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Abstract

Controlled Perturbation (CP, for short) is an approach t@ioing efficient and robust im-
plementations of a large class of geometric algorithmsguie computational speed of multiple
precision floating point arithmetic (compared to exacthanietic), while bypassing the precision
problems by perturbation. It also allows algorithms to bétem without consideration of de-
generate cases. CP replaces the input objects by a set amangerturbed (moved, scaled,
stretched, etc.) objects and protects the evaluation ahgé&@ predicates by guards. The execu-
tion is aborted if a guard indicates that the evaluation afegligate with floating point arithmetic
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may return an incorrect result. If the execution is abortieel algorithm is rerun on a new pertur-
bation and maybe with a higher precision of the floating paiithmetic. If the algorithm runs to
completion, it returns the correct output for the perturimguait.

The analysis of CP algorithms relates various parameteespérturbation amount, the arith-
metic precision, the range of input values, and the numbgft objects. We present a general
methodology for analyzing CP algorithms. It is powerful egh to analyze all geometric predi-
cates that are formulated as signs of polynomials.

1 Introduction

Most algorithms of computational geometry are designeceumdo simplifying assumptions: the
availability of a Real-RAM and non-degeneracy of the infAiReal-RAM computes with real num-
bers in the sense of mathematics. The notion of degenerg®nds on the problem; examples are
collinear, or co-circular points, or three lines with a coomintersection point. We call an algorithm
designed under the two simplifying assumptionsidaalistic algorithm An idealistic algorithmA,

on inputz halts with the correct result is non-degenerate ay is executed with exact real arith-
metic. However, implementations have to deal with the gieniproblem (caused by the Real-RAM
assumption) and the degeneracy problem (caused by theagameracy assumption).

Theexact computation paradigfiKLN91, JRZ91, FYW93, Yap97, MN94, MN99] addresses the
precision problem. It proposes to implement a Real-RAM tutee geometric computations. The
degeneracy problem is addressed by reformulating theitidgws so that they can handle all inputs.
This may require non-trivial changes. The approach is gl in systems such as LEDA [MN99]
and CGAL [CGA].

Symbolic perturbatiofEM90, ECS97, Sei98, Yap90] addresses the degeneracyepnolhstead
of solving the problem on the given inpgtone solves it on an input that is perturbed by infinitesimal
amounts. The approach removes degeneracies; it requmesaithmetic.

Halperin et al.[HS98, HR, HL04] proposedntrolled perturbatior{CP, for short) as a solution for
both problems. The idea is to perturb the input numericailyta control the effect of the perturbation
(hence the name controlled perturbation). The hope is tiegpérturbed input is non-degenerate and
can be handled with approximate arithmetic (see Section @dtails). CP algorithms compute ap-
proximate solutions in the following sense: they compugeeitact output for a nearby inputialperin
et. al. applied the idea to three problems (computing pasdlearrangements, spherical arrangements,
and arrangements of circles) and showed that CP varianteokspective idealistic algorithms can
be made to work. Funke et al. [FKMSO05, Kle04] extended thairkand showed how to use CP for
Delaunay triangulations and convex hulls in arbitrary disiens. In the conference version of this
paper [MOSO06], we argued that CP is applicable to a wide dagsometric algorithms and outlined
a general approach to analyzing CP algorithms. The appeaglires nontrivial geometric reasoning
for each geometric predicate. Caroli [Car07] applied tipigraach to geometric predicates required
for the computation of circle arrangements and Voronoi idiats of line segments. The analysis is
quite lengthy, involved, and does not cover all predicatesthis paper, we considerably simplify
the approach and turn the analysis of CP algorithms from taio @ craft. In particular, we give an
analysis of all predicates that can be realized by polyndraigpressions Moreover, we resolve an
issue that was left open by all previous papers: the anahgsiames that the perturbation is carried
out in the space of real numbers, but implementations onhkwith floating point perturbations.

Controlled perturbation is not a panacea. It only appliésisfpossible and permissible to perturb
the input. If the exact result for the unperturbed input isdesl, perturbation is not permissible. If the
input consists of a numerical part and a combinatorial @ard, a consistency condition between the



two exists, perturbing the numerical part and keeping isiant with the combinatorial part might
be impossible. There are positive examples where consisean be maintained, e.g., a polygonal
chain stays a polygonal chain after perturbing the vertexdioates, and also negative examples
where consistency cannot be maintained, e.g., a simplg@o&f chain may no longer be simple after
perturbing the vertex coordinates. Controlled pertudreis always possible if the input consists only
of numerical values, e.g., point coordinates. It should aks noted that no perturbation scheme can
remove a symbolic degeneracy, e.g., the three perpendhuskctors of the edges of a triangle always
meet in a common point. Perturbation may however help tmdecredundant tests in a program.

This paper is structured as follows. In Section 2 we reviesvabncept of controlled perturbation.
In Section 3 we present a general methodology for analyzir@i@orithms (Subsection 3.3), show
that it can handle all predicates defined as signs of polyalsniSubsection 3.4), discuss the issue that
the analysis is carried out in real space but an implementgierturbs in the space of floating point
numbers (Subsection 3.5), extend the analysis from predida algorithms (Subsection 3.6), and
analyze the complexity of CP (Subsection 3.7). In Sectiomelcompare the general methodology to
an approach that uses more intensive geometric reasoniagviNsee that the general methodology
leads to similar results, but with slightly weaker consttautors. Section 5 suggests future work.
Finally, in the Appendix (Section 6), we review the basic$l@dting point arithmetic and provide an
error analysis for arithmetic expressions.

2 Controlled Perturbation

We review the concept of controlled perturbation; this isecfollows and also extends Funke et
al. [FKMSO05]. Geometric algorithms branch on geometridjpates, e.g., on the position of a point
relative to a line or to a circle. Analytically, a geometriegicate is expressed as the sign of a
real valued functionf. Consider, for example, therientation predicatefor d + 1 pointsps,..., pd
andq = pg41 in RY: If py,...,pqg define a hyperplane kY, the predicate decides which of the
associated halfspaces contains the query ppitite answer is given by the sign ofd+1) x (d+1)
determinant:

Pr1 ... Pra 1

orient(py, ..., Pd,q) := sign R @
Pd1 --- Pdd 1
G ... Ga 1

The predicate evaluates to zero if and only if the 1 points lie in a common hyperplane. This is
considered a degeneracy. A perturbation of the points éylito remove this degeneracy. Moreover,
it may allow the correct sign of the determinant to be comghi means of approximate arithmetic.

The value of the determinant above is the signed volume ositinglex spanned by theé + 1
points up to a constant multiplicative factor dependingrufite dimension. The sign is positive if
the simplex has positive orientation, and the sign is negattherwise. If the absolute value of the
determinant is sufficiently large, approximate arithmelitermines the correct sign. Thus, in order
to show that approximate arithmetic is able to determinectineect sign for a perturbed set of points,
one only has to show that the volume of the simplex spannetidyerturbed points is sufficiently
large. We show in our main theorem that a similar kind of reaspis possible for all predicates that
are formulated as signs of polynomials.

The evaluation of an arithmetic formultin floating point arithmetic incurs round-off errors
which may change the sign. If this stays undetected, theranognay enter an illegal state and
produce incorrect output or crash or loop; see [KNIB] for instructive examples. In order to protect
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against undesirable consequences of round-off errorspgtelate the availability of guard G with

the following guard property: The guard Gis a Boolean expression. If it evaluates to true when
evaluated with floating point arithmetic, the floating poavaluation (fp-evaluation) of f yields the
correct sign.In this case, we also say that the evaluatiorf @f fp-safe If G; evaluates to false, we
say that the guard failed.

Using guards, we can transform an idealistic algoritAjminto a guarded algorithm 4 in the
following way: we protect every sign test by first testing togresponding guard. If the guard fails,
we abortAg and return the message “unsuccessful computation”. Onttier band, if the guarded
algorithm Ag runs to completion, we return the message “successful ctatipa’. In a successful
computation, all branch decisions are made correctly, @mddrthe combinatorial part of the output
is correct. However, numerical values are only approximatso, the asymptotic running time é§
on any inputz will be at most the asymptotic running time &f on z this assumes that the cost of
evaluating a guard is of the same order as the cost of evaduthte corresponding expression.

We will use the 2d-orientation predicate for poirts= (ay,ay), b = (by,by), ¢ = (¢, cy) in the
plane as our running example; it is giventby

orient(a,b,c) =sign(f), where f = (bx—ay)-(cy—ay)—(by—ay) (cx—ay).

By Theorem 16 in Section 6,
Gt = <|F| > 280 M2@2*L)

has the guard property. Hefeis the value of the expressiohwhen evaluated with floating point
arithmetic,M > 1 is a power of twé that bounds the absolute value of all argumelis,the precision
of the floating point system (see below), ango, and® are the floating point implementations-6f
—, and-. Theorem 16 also exhibits a guard that fails less often,dduiider to compute. Alternatively,
we can evaluate the defining expression with interval amtficnand use the guard that zero is not
contained in the result interval. For now we assume the entst of guards. In Section 6, we will
show their existence and review the basics of floating paititraetic. Floating point numbers are of
the form

sign- mantissa 28xPonent

where the mantissa is dnbit number; we refer td. as the precision of the floating point system.
The error in a single floating point operation is proporticiee2 . Hardware floating point systems
are available fot. = 26 (IEEE single precision), = 52 (IEEE double precision) arid= 112 (IEEE
quadruple precision). Software floating point systemsnatite user to choosk.

A d-perturbationd € R, of a real number is a random number in the intervial— 6,r + ). A
d-perturbation of a point ifRK is a point which results from-perturbations of the point’s coordinates.
Alternatively, it could be a random point in tResphere centered at the point. In this paper, we
consider the entire input to an algorithm, which in fact ieaaf geometric objects, as a real-valued
higher-dimensional poirt and assume that we may perturb all of its coordinates by @p te call
o theperturbation amounand the set

Us(2) = {ze R*: |z —z| < &forall i}

1An alternative formulation iwrient(a, b,c) = bycy — bxay — axcy — bycx + byax + aycx. For this formulation,Gs =
|ﬂ > 306 M? ®Z*L> has the guard property; see Section 6. In order to distihghis formulations, we call the formu-

lation in the footnote the “expanded” formulation and thenfalation in the text, the “non-expanded” formulation.
2We restrictM to powers of two because this makes the computation of thedsomore efficient. We nedd to be at
least one, because the proofs of Theorems 17, 18, and 19e¢hatMd is a nondecreasing function of
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of all possibled-perturbations of a point € R¥, the perturbation region We come back to this
assumption in Section 5.

The controlled perturbation version 4 of an idealistic algorithnA; works as follows: Letz be
the input and led be a positive real. We first choosedegperturbationz € Us(z) of z and then run
the guarded algorithrdg on z. If Ay terminates successfully, we terminaig, as well and return
the output ofAq together with the perturbed inpat If Ag aborts, however, we rerufiy on a new
perturbationz of z We may also adjust the CP parameters, i.e., increase thisipreof the floating
point arithmetic and/or the perturbation amoant

A controlled perturbation algorithm can be used without anglysis. Suppose we want to use it
with a certain perturbation amoudt We execute it with a certain precisian If it does not succeed,
we doublel and repeat. It is easy to see that this strategy terminates idde class of geometric
algorithms (Theorem 1). We give a quantitative relationgdiem 9) betweed, L and characteristic
quantities of the problem instance, e.g., the size of thiamte and the largest coordinate, and analyze
the complexity of the approach (Theorem 13).

3 A General Scheme for Analyzing Predicate Functions

Guards must be safe and should be effective, i.e., if a gudsdtthe computation continue, the ap-
proximate sign computation must be correct (safety), aratdpushould not unnecessarily stop the
computation too often (effectiveness). It is usually diffico analyze the conditions under which the
floating point evaluation of a guai@; returns true. For the purpose of the analysis, and only #®r th
purpose of the analysis, we therefore assume the existéadsoand predicateB; with the following
property: If B holds for a point z= R, the floating point evaluation of Gon z returns true.For a
function f of k argumentsB; : RX — {true,false}, andGs is a Boolean expression witharguments.
In Section 6 we show how to define valid guards and bound pastic It follows from Theorem 19

in Section 6 that iff is a polynomial, there is always a bound predicatef the form

|f(2)| > Kfmded L

where degf) is the degree of the polynomid{; is a constant depending on the coefficients and the
number of monomial terms, aid is the smallest power of two with

M > max(1,max{ (|| : Xx= (x1,...,X) is an argument of }).

We define
EBf (L) := Kymded L

as the right-hand side of the bound predicate and frequeniteg EB; instead ofEB; (L). For the
2d-orientation predicate in the plane (in its non-exparfdech), Theorem 19 in Section 6 yields

B = (|f(z)] > 56M227")

as the bound predicate corresponding to the guard givereipréceding sectioh.
We describe a methodology for analyzing predicate funstidde consider a geometric predicate
defined as the sign of a functidnof k variables defined on

A=[-M,M]k.

SFor the expanded version, Section 6 yiekis= (| f(z)] > 60M22*L) as the bound predicate corresponding to the guard
given in footnote 1.



Controlled perturbation replaces an inauty a random point in the cubic neighborhodg(z). For
simplicity*, we assume that the input domain is such thg) C A. We want to guarantee that for
anyz, the bound predicat®: holds for many arguments in the perturbation redigfz). We use

$(2 = Us(2) N B = {2 Us(D : |1(2)] > EBy(L)}

for the part of the perturbation region where the bound pegdiguarantees safety. Observe that this
part depends on the choicelos this choice influencdsB;. Also, observe thaEBs (L) can be made
arbitrarily small. For the sake of simplicity, we suppresis tdependency oh and also omiz most

of the time. Then for a random choice D& U, the probabilityps of a successful evaluation dfat

z satisfies

H(Ss) _ fxess 1dx
H(Us) fxeua 1dx’

wherep denotes the Lebesgue measure. Our first theorem statestlzatyf “reasonable” predicate
function f, this ratio gets arbitrary close to 1 for sufficiently laige

pr > 2)

Theorem 1 If f is upper continuous almost everywhere and has a zero set{z € R¥: f(z) = 0}
of measure zero, andlim .. EB;(L) = 0, then

fim pr =1
Proof: For any positiveg, let A := {z€ Us(2) : |f(2)| < €} be the set of arguments whose function
value is bounded by. Then,As, C A¢, Wwhenevere; < €. If z€ Ng=oA¢, thenf(z) < ¢ for all positive
€, and hencef (z) = 0. Thus,Z = Ng-0A¢, and henceA is measurable sincé is upper continuous
almost everywhere) lig,oU(Ae) = U(Z¢) = 0 by upper continuity of the Lebesgue measure. Hence,
H(Agg, (1)) tends towards zero asgoes to infinity. ]

We remark that the question, whether or not a test in a progiefines a functiorf with a zero
set of measure zero, may be non-trivial. For example, faetmointay, v, andw in the plane, let

f (U, V, W) = SOI((UV’ Euwm va),

wheresol (side of line) is the @-orientation function andy,, fuw, and/,, are the three pairwise
perpendicular bisectors. Since the three bisectors ofaagie intersect in a single point, = 0.
However, this fact is not immediate from the definitisol(¢yy, fuw N fww) Of the function. Of course,
no perturbation of the points will remove this degeneracgg&neracies that cannot be removed by
perturbation are calledymbolic degeneraciesControlled perturbation may help to detect symbolic
degeneracies. If a degeneracy does not go away by repeatadopgon, one may take this as an
indication that the degeneracy is symbolic.

Theorem 1 establishes that CP works. However, it does netgiguantitative relation between
the perturbation valud, the precisiorL, and the success probabilipy of predicate evaluation. For
guantitative estimates, we have to estimate the ratio daitbentegrals in Formula (2). In Section 3.3
we introduce a general methodology for deriving such amedé. We need some more notation.

4Alternatively, one may say that controlled perturbatioplaeesz by a random point in the neighborhotl(z) N A.
The volume of the neighborhood restrictediés at least 2X times the volume of the full neighborhood. We leave it to the
reader to check that all theorems in this paper stay true afselitable change of constants. In some situations, one may
want to consider only inputs with nonnegative coordinald®gen one would defind = [0, M}k.

SWe assume that for ay> 0 and anye > 0, the sef{z€ Us(2) : |f(2)| < €} is Lebesgue measurable.
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3.1 Some Notation

Throughout the paper we deal with functiohsRK — R in k variablesz;, z, . . ., z.. The ‘coordinate’
projection T : R — R with 1 < j < k maps ak-dimensional poinz = (2,2, ...,%) to its j-th
coordinatery (2) := z;. For any seA C R¥, let 1 (A) := {mj(a) : a € A} be the projection oA on its
j-th coordinate.

The ‘prefix’ projectionrtl) : R* — RI with 1 < j <k maps &-dimensional poinz= (21,2, ..., %)
to the tuple(z,...,z) of its first j coordinates, i.e.i\))(z,2,...,%) = (z,...,z). For any set
ACRK letmt)(A) = {ni)(a):ac Al

We will use prefix projection mostly with = k— 1. In order to simplify notation for this par-
ticular case, we use the following convention: Eet (z,...,z) € R¥, we usey = (y1,...,Yk 1) =
(z1,...,2%- 1) to denote the projection afon the firstk — 1 coordinates and:= z for the projection
on the last coordinate.

Frequently, we fix the firsk — 1 arguments off and consider the function of the last argument
obtained in this way. Suppode: R* — R andy = (yi,...,Yk_1) € R€"1. Then we defind, : R — R
by

fy(x) = (Y1, -, Vi1, %).-
A pointy is adegenerizeif fy is identically zero, i.e.fy(x) = 0 for all x € R.

For any point seP ¢ R andd > 0, we define its closed-neighborhood by

Us(P) := {ze R*: 3p e Pwith |p—z| < 5forall i}.

3.2 The General Scheme: Intuition and Example

LetA=[-M,+M]*C Rkandf : A— R. We wish to choose an appropriate arithmetic precisiand
give an estimate of the volume §{(z) that results. The procedure (to be described in detail imé¢ixé
section) can be outlined as follows: We $gt= | f|. We will construct a functiorfy_1 : ¢ Y(A) = R
and, for eacly € kY (A), a sefTy(y) C R so that

0< fro < inf fi(y, x
1)< I O

H(Tk(y)) < 2&x.

In words, fx_1(y) is a lower bound orfy(y,x) for mostx. We iterate this procedure, obtainirig o,

..., f1, fo, wherefp > 0 is a real number. We then chodsso thatEBs (L) < f.
Suppose=(z,...,z) is chosen uniformly at random frod(z). The event; ¢ Ti((z1,...,Z-1))

foralli=1,...,k, occurs with probability at leagq;(1—¢;/d). If the event does occur, then

EBf(L) < f() < fl(Zl) < fz(Z]_,Zz) <...< fk(Zl,...,Zk) = f(Z)

We remark that constructing functioris 1 with the above properties is not always possible be-
cause somg € R'~! could be a degenerizer df, i.e., fi(y,x) = 0 for all x. Then, an appropriate
setTi(y) does not exist. However, sughwill form a set of measure zero, and hence this case does
not affect the probability calculation. More preciselyr &achi > 1, we choose a s&;_; C RI-1
of measure zero that contains all degenerizerdj.ofThe probability estimate is then as follows:
Consider a randonz € Us(2). If i~V (z) € D;_; for somei, z belongs to a set of measure zero.
Thus, "~ (2) ¢ D;_ for all i occurs with probability one. Conditioned on this event, évent
z ¢ Ti((z1,...,z-1)) for all i occurs with probability at leaqt];(1—¢€;/8). Since the condition has
probability one, the same bound applies to the unconditigmmebability.
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Before we describe the general methodology in the follovdngsection, we first work through
an example. For simplicity, we will writdy instead ofT;(y) andD instead ofD;_1, wheni is clear
from the context.

We consider the @orientation predicate and rename the point coordinatea, by, by, ¢y, ¢, as
2 to z5. The renaming helps to forget geometry. We obtain

f(21,...,2%) ‘= 224+ 2326 + 252 — 2126 — 2320 — 7524
= (B~ 2)2%+ 22+ 2522 — 232 — Z5Zs.
For fixedy = (z,...,zs), fyis a polynomial of degree at most onezi A pointy € R® is a degenerizer

if 22 =23 andzz4+ 252 — 732, — 7524 = 0. We takeD = {(z,...,25) 1 z1 = z3}. Fory ¢ D, fyis a
linear function inzg that is zero for

AUt B % — T
L —7Z3 '

Let Ty be thegg-neighborhood of the point (124 + 7524 — 732, — z524) / (1 — z3) and define

fs(z1,...,25) == |23 — zl¢€s.

Then, fs(z,...,25) < infygr, |fe(z1,...,25,X)| for all (z,...,2z5) ¢ D. The next two reductions are
trivial, since fs depends on neitheg nor z; for both steps we takB = 0 and set

fa(z1,22,23) = a2, ..., 2) = T5(21, ... . Z5) = 23— Zu¢6.

The functionzs — f3(z1,2,23) is different from the constant zero for all choices(ef,z), i.e., f3
has no degenerizers. We cho@e- 0 for the reduction step from three arguments to two arguments
For fixed(z,2), f3(z1,2,23) is zero forzg = z;. Let T, ,,) be thees-neighborhood of the poire
and define
fa(z1,20) = €3¢6.

Then, f3(z1,2,23) > f2(z1,2) for z3 ¢ T(5, 5,)- The next two reduction steps are again trivialfas
depends on neithep nor z;. We takeD = 0 and setfy = f1(z1) = €3€6. We have now shown that

‘f(Zl,...,Ze)‘ > €386

provided that
26 — D24+ 2574 — 7323 — Z5Z4
21— 723

' >¢g and |23—Z;|_| > &3.

For any fixedz € RS, the probability that a randome U;(2) satisfies these conditions is at least

o-9-6-9)

Next, observe thatl —€6/0)(1—€3/8) > 1— (e3+€5)/d. The right-hand side of the bound predicate
is EBf = 56M227L. So, in order to guarantee that the bound predicate holdspsitbability at least
p, we only need to choos®, €3 andL such that

EB: (L) <e3e6 and <1— £3J6F£G> >p.
Settinges = €5 = (1— p)d/2 yields the constraint

2
56M22°L < (@) or equivalently L >7.807...+ 2Iog% +2Iogrlp.



3.3 The General Scheme

We formally define the reduction process introduced infdlyria the preceeding section and prove a
quantitative version of Theorem 1.

Definition 1 Let AC R¥, B=mt*V(A), f: A— R, ande € R*. A function g: B — R is an &-
reduction off if there exists a set @ B of measure zero such that for ang\pD there exists a set, T
of measure at mosk such that

XZTy = 0<g(y) <|f(y,¥)|

In the case k= 1, this amounts to the existence of a constamt@with ¢ < |f(x)| for all x ¢ U and
U a set of volumese.

Many functions are reducible. We $2to the set of degenerizers dfTy to thee /N-neighborhood
of the zero set ofy, whereN is cardinality of the zero set, for¢ D, andg(y) := infygr, [ f(y,X)]. If
D has measure zerd) is finite andg(y) > O for ally ¢ D, g is ane-reduction. We remark that our
definition is more flexible. It allows us to defir2 as a proper superset of the degenerizers and it
allows us to defindy andg in a more liberal way. We will put this added flexibility to gbaise in
Section 3.4. We are particularly interested in the case evtier functiong in Definition 1 is again
reducible, say td, andh is again reducible, ..., all the way down to a constant. Téésl$ to the
notion of beingfully reducible

Definition 2 Let AC R¥, B; = i/)(A) and f: A— R. Then, f isfully reducibleto f € R* if there
are positive realgy, . ..,€1, and functions ff: Bj — R such that f = |f| and fj_1 is angj-reduction
of fjforall j,k>j> 1

We are now ready for a quantitative version of Theorem 1.

Theorem 2 Letze A= [-M,M]KC Rk, f:A— R, and Us(z) C A. Assume that f is fully reducible
to fo € R™ and letgy to €1 be as in Definition 2. If EBL) < fq (this can always be achieved by
making L sufficiently large), then

NS(@) > 2 [] (B-¢).

1<j<k

The probability p of a successful predicate evaluation for a random poiatds(z) satisfies

> -8,
Pr = 1§|:|§k( 5)
Proof: LetBj =[-M,+M]l. By Definition 2, there are functionf : Bj — R* with f, = |f| such
that fj_ is ang;-reduction off; forall j, k> j > 1.
We consider the first step of the reduction sequenceDLe¢ as in Definition 1. We will bound
U(S5(2)) from below. Consider angy,x) € Us(z) with y € Rk-1\ D. Then, there is a s&, of measure
at most 2y such that 0< fi_1(y) < fk(y,x) for all x € Us(z) \ Ty. Let S = S(z), Us = Us(2),



Ys = &1 (Us), andXs = 1i(Us). Then,u(Xs\ Ty) > 25— 2g, and hence

WS) = / ldz :/ 1dz:/ (/ 1dx> dy
PSS zeUs : fu(z2)>EBs as XeXs : fi(y,x)>EBs

1dx> dy

Y

/era\D: fk1(y)>EBs </xex5\Ty: fie(y,x)>EBs

/ (/ 1dx> dyz/ (25— 2¢,) dy
yeYs\D : fy_1(y)>EBs xeXs\Ty yeYs\D : fi_1(y)>EBs

(25— 2 dy = 2(5— &) / 1dy,

yeYs : fie1(y)>EBy
where equality £) holds becauséy(y,x) > fx_1(y) for all y ¢ D andx € X5\ Ty, and equality(sx)
holds sinceD has measure 0. The integrgly. . ¢, ., -gg 1dyin the last formula has the same form
as the integral/,c, . 1,(,~eg 1dzin the first line, but for one smaller dimension. We can thenef
continue in this way and establish the first claim.

For the second claim, we use Formula (2) and obtain

o = WSs) > 2Tacj<k(8—¢)) _ (1_ﬂ) _

H(Us) (20)k

—
*
=

)

0
I ¥

/er5 : fe1(y)>EBy

We next specialize to an important subfamily of reduciblections for which the dependency
of the f;’s on theg;’s is explicitly expressed in terms of a facto?‘. This subfamily includes all
multivariate polynomials, as we will show in the next suliset; and is particularly well suited to our
approach.

Definition 3 (separable function) Let AC R¥and f: A— R.

(i) f is separablef there exist positive reals and a, and a function h B — R, where B=
=Y (A), such that® - h is ane-reduction of f for alle <.

(ii) f is fully separablef there exists a sequence of functions B; — R, where B = nt))(A),
fk =|f|, fo € RT, and positive real€; and a; such that for all j,1 < j <k, and allg; < ¢j, the
functions(j)(j - fj_1 is ane-reduction of {.

Assume now that is fully separable wittej’s andaj’s as in Definition 3. Also assume that
gj <€ forall j andz= (z,...,%) € Ais such that for allj, yj_1 := I"Y(2) ¢ Dj andz ¢ Ty, ,,
whereTy, , has measuree2. HereDj andTy, , are as in Definition 1. Then

1f(2) =|f(z,....z)| > fo- - ... gk
Thus, we obtain the following specialized version of Theofor fully separable functions.

Corollary 3 Let A=[—M,+M]¥, letze A be such that§(Z) C A, and let f: A— R be fully separable
as in Definition 3. Assume further that L aad< €; are such that

EBr(L) < fo-€7%-... g~
Then the probability pof a successful predicate evaluation for a random poiat;(z) satisfies

wz 11,00%)

1<j<k

10



In the following section we will specialize the above regalimultivariate polynomials. We will
see that multivariate polynomials are fully separable dnad thea;’s in Definition 3 can be chosen
such that their sum is bounded by the total degree of the poiyad.

3.4 Polynomial Predicate Functions

We show that any nonzero polynomial is fully separable. We gkplicit definitions for all quantities
in Definition 3. We then show how to optimize the CP paramefEng reasoning is purely analytical
and requires no geometric insight.

Lemma 4 ([SY11]) For any set R={pa,..., pn} Of not necessarily distinct points @ R and a non-
negative real, there existda set T of volume&ny such that for any g T there is a reindexing of the
points in P such thatp— pi| >y- | (i+1)/2] for all i; the reindexing is by distance from p.

Theorem 5 Let f(z) = f(y,X) := aq, (Y)X% + ... +a(y) + ao(y) € Ry|[x], with ax € N, be a multi-
variate polynomial, and let y be such that &) # 0. Then, for arbitrarye > 0, there is a set yTof
measure at moge such that
. € Ak

xgTy= 1020 = o) == laa W) () -
Proof:  For fixedy with ag,(y) # O, letry,...,rq, € C denote the complex roots djf(x) and let
P:={p1,.--,Po } :=1{0(r1),...,0(rq.)} be the corresponding multiset of their projections onto the
real axis. Lety=€/ay. Then, by the preceding Lemma, there exists alget R of volume Z such
that for anyx ¢ T, we have

X=ri| > [x=0(r)| = x=p| = y- [(1+1)/2].

Hence,
X = laa () [] =Tl =[x ()] yL(i+1)/2] > [g(y)l-

1<i<ag 1<i<ag
The last inequality requires justification. Let= a. Then,
|'| [(i+1)/2] =|n/2]![n/2].
1<i<n
We show that the latter quantity is at ledsy/(2e))". For evenn, this follows immediately from
o> (f/e)Z for all integer/. For oddn, we have to work harder. The claim holds foe 1, and so

we may assuma > 3. We use/! > /21¢ (¢/e)’ (see [Knu73, Section 1.2.11.2, Equation (19)]) and
estimate as follows:

[n/2]t[n/2]! _ ((n=1)/2)!((n+1)/2)!(2e)"
(n/(2e))" n"
_ V/Tn—1)((n—1)/(2¢)"Y/2y/m(n+1)((n+1)/(2€)) " V/2(2¢)"

= nn

_(n*-1)"2(n+1) nn+1) (1_ n_12>n/2 > g(n+ 1) > 1.

n" o

6For completeness, we sketch the construction. We conskrast the union of two sef§ andT,, each of volume at
mostny. The sefT; is such that for anx ¢ T, and anyi, the cardinality of{j : p; € [x,x+iy]} is less than. A symmetric
construction leads to a s& such that for ank ¢ T, and anyi, the cardinality of{j : pj € [x—iy,x]} is less thari. Set
Ty is constructed as follows: We start with the empty set. Gisrsallx for which there is an such that the cardinality of
{j:pje[xx+iyl}isior more. Letxg be the infimum of these and letig be such that{| : p; € [x,x+ioy]}| > io. Add
(X0, %o +ioY) to Tr. Delete thep;j in [Xo,Xo +ioy] and repeat the construction.

11



Corollary 6 Let f(2) = f(y,X) := aq, ()x* + ... +ao(y) € R[y|[x] be a multivariate polynomial and
let

=l (55)

Then, Hy)e% is ane-reduction of f for all positivee.

Proof: LetD = {yc R*1: a4 (y) =0} and lete be any non-negative real. Th&has measure
zero. Fory ¢ D, by Theorem 5, there is a sBtof measure at mostZuch that, fox ¢ Ty,

0> laa ] (2)" = a0l (5) e
|

The functionh in the corollary above is a multivariate polynomial in ongdeariable. So, we can
apply the same reasoning to it and obtain a functiafione less variable. Continuing in this way, we
establishf to be fully separable.

For a polynomialf € R[z,...,z], define polynomialgj € R[z,...,z],k>i>0, bygx = f and
g(z,...,%z) =0-1(z1,...,z2-1)Z" + lower order terms ig. We call Im(f) = Z*...Z* the leading
monomial off, and we call Icf) = go the leading coefficient of .

Theorem 7 Any nonzero multivariate polynomial is fully separable.rdiprecisely, if fe R[z, ..., %]
has leading monomidin(f) =2 =z*-...-Z*and g, ..., 4, go are defined as above, then we may
set in Definition 3: = « and

K e\
fu=|f| and §=|gi- L) foro<i<k
! jﬂl(Ze)

Proof: By Corollary 6,|g;_1|(¢/2e)% is ane-reduction ofg; for all i. Thusf;_; is ane-reduction of
fi for all i. 1

An application of Corollary 3 now gives the following bound the probabilityp; of a successful
predicate evaluation.

Theorem 8 Let f be a multivariate polynomial as in Theorenzg A= [—-M, +M]X, Us(Z) C A, and

L be such that )
€j\ i
EBf (L) <lcf(f)-[](=2) .
H(Ze)

The probability p of a successful predicate evaluation for a random poiatds(z) satisfies

wz 1035)

15j<k
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Example.We reconsider the orientation predicate from the beginoinipis section. It is given
by the polynomial

f(z1,...,2) = 2124+ 2326 + 752> — 2126 — 232> — Z524. (3)

Its leading term is Inf ) = zsz3 and its leading coefficient is I€f) = 1. Now, for arbitraryes, ... €6 >
0, it follows that the probabilityp; of a successful evaluation satisfies

2 (-%).(109)

provided thatEB (L) < gs€3/(4€?). Except for the factor &, this bound is the same as the one
obtained at the beginning of Section 3.3; the differencéas the bound now follows from a general
result.

We next show how to minimizé subject to a constraint ops, for instanceps > p. According
to Theorem 18, we can ugeB; (L) = KMN2-t in the bound predicate, whekg = c¢(m;s + 2N),
¢t = Ygmaxl,|fq|), andms = |[{a : fq # O}| is the number of monomial terms ih= 5 faZ";
herea is ak-dimensional multi-index. Let™ be the leading monomial of. Then, for arbitrary
€1,...,& >0, Theorem 7 tells us that

Ej Ej
ps > 1<j<k< — E) >1- 1§]§k€7
provided thaL is such that
mMNziguﬁuﬂ1ﬁ(%Q@. (4)
=1

For a fixedp < 1, we want to minimize. subject to the condition

8.
hi(e1,...,8) :=1— Jd_p>o.
1§Z§k 5

In an optimum solution, we havg = 0; otherwise, we could increasegwith aj # 0, which in turn
would increase the right-hand side of (4). We now use the oteth Lagrange multipliers. Define

ho(e1,....&) =log[] (=) = alog=L.
JL! (Ze) 2 O 2e

j:aT;AO

We want to maximizén, subject to the constraifi; = 0. At a maximum, the gradients bf andh,
must be parallel, and hence there must exist a Lagrangeptieriii € R such that

1 0(]-* 60(]?
Hes = P and hence g; = T

forall j=1,... kwith aj # 0. Replacing; by Ba]f/u in the conditionh; = 0, we obtain

-1
u4=%1—p%< > @) :

<)<k
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Substituting the resulting value for tBgs into the right-hand side of (4) and writirfor ;- j<aj =
degIm(f), we obtain
5(1— p))S

k .
||Cf(f)|.ﬂ<2_1e) = |Icf(f |I1< %68 ) >||Cf(f)|< ek

wherek” = |{] : aj # 0} is the number of variables in the leading monomial term. Eiseihequality
uses the fact thqqlgjgk(a’j‘/S)“T becomes minimal iérj = S/k* for all j with &j # 0. The minimum
is (1/k*)S. Thus, (4) holds iL is such that

J

2ek

L > log (KtMN) —log|Aq-| + degIn(f) - 951 p)

or equivalently,

L > log(cs(ms +2N)) +NlogM —log|lcf(f)| +deglm(f)- Iogé(zekkp)

We next simplify the right-hand side at the expense of makistightly larger. We usé* < N and
deglm(f) < N and obtain the condition

(5)

L > log(cs(ms +2N)) —log|lcf(f)|+N <3+IogN+Iog%+longlp> . (6)

Theorem 9 Let f =5, fx” be a multivariate polynomial of total degree N, and let denote the
number of monomial terms &= Y. 1, .omax1,|fq[), and let K be the number of variables ap-
pearing in the leading monomial. If the variables are randpmperturbed by at mosd and after
perturbation are bounded by M, the precision of the floatiognpsystem is L, and (6) or (5) holds,
then the bound predicate holds with probability at lepst

We next apply the general analysis to two examples. The fkamele is the 2d-orientation
predicate and shows that the general analysis gives medikiunds comparable to those obtained
by special purpose considerations. The second examplesstiaw the methodology can analyze
fairly complex predicates; the underlying polynomial h&% 3erms of degrees up to six; despite the
complexity of the defining polynomial, the analysis is sihaforward.

Example OneWe consider the polynomial
f(21,...,2) ‘= 224+ 2326 + 252 — 2125 — 2320 — 7524

underlying the 2d-orientation predicate and apply equg®). The leading monomial term is [rh) =
737, and for the leading coefficient, we have(IEf = 1. Furthermoreci = m¢f =6, N = 2, k = 6,
deglm(f) =2, andk* = 2. Thus, if

1
L > log(ct(ms +2N)) —log|lcf(f)|+ N (Iog(4e)+log 5 +Iogl—p>

=1279...+2 (Iog% + Iong1p> ,

the probability of a successful predicate evaluation isas$tp. Except for the constant additive factor
this is the same bound as derived in the introductory disonss the beginning of this section. The
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Figure 1: Given two circle€;, i = 1,2, with midpoints(a;,bj) and radiir; = ,/C;, there are two
degenerate situations of tangential intersection.

difference in the constant comes from two sources. Firstgéneral theorem uses the bound predicate
for the orientation predicate in expanded form. Secondtefma Nlog(4e) comes from the estimate
of the factorial in Theorem 5.

Example TwoThe second example demonstrates the strength of the gapgralach. We study
predicates that arise in the arrangement computation ofesirin the plane. For the predicate to
determine whether three circles have a common interseptiamt, the underlying polynomial is a
multivariate polynomial of total degree 6 in 9 variablesiwg35 monomial terms. Consider the
following predicates:

1. Do circles
C = {(xy) € R?:qi(xYy) = (x—a&)*+ (y—b)?— ¢ =0},

i =1,2 anda;, b € R, ¢ € R{, intersect in exactly one, two or no points?
2. Do three circle€,, C; and
Cai={(xy) € R?: da(xy) := (x—ag)* + (y— bs)? —c3 =0},

ag,bs € R, c3 € Ry, intersect in a common point and in which order@oandCs intersect the
circleCy?

For two circles, there are two degenerate situations oftatng intersection; see Figure 1. W.l.o.g. as-
sumec; > ¢;. The distances := /(a1 — ap)2+ (by — by)2 of the centers is eithe/c; + ,/C; or
/C1—+/C2. Hence, the following predicate function detects theseasibns:

f(al> a2> b1> b2> Cla CZ) = (S_ \/C_ - \/6) . (S_ \/C_l+ \/CTZ)
=(s— V@)’ -c
= 52 +C1—Co — 2\/C1(a1 — a2)2 + Cl(b]_ — bz)z.

We remark that the circles intersect in exactly one pointfift 0, do not intersect ifff > 0, and
intersect in two distinct points iff < 0. Sinces®+c¢; — ¢, > 0, it follows thatf (ag,ap, by, b2, ¢1,¢2) =
0 is equivalent to

9(a, a2, b1, 02,1, C2) 1= (a1 — @)® + (b1 — bp)? + 1 — C2)* — 4y (a1 — @)+ (b1 — by)?) = 0.
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Figure 2: The location of the intersection po8i= L, N L3 with respect t&C; determines whether the
two pairs of points{p; 1, pi 2}, i = 2,3 are interleaving or not.

Furthermore, we havg > 0 iff C; andC, do not intersect and < O iff the circles intersect in two
distinct points. Using coordinatégs, ..., z) := (ag,ap,b1,by,¢1,C2), we obtain a multivariate poly-
nomial of total degre®&l = 4 that consists afny = 34 monomial terms:
921, .., %) = — 40227 — S012o75 + 811 222374 + 823276 + A1 2225 + 4232475
+4212)75 — 42373 — A 7o + 6L+ 285 + 2227, — 2275 — 2275
— 4B T3+ 257+ 22575 — 22575 — 22576 — AZ3zu + 637, — 22575 — 2257
— AB7374 — AL 7870+ 7 — 22576 + B — 25476 — 2475+ L+ B+ B+ 4.

We have Infg) = zg Icf(g) = 1, cg = 100, andk* = 2. Hence, it suffices to work with a precision

M 1
L>2206...+4(log—-+log—
>2206...+ (oga+ogl_p>

to guarantee that the probability of a successful pertioghas larger tharp.

Now, let us find a predicate to answer the second questiomeliod the circle<, or C3 does not
intersectCy, there is nothing to do. Thus, we assume that each of themsausC, in two points
{pi1,pi2} :=CiNCy,i=23;the points may coincide. The difference

li(%,Y) := (G —G)(%,Y) = 2(& —ag)x+2(b — by )y+af — a2 +bf —b?+¢ — ¢

of the two defining equations @; andC; is a linear equation i andy, and its vanishing set is the
unique lineL; passing through the points; and p; ». In the degenerate cagg: = pi 2, the linel;
intersect<C, tangentially afp; 1. Then (see also Figure 2):

o Ly=Lifand onlyif {p21, P22} = {P31, P32}

e If L1 # Ly and the poinS:= L, N L3z lies onCy, then there exists exactly one common intersec-
tion point ofCy, C, andCz, namelyS.

e The pairs{pi1,pi2}, | = 2,3, of crossings witlC; are interleaving if and only i lies in the
interior of C;.
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Hence, to get information about the order of the intersacgioints onC;, we have to compute the
lines L;j and their intersectior® = (Xo,Yo). Finally, we have to check the sign gf(xo,Yyo). The
coordinatesg andyg are obtained by solving the systéin= |, = 0 of linear equations. Thus,

—a%bg, + asz +...— b%bg, + c3by
—aphy — braz + apbz — aybz + braz + bzal)

and
aa —aph3 +... — a3 — b3ay
2(—aphy — bpag + apbs — ajhs + biag+ boag ) ’

where we have omitted some of the terms in the numeratoriéosake of readability. Plugging
(X0,Yo) into g1 = 0, the defining equation &, yields

Yo=—

—23183C; + 2¢1b3by + . .. + 4adaphgb, — 6a3a2a3
4(—aghy — boag + aghs — aybs + biag + boay )2

(X0, Yo) =

with a numeratoh € Z[a;, by, ¢ consisting ofn, = 335 monomial terms in the 9 variablash; andc;,

i =1,2,3. The sign ofy1 (X0, Yo) is identical to the sign df, as the denominator of; (Xo, Yo) is always
nonnegative. Rewritingp in terms of the variable$z, ..., 7)) := (a1,ap,a3,b1,b2,bs,c1,C2, C3), the
leading monomial term off is given byzz3, and the leading coefficient equals 1. Furthermore, its
total degree equals 6 anidh||,, = 8. Thus,cs < 8m;. Now, Theorem 9 implies that the choice of a
precisionL with

L > log(8m¢ (m¢ +2N)) + 6logM + 4 <Iog(8e) + Iog% +log —lf p)>

=36.12... +6logM +4 (Iog% +log r1p>

guarantees that the sign @f(Xo, o) can be evaluated successfully with probability larger than

3.5 Floating Point Perturbations

We address the issue that the analysis is carried out in paaks but an actual implementation will
choose perturbations in the set of floating point numbershéve performed the theoretical analysis
in the real spac®k; the perturbation of a point is a random point in the rectéargdneighborhood

of the point. However, in an actual implementation, theyrbrd points have to belong to the discrete
setlF, of floating point numbers of precisidn Previous papers commented this issue as well but
refused to give a precise argument to show that their asalgsieal space carries over to floating
point numbers.

We have considered a different approach here. Observeuhatmr analysis explicitly takes into
account that real arguments are rounded to the neareshfqadint number (Lines 1 and 3 in Table 1
and Theorem 18). Theorem 18 states that, for any polynofmidltotal degreeN in k variables and
any (zi,...,%) € [-M,M]K,

Hr,- 2 — T(f(@),... (20| < KMMN2 ™,

wheref is the floating point version of, i.e., all operations irf are replaced by their floating point
counterpartKs is a suitable constant, and for axy R, fl(x) is a nearest (it is not important how ties
are broken) floating point number (with mantissa lerigth

"This and the following computations were performed with anpater Algebra System.
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Theorem 10 Letz € [-M, +M] be such that U= Us(z) C A, and letF| be the set of floating point
numbers with mantissa length L. For an;@ﬂF'ﬁ, let p, be the probability that u-= fl(z) for a random
ze U (rounding is component-wise). Then, Theorem 9 staystimstead of choosingeU uniformly

at random, we choosegFf according to the distributiorpy) -

Proof: The floating point evaluation of(z) is tantamount to computin@(u) since the first step in
the evaluation is roundingto fl(z). 1

How can we generate floating point numbers with the desiretdalnilities? Since coordinates
are perturbed independently, we may restrict to a singledioate. Letz € [-M,M] be such that
Us(z) € A. In order to reduce boundary effects, we seletk & Us(z) of width at leastd such that
generating a randome U is particularly simple; this will also give us a simple presdor generating
fl(z). Reducing the size of the perturbation region by a factomofdoes not change the character of
our bounds; it only affects constant factors.

Let e € Z be such that 21 < 8 < 2°. Then there is an integ& such thatz— & < W - 2° <
(W+1)-2°<z+40d. Leta be the longest common prefix of the binary representations’ @ind
W + 1, respectively. Then01! andal1(’, wherea € {0,1}* and/ > 0, are the binary representations
of W andW + 1, respectively. We can choose the binary representatiamaridom real in the interval
U := [W,W +1]- 22 by first selecting eithem01’ or a 10’ with probability 1/2 each and then continuing
random bit by random bit (or continuing in blocks of randortshi Continuing forever, we obtain the
binary representation of a random real [W,W + 1] - 2°. In order to determiné(z), we do not have
to continue forever, we can stop as soorflég is determined. When is this the case? The binary
representation af is a(0[1)(1/0)° ... -2°. When the number of bits following the leading bit in this
bit-string exceeds, fl(z) is known. Thus, no more than additional bits are needed except in one
situation: There is no 1ia(0|1)(1/0)", i.e.,a is empty and = 0. Then, we need to generdte- 1+ r
bits, wherer is the number of leading zeros that we generate. The pratyadiilgenerating leading
zeros is 2", and hence the expected number of bits to be generated équ&lg1) in all situations.
We summarize the discussion.

Lemma 11 Letz e [-M, M| be such that §(z) C A. Then, we can find a \d_ Us(z) of width at least
0 such that f{z) for a random z= U can be generated in expected timé.(

3.6 Analysis of a Complete Algorithm

We show how to extend the analysis of a single predicate tarthgy/sis of a complete algorithm. We
first consider an algorithm with inpate R" that uses two geometric predicates. The predicates are
implemented as the signs of polynomidisand f,, respectively. Our goal is to guarantee that the
algorithm succeeds on a perturbatioa Us(z) with probability at least 12.

Let f; be a polynomial of total degrdd in k; variables. Then there are no more tmérargument
tuples ofk; distinct arguments. If we guarantee thatails on any specifig;-tuple of arguments with
probability at most 1(4n'), the probability thatf; fails on somek;-tuple of arguments is at most
1/4, and hence the probability that eithigror f; fails on some argument is at most2l Thus, the
algorithm succeeds with probability at least 1/2.

Each of the two bounds on the error probability yields a loveund onL. The larger of the
bounds determines the value lof Of course, the argument above extends to any number of-predi
cates. Many algorithms in computational geometry use alsrmaaiber of primitives of bounded arity
and hence are covered by this argument, e.g., convex hudlgubay triangulations, and Voronoi
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diagrams. We give a specific example: The incremental Daladiiagram algorithm uses the 2d-
orientation and the 2d-side-of-circle predicate. Theeeaamosn?® distinct invocations of the former
predicate and at most* distinct invocations of the latter. Thus, it suffices to gurdee that an ori-
entation predicate fails with probability at most(4n®) and that a side-of-circle predicate fails with
probability at most 1(4n*).

Theorem 12 Let f; to f; be multivariate polynomials such that eaghisfa nonzero polynomial of
total degree at most N in at most m monomial termssicc, andlcf(f;) > 1. If an idealistic algorithm
branches only on the signs of fo f, and the n inputs are randomly perturbed by at mdésind
are bounded by M after perturbation (where M is an integraiveo of two), then the corresponding
guarded algorithm fails with probability at mosfrovided the precision L of the floating point system
satisfies

L >log(c(m+2N))+N <3+IogN+Iog% + logr +Nlogn+log%> (7)
M 1
=Q(1)+N (Iog€+NIogn+Iogg>. (8)

Proof: There are at mostN distinct invocations for each of thg. Since eachf; is a nonzero
polynomial, we can apply Thm 9; we apply it with

€

=1-—.
P rnN

Then, the probability that a fixefl fails on any specifid;-tuple of inputs k; is the arity of f;) is at
moste/(rnN), and hence the probability that sorfidails on somek-tuple of distinct inputs is at most
€. We conclude that the guarded algorithm fails with probgbit moste.

Substituting the expression fprinto equation (6) leads to condition (7). ]

Some algorithms apply predicates to derived values, &g pliane-sweep algorithm for line seg-
ment intersection locates intersection points of inputresnts with respect to input segments. Usually,
such predicates can be reformulated in terms of inpatsj then the analysis applies.

3.7 Efficiency of CP Algorithms

Controlled perturbation can be used without analysis. @argésswith an idealistic algorithm, turns it
into a guarded algorithm by guarding the evaluations ofr@tiizates, and puts the guarded algorithm
into a controlled perturbation loop as shown in Figure 3.

A predicate evaluation may be guarded in different ways p8se we branch on the sign of some
expressiorE. We either perform an error analysis faras described in Section 6 and use one of
the guards derived there, or we evalugtevith interval arithmetic and abort whenever the resulting
interval contains zero.

The maximum allowable perturbation is usually dictated iy application. For example, if we
design an object that is to be fabricated with a machine thatehtolerance ob, we may allow a
perturbation of up t@. Or, if the inputs are determined by physical measuremeittsesror margin
0, we may allow perturbation of up t

8Assuming that line segments are specified by their endpdhesgpredicate would become a function of six input points.
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Figure 3: The control flow of the general CP template.

CP wrapper

What is a suitable rule for increasing the precision? Letssume that the cost of arithmetic
with floating point numbers of precisidnis O(L?), where 1< a < 2; a = 2 corresponds to classical
arithmetic andx = 1 corresponds to fast arithmetic (ignoring logarithmiadas). Let us also assume
that we have an algorithm that performs at mbénh) steps on an input of size Then the cost of
the algorithm on input size and with precisiorL is T(n)L®. We also assume that for each fixed
precision we do up td iterations, and that aftdr unsuccessful iterations with the same precision,
we increase the precision by a factoiLet Lg be the smallest value a&f such that the probability of
a successful execution is at leag1 In order to bound the cost of the execution, we consider the
executions with precision at masg and the executions with precision more than The cost of the
former executions is at most

T(n)- Z)h(Lo/ti)“ =O(T(n)Lg)-
i>
The expected cost of the latter executions is at most
T(n)-_Z) > (tLot')22-N=0-D :T(n)t“Lg-_Z)(taz—h)i 2-0-D — O(T(n)LY)
i>01<j<h i> 1<)<h
since the first such execution uses precision at rigsand we proceed to precisiahot' only if all

preceding executions have failed. The last equality hdltfs & 2".

Theorem 13 If at any fixed precision up to h iterations are performed, anecision is increased by
a factor of t after h unsuccessful iterations at a fixed pliecisLg is the smallest value of L such that
the probability of a successful execution on input size r isast 1/2, the cost of arithmetic is(C?)
with1 < a < 2, and © < 2", then the expected cost of the CP algorithm is

O(T(n)Lg)-
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4 Geometric Insight versus General Methodology

The analysis in the preceding section is basically anatitt uses geometry only in a weak way,
namely when the proof of Theorem 5 argues about the distasfcagertain point to the roots of a
polynomial. However, the analysis does not exploit any sigegeometric properties of the predicate.
In particular, it does not give a geometric interpretatidrth@ value of a predicate function. For
the orientation function ofl + 1 points inRY, such an interpretation is available. The value of the
predicate functions is/H! times the volume of the simplex spanned bydhel points. In this section,
we give further examples of predicate functions whose wahsve a geometric interpretation. The
geometric interpretation also yields a slightly improvedlssis. The improvements made are only
in the constant factors. Constant factors are importanuimcontext, because a few additional bits
of precision may force a switch from native floating pointttametic to software arithmetic. Note
however, that the usage of CP discussed in the precedingrsedtl automatically choose a large
precision only if necessary.

Distinctness of Points: This example is a warm-up for the other examples. Our inpuatpsints
in the plane and we want to verify that they are distinct. Wplement distinctness via the squared
distance function, i.e.,

distinct(p, q) = sign(dist(p, q)z) = sign((px — )2+ (py — qy)z) )

This is a round-about way of implementing distinctness; pdyntcomparing coordinates would be
better as it incurs no round-off error.

The error bound of the polynomidl = (px — dx)? + (py — qy)? is KsM22~ for some constant
Kt. The total degree and the degree of the lead monomial is twpth® general theorem yields the
constraint:

LzQ(1)+2|ogM/6+zlogrlp.

There aren? possible tests, and hence we pet 1/(2n?) as discussed in Section 3.6. So, our con-
straint becomes
L>Q(1)+2logM/d+ 4logn.

A more geometric reasoning is as follows: We want any two tsdio have a minimum distance
of at leasty, wherey? = KiM?2"L. We imagine that the points are perturbed one after the .other
When the last point is perturbed, the previous points exchutegion of volumary? of the region of
perturbation, i.e., the probability that the perturbatifores not guarantee distanciom all preceding
points is at moshmy?/(48%), and hence the probability that the perturbation of somatpnes not
guarantee this distance is at masty?/(45%). Again, we require the latter probability to be at most
1/2. The constraint oh becomes

L>Q(1)+2logM/3+ 2logn,

and so the dependency aris slightly less. Why is the dependency wdifferent?

Assume that the poinp is fixed andq is still to be perturbed. Then, an areamf/(25)? is
excluded from the perturbation region fgrand hence the probability of failure ®(y?/3%). In the
general analysis, we consider one coordinatg aff a time. For each choice of the, sagoordinate
of g, we exclude an interval of lengthy2or the y-coordinate ofy. Thus, the probability of failure is
O(y/3). We need the probability of failure to be less thaim?, and therefore the geometric reasoning
of the previous paragraph leads to a better dependency on log
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Orientation Test in d-Space The orientation test fod + 1 points inRY is realized as the sign of a
determinant, see Section 2. The value of the determinattiimes the signed volume of the simplex
spanned by thd + 1 points. This volume may be considered as a distance to deggn The volume
of a simplex spanned by pointg to pq.1 is 1 overd times the(d — 1)-dimensional volume of the
base spanned by the poirsto pg times the distance gfy 1 from the hyperplane spanned pyto
pqg. Continuing in this way, we obtain:

Lemma 14 The determinant of (1) is equal to

dist(py, p2) - dist(ps, h(ps, p2)) - dist(pa, h(pz, P2, P3)) - . . - dist(Pa+-1, h(Py; - .-, Pa)),
where Hpa,..., p«) is the affine space spanned bytp p«.

Consider now an algorithm that uses the 2d-orientationatedttakes points in the plane as its
input. The error bound is again of the fotiM22--. The general methodology yields the constraint

L>Q(1)+2logM/d+ 6logn,

where 2 is the degree of the underlying polynomial ard® 3; here 2 is the degree and the 3 reflects
the fact that there ar®(n®) possible orientation tests.

A more geometric reasoning is as follows: We want any two §sdio have a distance of at least
y1 and any point to have a distangefrom the line defined by any other two points. If this holdsg th
orientation determinant has value at leagb. The condition orL is

yiye > KM227L,

Again, consider the perturbation of a single point. Thel other points exclude an area of at most
nry: and the®(n?) lines defined by the other points exclude an area of at mi&sy'252y,; the
intersection of the line with the perturbation region hasgté at most 2/25, and there must be a
margin ofy, on both sides of the line. Thus, the probability that a péstion is bad is bounded by

c ny2 + N8y,

S
for some constan€. Again, we need to require thattimes this probability is at most/2. With
y1 = 8/(2n) andy, = y2/(nd), the probability constraint is satisfied and the conditior.decomes

L>Q(1)+2logM/3+ 4logn,

and so the dependency aris slightly less.

2d Side-of-Circle Test: We consider the side-of-circle test of four points in thengla Its result
reveals the side of a query point with respect to an orieniteteadefined by three points. We have
three pointsp; = (z,yi), 1 <i < 3, and a query poinp = (x,y). Let us assume first that the three
points are not collinear. LeR be the radius of the circl€ defined by the first three points. The
standard realization of thedXide-of-circle test is achieved by lifting the points to fheraboloid of
revolutionz= x?+y?, i.e.,

1 Y1 ﬁ+ﬁ
Yo B+Y
Z3 Y3 %+%
y X+y

sod P1, P2, P3, P) = Signfsod P1, P2, P3,P)  Where  fsoc(P1, P2, P3, P) =

e

x
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We next show how to interpret this formula in terms of the getgnin the plane. Let = (¢, cy) be

an arbitrary point in the plane. Subtractiggirom all entries in the second columg,from all entries

in the third column, and adding2c, - second column- 2¢y - third column+ (c§+c§) -first column to

the last column does not change the value of the determifiduat entries in the last column become
the squared distances of the points fromWe have thus shown that the value of the determinant is
invariant under translations. We now speciakze the center of the circle defined lpy to ps. In this
situation, we have

12z vy, R 1z v 0
1y, R 11z 0
| fsoc(P1, P2, P3, P)| = 12 ys R R YA 0
1 x y R4y 1 x y R+y-R
1z vy
=|(C+Y¥-R)| 1 2 v ||
1 z3 y3
= |20 +y* - R?)|

= [28]- [V¥ +Y* = R|- (VX¥*+ Y+ R)

whereA is the signed area of the triangle with vertigesto ps, C is the circle defined by these
points, anddist(p,C) is the distance op from this circle. Leta = dist(p1, p2), b = dist(p1, ps),

c = dist(pz, p3), and leta be the angle aps in the triangle(ps, p2, p3). Then R = a/sina and
|A| = (1/2)besina, and hence R|A| = 1/2- abc We obtain:

Lemma 15 Let py, pp, p3 and p be four points in the plane. Then,

1 . . .
| fsod P1, P2, P3, P)| > lest( P1, P2)dist(p1, ps)dist(pz, p3)dist(C, p).

Proof: We have already argued the formula for non-collinear pomtsp,, andps. Continuity of
the left and the right side of the inequality extends the iradity to all situations. For collinear points
p1, P2, andpg, Cis the line passing through these points. ]

Consider now an algorithm that uses the 2d-side-of-ciret and takes points in the plane as
its input. The error bound is of the forkiM*2~L. The general methodology yields the constraint

L>Q(1)+4logM/d+ 16logn,

where 4 is the degree of the underlying polynomial and=14- 4; here one 4 is the degree and the
other 4 reflects the fact that there @én*) possible orientation tests.

A more geometric reasoning is as follows. We want any two tgdim have a distance of at least
y1 and any point to have a distangefrom the circle defined by any other three points. If this sold
the side-of-circle determinant has value at lgdgi/2. The condition or. is

Viy2/2 > KeMZ27h,

Again, consider the perturbation of a single point. Thel other points exclude an area of at most
nry2, and thed(n®) circles defined by the other points exclude an are&©dy,. Thus, the probability
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that the perturbation of a point is bad is bounded by

c nyz + N8y,
Ak

for some constant. Again, we need to require thattimes this probability is at most/2. With
y1 = ©(8/n) andy, = y2/(n?3), the probability constraint is satisfied and the conditiar_decomes

L>Q(1)+4logM/d+ 6logn,

and so the dependency airis slightly less.

Improvements Coming from the Algorithm: Many algorithms in computational geometry are
incremental. They obtain the solution fopoints from a solution fon— 1 points by making suitable
additions and changes. An example is the incremental eartistn of Delaunay triangulations. Let
D be the Delaunay triangulation for— 1 points and lep be an additional point. One first finds the
triangle of the triangulation (we assume, for simplicityat the new point is contained in the convex
hull of the existing points) containing, then splits this triangle into three triangles by conmerp
to the corners of the triangle, and finally restores the Dedgiproperty. The point location step uses
orientation tests and locat@swith respect to the edges bf The update step uses side-of-circle tests
and locateg with respect to the circumcircles of trianglesin Thus, in each update step at most
O(n) orientation- and side-of-circle tests are performed.

In this situation, the analysis of the side-of-circle poadé of the preceding section can be sharp-
ened as follows: The perturbation of theh point has to avoiah circular regions of vqumelyf each
andO(n) annuli of areaCdy, each. Then the constraint fgy andy, becomes

ny;+ndy; 1
s S i
c ¥ — o

and hence the constraint forbecomes
L>Q(1)+4logM/d+ 5logn;

this is slightly better than above. Funke et al. [FKMSO05]sgrets more examples of this kind.

5 Future Work

We have introduced a general methodology for analyzing @Briéhms and have shown that it is
strong enough to handle all geometric predicates that caxpeessed as the sign of a multivariate
polynomial. A first challenge is to extend the analysis froatypomials to rational functions or
expressions involving square roots. One can eliminatsidings and square roots by reformulating the
predicates as done in the concluding examples of SectionHwever, since geometric algorithms
mostly use predicates in their “canonical” (and not in threformulated) form, it would be nice to
handle them directly.

We view the input as a point iR" and assume that all coordinates can be perturbed indepgnden
Frequently, the input also has a combinatorial structugg tiee input points are the vertices of a simple
polygon. Then, the perturbation must preserve the comimiigtstructure. In some applications, it
may suffice to perturb the polygon as a whole, e.g, by applgingid transformation to it. The second
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challenge is to make controlled perturbation applicablprtiblems whose input has a combinatorial
structure.

The error analysis given in the appendix (Section 6) assuh@ssexpressions are evaluated by
straight-line programs. However, more complex equatioiite evaluated with a program involving
branching, and CP needs to be generalized to this situakisris our third challenge. For example, we
might compute the sign of the determinant afxad matrix A by first computing ahU -decomposition
L'U’ of the matrix, followed by computing the signs of the deteranits ofL’ andU’. In [FKMS05],
for a matrix with entries bounded in absolute valueMbythe bound predicate

By = (ydetAy > By = 1.012-100d22d|v|ds)

was derived for Gaussian elimination with partial pivoting

So far, CP was only applied to fairly simple geometric proide It would be interesting to
also apply it to complex geometric objects, e.g., arrangesnef algebraic curves; this is our fourth
challenge.

6 Appendix: Floating Point Arithmetic and Error Analysis

This appendix is an abbreviated version of the notes foreh&ute on floating point numbers and
error analysi$ within a course on Computational Geometry and Geometric iimg held by Eric
Berberich, Kurt Mehlhorn, and Michael Sagraloff. All preatan be found there. The lecture notes
are based on the papers [MN94, Fun97, BFS01]; the treatnieguare roots is novel.

Hardware floating point arithmetic is standardized in thEEHloating point standard [IEE87]. A
floating point number is specified by a sigra mantissan, and an exponerd The sign is+1 or —1.
The mantissa consists bfbits my, ..., m_, andeis an integer in the rang@min, €may. The range of
possible exponents contains zero apg < —L — 2. The number represented by the tripdem, e) is
as follows:

o If emin < €< emax the number is- (1+ 5, mi2*‘) - 2%, This is called anormalizednumber.

e If &= emin, then the number is- 5.« m2-12émnt1  This is called asubnormalnumber.
Observe that the exponentdgi, + 1. This is to guarantee that the distance between the largest
subnormal numbefl — 2-1)2%in*1 and the smallest normalized number¥in*1 is small.

e In addition, there are the special number® and -+ and a symbol NaN which stands for
not-a-number. It is used as an error indicator, e.g., forglsalt of a division by zero.

LetF = F (L, emin, €max) be the set of real numbers (includinge and—o) that can be represented
as above? A real number irF is calledrepresentablea number irR \ F is callednon-representable
The largest positive representable number (excepbfdas max = (2—27) - 2%, the smallest pos-
itive representable numberiiging = 2. 28mint1 — 2-L+emint1l gnd the smallest positive normalized
representable numbermisnorng = 1. 28nint1 — 2emint+1,

9The full version can be found dtttp://www.mpi-inf.mpg.de/departments/d1/teaching/w s09_
10/CGGC/Notes/Numbers.pdf

1%Dpouble precision floating point numbers are represented init8. One bit is used for the sign, 52 bits for the mantissa
(L =52) and 11 bits for the exponent. These 11 bits are intempeet@n integef € [0...211 — 1] = [0...2047. The exponent
eequalsf —1023; f = 2047 is used for the special values, and hexge= —1023 andeymax= 1023. The rules fof = 2047
are: If allm; are zero and = 2047, then the number iso or —co depending ors. If f = 2047 and some is honzero,
the triple represents NaN ( = not a number).
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E ‘ condition ‘ E ‘ me ‘ indg ‘ ce ‘ degE

a constant inR \ IF fl(a) max(mnornt, [fl(a)]) 1 max(1, [fl(a)|) 0

a constant inf a max(mnorng, |a|) 0 max(1,|al) 0

X var. ranging oveR | fl(x) max(mnorng, |fl(x)|) 1 1 1

X var. ranging ovef X max(mnorng, |x|) 0 1 1
A+B A®B ma & Mg 14 max(inda, indg) ca+Cg max(degA, degB)
A-B AcB Ma @ Mg 14 max(inda, indg) Ca+Cs max(degA, degB)
A-B AGB max(mnormg, ma ® mg) 1+inda+indg CACB degA-+ degB
AL/2 A< uma 0 20/2 /ma 2+inda not defined
AL/2 A>uma VA max( VA, ma > VA) 2+inda not defined

Table 1: The recursive definitions ofz, indg, cg and dede. The first two columns specify the case
distinction according to the syntactic structuretthe third column contains the rule for computing
E, and the fourth to seventh columns contain the rules for ecgimgpmg, indg, cg and dede; @, ©,
and® denote the floating point implementations of addition, saditon, and multiplication, angf
denotes the floating point implementation of the squaré-operation. Observe thate = « if either
Mp = 00 O Mg = 00,

F is a discrete subset @&. For any real, let fl(x) be a floating point number closésto x.

By convention, ifx > max, fl(x) = o, and ifx < —max, fl(x) = —c. Arithmetic on floating point
numbers is only approximate; it incurs round-off error.slimportant to distinguish between mathe-
matical operations and their floating point implementaioiVe used, ©, and® for the floating point
implementations of addition, subtraction, and multigiica, respectively. Only in this appendix, we
usel/2 for the square-root operation a@d for its floating point implementation. Generally, we use
for the floating point implementation of The floating point implementation of the operatioRs—,
., and¥/2 yields the best possible resukhis is an axiom of floating point arithmetic. Xfy € F and
o€ {+,—, }, then

xoy = fl(xoy)
and

VX =fl(x?).

We need bounds on the error in the floating point evaluaticnople arithmetic expressions. Any
real constant or variable is an arithmetic expression, fiddandB are arithmetic expressions, then
so areA+ B, A—B, A-B, andAY2. The latter assumes that the valuefols non-negative. For an
arithmetic expressioR, let E be the result of evaluating with floating point arithmetic. The quantity
u = 2""1is calledunit of roundoff Table 1 gives recursive definitions of quantitias, indg, ce and
degE; we bound|E — I§| in terms of them. Intuitivelymg is an upper bound on the absolute value
of E, inde measures the complexity of the syntactic structurd& pflegk is the degree oE when
interpreted as a polynomial, arg bounds the coefficient size whénis interpreted as a polynomial.

Theorem 16 If indg < 2-t1/2_ 1 then
|E— E] < (indg+1)-u-meg < (indg +2) @max(mnormg, mg ©®u) < (indg + 3) -max(mnorng, mg -u),

where ing: and ng are defined as in Table 1.

HThe IEEE-standard also specifies how to break ties. Thisii® aoncern here.
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For the 2d-orientation predicate

orient(a, b, c) = sign((bx — a) - (¢, — ay) — (by — ay) - (Cx — a&))

for pointsa = (ay,ay), b = (by,by), c = (cx, ¢y) in the plane we obtaimdg = 6, and
me = max(mnormy, (by & &) © (& & 4,)) & maxmnormg, (by & 4,) © (& &)),

wherexX’= maxmnorng, [fl(x)]).

The error bound of Theorem 16 is only used for guards. For tiadyais we use a simpler, but
weaker bound. It applies to polynomial expressions, i@rassions using only constants, variables,
additions, subtractions, and multiplications.

Theorem 17 For a polynomial expression we have-m ceM9€% | where ng, ce and degE are
defined as in Table 1 and M is the smallest power of two with

M > max(1,max{|x| : x is a variable in B).
This assumes that:8M%% s representable.

We next specialize the theorem above to polynomial expyasdhat are sums of products, i.e.,
that correspond to the standard representation of polysdemiVe consider polynomials kwariables
73 toz. Fora = (ay,...,0k) let = z‘i‘l . zﬁk Any polynomialf in Rz, ...,z/] can then be written
as

f(z1,..., %) = Zfz“

where fq is the coefficient of the monomial ter#i. For simplicity assume that the coefficients are
representable as floating point numbers. For a monomial e f,z%, we havec; = max(1, |fq|),
degZ = deg ") = 3, a;, andindz = 2degZ. For the entire polynomial, we haee = 5, max(1, |fq|)

and ded equal to the total degree 6f The index depends on the order in which we add the monomial
terms. If we sum serially, as if{((t1 +t2) +1t3) +ta) +15)), the index is the number of monomial terms
minus one plus the largest index of any monomial term. If wa suthe form of a binary tree as in
((t1+1t2) + ((t3+14) +15)), the index is the logarithm of the number of monomial termsnoed
upwards plus the largest index of any monomial term.

Theorem 18 Let f(z,...,z) = 54 fax® be a polynomial of total degree N. Lete 3, max(1,|fq|)
and let m = |{a : fy # 0}| be the number of monomial terms in f. LetML be a power of two and
let z to 7 be real values withz | <M for all i. Then

1f(z1,...,2) — F(fl(z0),....fI(z))| < cf(mf+2N)MN27E-1,

wheref is the floating point version of f, i.e., all operations in feaeplaced by their floating point
counterpart.

Proof: We use Theorems 16 and 17. The index is largest if the monaeniak are summed serially.
It is then equal tan +2N — 1. Alsome < ctMN., 1

We apply Theorems 17 and 18 to the 2d-orientation predicatd.a = (ay,ay), b = (by,by),
¢ = (cx,Cy) be three points in the plane. Then

orient(a, b,c) = sign (b, —ay) - (¢, —ay) — (by — &) - (cc— &),
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We already determined the index of this expression as 6. cTlaad d-values are as follows. For
any argument, both values are one, XorE by — ax, we havecx = 2 and deX = 1, for X = (by —
ax) - (cy —ay), we havecx =4 and de = 2, and finally, for the entire expression we haye= 8
and deX = 2. We conclude that the roundoff error in evaluatorient(a, b, c) with floating point
arithmetic is at most

7-u-8-M?>=56-u-M?=28u%2"",

whereM is the smallest nonnegative power of two bounding all Catesoordinates. If we use the
alternative formulation

orient(a, b, c) = bycy — byay — axcy — bycy + byay + aycx

we can apply Theorem 18 with = 2, ms = 6, andcs = 6. We obtain that the roundoff error is at
most
6(6+4)M?.u=60M?.u=30M%2".

We end this section with the definition of valid guards andrizbpredicates.

Theorem 19 Let E be a polynomial expression. Then,

Ge = (|E| > (inde +2) © maxmnorng, me © Zfol)) . B = (|E| > (indg +2)ceM®E2 )
©)
and
Ge = (|E| > (indE + 1) -Cg- MdegEZ—L—1> . Be= (|E| > (indE +1)CEMdegE27L) (10)

define pairs of guard and bound predicates. Here>M is a power of two no smaller than the
absolute value of all arguments. This assumes tABM®% and (indg + 1)ceM % 2-L-1 are repre-
sentable.

Proof: We first prove (9). LeK = ceM%%¥y and assuméE| > 2(indg + 2)K. By Theorem 16,
|E — E| < (indg + 2) ® maxmnorng, mg ® 2---1). Thus, if|E| is larger than the latter quantiti
andE have the same sign. Next, observe that (maorng, mgu) <K sincece > 1,M > 1, dege >0
andemin < —L — 2, and hencegM % u > mnorn and sincamne < K by Theorem 17. Thus,

|E| > |E| - |E—E| > (2(indg + 2) — (indg + 1))K = (indg + 3)K
> (indg 4+ 3) max(mnorng, me - u) > (indg + 2) © maxmnormg, mg © U),

where the last inequality is part of Theorem 16.

We turn to (10). LeK = ceM%%¥u and|E| > 2(indg + 1)K. By Theorem 17mg < ceMYeeE,
Thus, |E — E| < (inde + 1)ceM9%y. The latter is a floating point number by assumption an jif
is larger than this quantit§ andE have the same sign. Finally,

|E| > [E| - |[E — E| > (2(indg + 1) — (indg + 1))K = (indg + 1)K.

For the orientation predicate (in expression formient(a,b,c) = sign((by — ax) - (cy —ay) —
(by —ay) - (cx—ay)), the second part of Theorem 19 yields the pair

Ge = <|E| > 280 M2©2‘L) Be = ([E| > 56M%2L). (11)
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For the orientation predicate (in polynomial forrojient(a, b, c) = bycy — byay — axcy — bycy + byax +
ayCy, it yields the pair

Ge = <|E| >30©M2©2"‘) Be = (|E| > 60M%2°"). (12)

Acknowledgement: We want to thank the reviewers for their careful review ang/ Vvelpful com-
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