapping number. Then zo+...+Zf_; =
Ao(wo + ... + wk—1). Let S’ = S(d,8) with (d,8) € Co(S) be arbitrary. For 0 < X < 1
consider the configuration (d(\),8())) with d(A) = (1=X)do+Ad and §(A\) = (1 =A)Ag+ \S.
Then (d(A),6(A)) € Co(S) since Cy(S) is convex by theorem 1. Next observe that the cuts
C; exist in S(d(A),6(X)) for A sufficiently small and that their density is the same as in Sy;,,.
Thus their capacity must be no smaller than in S¢;, and hence their z-length must be no
smaller than in Sg;,,. Their total z-length is 6(A)(wo + ...+ wk—;) and hence §(A) > Ay for
A small. Thus 6 > A, and Sy;, has minimal period. ]

At this point we have proved termination and correctness of our generic compaction algo-
rithm. We fill in some more algorithmic detail next. The data structures are the longest path
tree T = T(A) and the set A = A(A) of cuts. With every cut C € A we associate the mini-
mal value €(C) of € such that C becomes tight in S(A —¢). The value €(C) is easily computed
from the density and the capacity of C in S(A) using lemma la. Let ¢; = min{e(C);C € A}.
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For every feature f let ¢(f) be the minimal value of € such that p(f, A —¢) mod (A —¢€) =0,
i.e. f moves across the reference line in S(A - ¢€). Let ¢2 = min{e(f); f € F}. Finally,
let €3 = min{e; A(A — €¢) # A(A)} and let ¢ = min(e;,e2,€3). We distinguish three cases
according to whether € = €1,€ = €3 or € = €3. The three cases are not mutually exclusive.

Case 1, e = ¢; : Let ¢ = ¢(C) and C = fg. Let Ty be the subtree of T rooted at g. We
perform the following actions:
1) If f € T, then STOP, T(A — ¢) does not exist.
2) Increase w(h) by w(f) + w(C) — w(g) for every feature h € T; here w(h) denotes the
current wrapping number of feature h € Tj.

3) Delete the current edge ending in g from T and add the edge (f,g).

4) Recompute €(D) for every cut D incident to a feature h € T, recompute €(h) for every
h € Ty and recompute €;,€; and €3.

Case 2, ¢ =€y : Let e =¢(f),f € F.

5) Increase w(f) and w(C) by one for all cuts C leaving f to the left and decrease w(C)
by one for all cut leaving f to the right. Update €(f) and €.

Case 3, ¢ = €3 : A either grows or shrinks at A —e.
Case 3.1. A shrinks, say cut C disappears, cf. figure 9.
6) Delete C from A. Update €; and e,.
Case 3.2. A grows, say cut C appears, cf. figure 9.
7) Add C to A, compute ¢(C) and update €, and €3.

Remark: In the high level description of the algorithm cases 2 and 3 did not appear because
case 2 does not change the longest path tree and the values ¢(C'). Case 3.1 either removes
an unsaturated cut or occurs together with case 1. Case 3.2 creates only unsaturated cuts,
cf. figure 9. ]

IV. Specific Compaction Algorithms

In this section we derive specific compation algorithms from the general framework of sec-
tion III.

IV.1. One-dimensional Compaction without Jog Insertion

We assume that wires are specified as rectilinear polygonal paths in the input sketch S. We
treat vertical wire segments as modules and horizontal wire segments as wires in the sense
of the definition of sketch. The only cuts which have to be considered are horizontal cuts
connecting pairs of features which are visible from each other. Thus there are only O(m)
critical cuts, the set A of cuts does not change and W,,,, = 1 since no cut can wrap around
twice.

For a feature h let deg(h) be the number of cuts incident to h. Then )7, ndeg(h) =
O(m) since the set of cuts defines a planar graph on the set of features. Also, actions 4
and 5 are executed at most m times for each A by lemma 2a and hence the total cost is
Yher™ deg(h) -logm = O(m? log m); the log m factor results from the fact that a change
of €(D) requires a heap operation. This proves theorem 4.
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IV.2. One-dimensional Compaction with Jog Insertion

In order to apply our generic algorithm we need a bound on W,,,, and we need a way to
manage the set A of cuts.

Lemma 4. Let S be a cylindrical sketch of height H and period A. Let W,,.. be the
maximal wrapping number of any tight cut which cannot be replaced by a sequence of
shorter tight cuts. Then W, < 14 |H/A] in the grid model.

Proof: We use the concept of shadowing, cf. ([1],[16]). Let C = fg be a saturated cut
with w(C,A) > 1 + H/A, cf. figure 10. Consider the straight line segments C' = f¢’ and
C" = g¢'g with w(C',A) = w(C,A) — 1 and w(C"”,A) = 1. The triangle with sides C,C’
and C" must contain a feature h (h = g’ is possible) such that the line segments D' = fh
and D" = hg with w(D',A) + w(D",A) = w(C,A) are both cuts and the triangle with
sides C,D’ and D" contains no features. Then the capacity of C is equal to the sum of
the capacities of D’ and D" plus 1, since D’ and D" have both slope at most one, and the
density of C' is at most the sum of the densities of D’ and D" plus 1. Thus D’ and D" are
tight and can replace C. We conclude W,,,,, <1+ H/A. ]

We store the set of cuts as in [17], i.e., for each point feature f we store the set of critical cuts
incident to f in clockwise order in a balanced tree. The results of [17] imply that actions 1
to 5 take time O(deg(h) log m) for each feature h whose wrapping number is increased where
deg(h) is the number of cuts incident to h and that actions 6 and 7 take time O(log m) each.
Let K be the number of times actions 6 and 7 are performed. Then the running time is
O(Klogm + m - (mW4z) - (MWyae log m)) since the maximal wrapping number of any
feature is m + W,,4. by lemma 2 and since the maximal number of critical cuts incident to
any feature is mW,4.; note that for each feature g there can be up to Wy, different cuts
with endpoints f and g. Finally, note that K < 3m*W?2__. This can be seen as follows.
Consider a pair (f, g) of features and one of the W,,,,,. possible cuts C with endpoints f and
g. Any feature h can cross C' at most 3mW,,,,, times since between consecutive crossings the
wrapping number of at least one of the three features must have been increased. Thus the
running time is O(K logm + m*W?2 __logm) = O(m*W2 _ log m) and theorem 3 is proved.
We believe that our bound on K is overly pessimistic.

IV.3. Two-dimensional Compaction without Jog Insertion

Finally, we describe how two-dimensional compaction can be done on the torus. Ke-
dem/Watanabe ([7]) describe a branch-and-bound approach to the two-dimensional com-
paction problem in the plane. That algorithm uses one-dimensional compaction to compute
the lower bounds in the bound step. This readily extends to toroidal compaction by virtue
of theorem 3. The difficulty of two-dimensional compaction is the interaction between hori-
zontal and vertical movement of features. For example, one has to decide whether it is better
to separate two features f and g by a horizontal or vertical cut, cf. fig. 11. Therefore, in the
compaction method presented in [7] decision variables ds 4 € {0, 1} are introduced for every
pair of interacting features. The value of dj , determines whether a horizontal or vertical
separation between f and g has to be used. Let d denote the vector of all decision variables.
Then for every fixed d the two-dimensional compaction problem can be solved by seperately
applying one-dimensional compaction in horizontal and vertical direction. This works on
the torus as well as in the plane. The remaining problem of computing the optimal decision
vector d can be solved by the branch-and-bound algorithm. By this method one starts with
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all decision variables being undefined, and then tries to fix the variables in such a way that
the layout area produced by the two passes of one-dimensional compaction will be minimal.
Essentially this is done by investigating a decision tree and prunning away subtrees that
cannot improve the objective function. For this purpose we need lower bounds and upper
bounds of the layout area. To obtain a lower bound we compute the minimal horizontal
period AE:::’: ) and the minimal vertical period Ai:f:t) by one-dimensional cylindrical com-
paction of the given sketch ignoring cuts fg corresponding to decision variables that are
not yet fixed. Obviously, the product A" . A" is 4 lower bound of the compacted
layout area. Upper bounds can be obtained by inserting a horizontal or vertical cut for
every unfixed decision variable. This way the branch-and-bound method can be used for

two-dimensional compaction with and without jog insertion.
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discussions. M. Jerrum suggested that toroidal compaction is the adequate approach to
compacting regular structures.
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Figure 1 :
A toroidal sketch.
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Figure 2 :

Part of a large accumulator consisting of identical cells. This layout has been computed by
compaction on the torus without jog insertion.
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Figure 3 :
A typical cylindrical sketch (F, W, P, L) and its representation in the plane. Dark points
and line segments are features, light lines are conceptual module boundaries. Formally, the

connected components formed by dark and light lines are the blocks of the partition P.

Wires are shown as wiggled lines.

Figure 4 :
A portion of a sketch with cut pg. The flow across 57 is 1.
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Figure 5 :

ghe unrolled version S of a cylindrical sketch S. The shown cut C between f and g has
ensity 3.



Figure 6 : . ' '
A sketch for compaction without jog insertion. Vertical wire segments are treated as modu-

les.
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Figure 7 :

Part a) shows a top view of the cylinder. There are saturated cuts f—g,g—h and fh. The latter
cut has wrapping number 1 and the former two have wrapping number 0. Part b) shows
the unrolled picture. Part c) shows the tree T(A).
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Figure 8 :
Shrinking the circumference A by € in the example of figure 7. Note that the cuv gh may
be tight in S(A) but it is not tight in S(A — ).
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Figure 9 :

In (a) h moves to the left relative to the cut fg and hits this cut in S(A —¢€). The cut fg
will then disappear. If the cut fg is tight then both cuts f& and fg will be tight in S(A —¢)
and hence cases 1 and 3.1. arise together. In b) h also moves to the left with respect to
the line segment fg. Thus the cut fg will arise, say in S(A — €). The cut fg cannot be
saturated because o.w. the cuts fh and hg would be saturated in S(A — ¢) and hence fh
would be oversaturated in S(A — ¢ — ) for 6 > 0 small. Thus (f,h) € T(A —¢€) and g would
never become visible from f.
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Figure 10 :
The cut C = fg has wrapping number > 1+ H/A. g’ is equal to g and the line segment C’

has wrapping number one less than C.
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Figure 11 :

Sketch (a) gives an example of two interacting features f and g. Feature g can either be
moved to the left (b) or downwards (c). The decision variable d;, determines which kind of
movement has to be used for two-dimensional compaction.



