
Approximate Counting of Cycles in Streams?

Madhusudan Manjunath1, Kurt Mehlhorn1,
Konstantinos Panagiotou1, and He Sun1,2

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Fudan University, Shanghai, China

Abstract. We consider the subgraph counting problem in data streams
and develop the first non-trivial algorithm for approximately counting cy-
cles of an arbitrary but fixed size. Previous non-trivial algorithms could
only approximate the number of occurrences of subgraphs of size up
to six. Our algorithm is based on the idea of computing instances of
complex-valued random variables over the given stream and improves
drastically upon the näıve sampling algorithm. In contrast to most ex-
isting approaches, our algorithm works in a distributed setting and for
the turnstile model, i. e., the input stream is a sequence of edge insertions
and deletions.

1 Introduction

Counting the number of occurrences of a graph H in a graph G has wide ap-
plications in uncovering important structural characteristics of the underlying
network G, revealing information of the most frequent patterns, and so on. We
are interested in the situation where G is very large. It is then natural to as-
sume that G is given as a data stream, i.e., the edges of the graph G arrive
consecutively and the algorithm uses only limited space to return an approxi-
mate value. Exact counting is not an option for massive input graphs. Already
counting triangles exactly requires to store the entire graph.

Formally speaking, let S = s1, s2, · · · , sN be a stream that represents a graph
G = (V,E), where N is the length of the stream and each item si is associated
with an edge in G. Typical models [12] in this topic include the Cash Register
Model and the Turnstile Model. In the cash register model, each item si expresses
one edge in G, and in the turnstile model each item si is represented by (ei, signi)
where ei is an edge of G and signi ∈ {+,−} indicates that ei is inserted to or
deleted from G. As a generalization of the cash register model, the turnstile
model supports the dynamic insertions and deletions of the edges.

In a distributed setting the stream S is partitioned into sub-streams S1, . . . ,
St and each Si is fed to a different processor. At the end of the computation,
the processors collectively estimate the number of occurrences of H with a small
amount of communication.

? The third author was supported by the Alexander von Humboldt-Foundation.

Our Results. We present a general framework for counting cycles of arbitrary size
in a massive graph. Our algorithm runs in the turnstile model and the distribut-
ed setting, and for any constants 0 < ε, δ < 1, our algorithm achieves an (ε, δ)-
approximation, i. e. , the returning value Z of the algorithm and the exact value
Z∗ = #Ck, the number of occurrences of Ck, satisfy Pr [|Z − Z∗| > ε · Z∗] < δ.
We also provide an unbiased estimator for general d-regular graphs. This con-
siderably extends the class of graphs that can be counted in the data streaming
model and answers partially an open problem proposed by many references,
see for example the extensive survey by Muthukrishnan [12] and the 11th open
question in the 2006 IITK Workshop on Algorithms for Data Streams [11].

Because the problem of counting the number of cycles of length k, parameter-
ized by k, is #W[1]-complete [7], our result demonstrates that efficient approx-
imations for #W[1]-complete problems are possible under certain conditions,
even if only a restricted amount of space can be used.

Besides that, we initiate the study of complex-valued hash functions in count-
ing subgraphs. Complex-valued estimators have been successfully applied in oth-
er contexts such as approximating the permanent, see [6, 10]. In the data stream-
ing setting, Ganguly [8] used a complex-valued sketch to estimate frequency
moments. Our main result is as follows:

Theorem 1. Let G be a graph with n vertices and m edges. For any k, there
is an algorithm using S bits of space to (ε, δ)-approximate the number of occur-

rences of Ck in G provided that S = Ω
(

1
ε2 ·

mk

(#Ck)2
· log n · log 1

δ

)
. The algorithm

works in the turnstile model.

Discussion: A näıve approach for counting the number of occurrences of a k-
cycle would either sample independently k vertices (if possible) or k edges from
the stream. Since the probability of k vertices (or k edges) forming a cycle is

#Ck/n
k (or #Ck/m

k), this approach needs space Ω
(
nk logn
#Ck

)
and Ω

(
mk logn
#Ck

)
,

respectively. Thus, our algorithm improves upon these two approaches, especially
for sparse graphs with many k-cycles, and has the additional benefit that it is
applicable in the turnstile model and the distributed setting. Moreover, note that
our bound is essentially tight, as there are graphs where the space complexity
of the algorithm is O(log n); consider for example the “extremal graph” with a
clique on Θ(

√
m) vertices, where all other vertices are isolated. Moreover, as a

corollary of Theorem 1, when the number of occurrences of Ck is Ω
(
mk/2−α)

for 0 ≤ α < 1/2, our algorithm with sub-linear space O
(

1
ε2 ·m

2α · log 1
δ

)
suffices

to give a good approximation.

Related Work: Counting subgraphs in a data stream was first considered in
a seminal paper by Bar-Yossef, Kumar, and Sivakumar [1]. There, the triangle
counting problem was reduced to the problem of computing frequency moments.
After that, several algorithms for counting triangles have been proposed [2, 4, 9].

Jowhari and Ghodsi presented three algorithms in [9], one of which is ap-
plicable in the turnstile model. Moreover, the problem of counting subgraphs

different from triangles has also been investigated in the literature. Bordino, Do-
nato, Gionis, and Leonardi [3] extended the technique of counting triangles [4] to
all subgraphs on three and four vertices. Buriol, Fahling, Leonardi and Sohler [5]
presented a streaming algorithm for counting K3,3, the complete bipartite graph
with three vertices in each part. However, except the one presented in [9], most
algorithms are based on sampling techniques and do not apply to the turnstile
model.

Notation: Let G = (V,E) be an undirected graph without self-loops and mul-
tiple edges. The set of vertices and edges are represented by V [G] and E[G]
respectively. We will assume that V [G] = {1, · · · , n} and n is known in advance.

Given two directed graphs H1 and H2, we say that H1 and H2 are homo-
morphic if there is a mapping i : V [H1]→ V [H2] such that (u, v) ∈ E[H1] if and
only if (i(u), i(v)) ∈ E[H2]. Furthermore, H1 and H2 are said to be isomorphic
if the mapping i is a bijection.

For any graph H, we call a not necessarily induced subgraph H1 of G an
occurrence of H, if H1 is isomorphic to H. We use #(H,G) to denote the number
of occurrences of H in G. When G is the input graph, for simplicity we use #H
to express #(H,G). Moreover, let C` be a cycle on ` edges.

Organization. Section 2 reviews Jowhari and Ghodsi’s algorithm for counting
triangles in streams. We generalize Jowhai and Ghodsi’s approach in Sect. 3 and
get an unbiased estimator for general d-regular graphs. Section 4 discusses the
space complexity for counting cycles with arbitrary size. We end this paper with
some open problems in Sect. 5.

2 A Review of Jowhari and Ghodsi’s Algorithm

We give a brief account of Jowhari and Ghodsi’s algorithm [9] in order to prepare
the reader for our extension of their approach. Jowhari and Ghodsi estimate
the number of triangles in a graph G. Let X be a {−1,+1}-valued random
variable with expectation zero. They associate with every vertex w of G an
instance X(w) of X; the X(w)’s are 6-wise independent. They compute Z =∑
{u,v}∈E[G]X(u)X(v) and output Z3/6 as the estimator for #C3.

Lemma 1 ([9]). E[Z3] = 6 ·#C3.

Proof. For any triple T ∈ E3[G] of edges and any vertex w of G, let degT (w)
be the number of edges in T incident to w, then degT (w) is an integer no larger
than 3. Also

E[Z3] = E


 ∑
{u,v}∈E[G]

X(u)X(v)

3


= E

 ∑
T=({u1,v1},{u2,v2},{u3,v3})∈E3

X(u1)X(v1)X(u2)X(v2)X(u3)X(v3)



Let VT be the set of vertices that are incident to the edges in T . Then

E[Z3] = E

[∑
T∈E3

∏
w∈VT

X(w)degT (w)

]
By the 6-wise independence of the X(w), w ∈ V , we have

E[Z3] =
∑
T∈E3

∏
w∈VT

E
[
X(w)degT (w)

]
=
∑
T∈E3

∏
w∈VT

E
[
XdegT (w)

]
Since E

[
XdegT (w)

]
= 1 if degT (w) is even and E

[
XdegT (w)

]
= 0 if degT (w) is

odd, we know that
∏
w∈VT E

[
XdegT (w)

]
= 1 if and only if the edges in T form a

triangle. Since each triangle is counted six times, we have E[Z3] = 6 ·#C3. ut

The crucial ingredients of the proof are (1) 6-wise independence guarantees
that the expectation-operator can be pulled inside, and (2) random variable X is
defined such that only vertices with even degree in T have nonzero expectation.

3 Algorithm Framework

We now generalize the algorithm in Section 2 and present an algorithm frame-
work for counting general d-regular graphs. Suppose that H is a d-regular graph
with k edges and we want to count the number of occurrences of H in G. The
vertices of H are expressed by a, b and c, etc., and the vertices of G are expressed
by u, v and w, etc., respectively. We will equip the edges of H with an arbitrary
orientation, as this is necessary for the further analysis. Therefore, each edge in

H together with its orientation can be expressed as
−→
ab for some a, b ∈ V [H]. For

simplicity and with slight abuse of notation we will use H to express such an
oriented graph.

For each oriented edge
−→
ab in H our algorithm maintains a complex-valued

variable Z−→
ab

(G), which is initialized to zero. The variables are defined in terms
of random variables Y (w) and Xc(w), where c is a node of H and w is a node
of G. The random variables Y (w) are instances of a random variable Y and the
random variables Xc(w) are instances of a random variable X. The range of
both random variables is a finite subset of complex numbers. We will realize the
random variables by hash functions from V [G] to C; this explains why we indicate
the dependence on w by functional brackets. We assume that the variables Xc(w)
and Y (w) have sufficient independence as detailed below.

Our algorithm performs two basic steps: First, when an edge e = {u, v} ∈
E[G] arrives, we update each variable Z−→

ab
according to

Z−→
ab

(G)← Z−→
ab

(G) +
(
Xa(u) ·Xb(v) +Xb(u) ·Xa(v)

)
· Y (u) · Y (v). (1)

Second, when the number of occurrences of a graph H is required, the algorithm
returns the real part of Z/(α · aut(H)), where Z is defined via

Z := ZH(G) =
∏

−→
ab∈E[H]

Z−→
ab

(G), (2)

α and aut(H) are constant numbers for any given H and will be determined
later.

Remark 1. For simplicity, the algorithm above is only for the edge-insertion case.
An edge deletion amounts to replacing ‘+’ by ‘−’ in (1).

Remark 2. The first step may be carried out in a distributed fashion, i. e., we
have several processors each processing a subset of edges. In the second step the
counts of the different processors are combined.

Theorem 2. Let H be a d-regular graph with k edges. Let us assume that the
random variables defined above satisfy the following two properties:

1. The random variables Xc(w) and Y (w), where c ∈ V [H] and w ∈ V [G], are
instances of random variables X and Y , respectively. The random variables
are 4k-wise independent.

2. Let Z be any one of Xc, c ∈ V [H] or Y . Then for any 1 ≤ i ≤ 2k, E
[
Zi
]
6= 0

if and only if i = d.

Then E[ZH(G)] = α ·aut(H) ·#(H,G), where α =
(
E
[
Xd
]
E
[
Y d
])2k/d ∈ C and

aut(H) is the number of permutations and orientations of the edges in H such
that the resulting graph is isomorphic to H.

The theorem above shows that ZH(G) is an unbiased estimator for any d-
regular graph H, assuming that there exist random variables Xc(w) and Y (w)
with certain properties. We will prove Theorem 2 at first, and then construct
such random variables.

Proof (of Theorem 2). We first introduce some notations. For a k-tuple T =
(e1, . . . , ek) ∈ Ek[G], let GT = (VT , ET) be the induced multi-graph, i.e., GT
has edge multi-set ET = {e1, . . . , ek}. By definition, we have

ZH(G) =
∏

−→
ab∈E[H]

Z−→
ab

(G)

=
∏

−→
ab∈E[H]

 ∑
{u,v}∈E[G]

(Xa(u) ·Xb(v) +Xa(v) ·Xb(u)) · Y (u) · Y (v)

 .

Since H has k edges, ZH(G) is a product of k terms and each term is a sum
over all edges of G each with two possible orientations. Thus, in the expansion
of ZH(G), any k-tuple (e1, · · · , ek) ∈ Ek[G] contributes 2k different terms to
ZH(G) and each term corresponds to a certain orientation of (e1, · · · , ek). Let
−→
T = (−→e1 , · · · ,−→ek) be an arbitrary orientation of (e1, · · · , ek), where −→ei = −−→uivi.
So the term in ZH(G) corresponding to (−→e1 , · · · ,−→ek) is

k∏
i=1

Xai(ui) ·Xbi(vi) · Y (ui) · Y (vi) , (3)

where (ai, bi) is the i-th edge of H and −−→uivi is the i-th edge in
−→
T . We show that

(3) is non-zero if and only if the graph induced by
−→
T is isomorphic to H (i. e. it

also preserves the orientations of the edges).
For a vertex w of G and a vertex c of H, let

θ−→
T

(c, w) =
∣∣{i | (ui = w and ai = c) or (vi = w and bi = c)

}∣∣ . (4)

Thus for any c ∈ V [H],
∑
w∈VT θ−→T (c, w) = d since every vertex c of H appears

in exactly d edges (ai, bi); recall that H is d-regular. Using the definition of θ−→
T

,
we may rewrite (3) as ∏

c∈V [H]

∏
w∈V−→

T

X
θ−→
T
(c,w)

c (w)

 ·
 ∏
w∈V−→

T

Y deg−→
T
(w)(w)

 ,

where deg−→
T

(w) is the number of edges in
−→
T incident to w. Therefore

ZH(G)

=
∑

e1,··· ,ek
ei∈E[G]

∑
−→
T =(−→e1,··· ,−→ek)

 ∏
c∈V [H]

∏
w∈V−→

T

X
θ−→
T
(c,w)

c (w)

 ·
 ∏
w∈V−→

T

Y deg−→
T
(w)(w)

 ,

where the first summation is over all the k-tuples of edges in E[G] and the second
summation is over all their possible orientations. Since each term of ZH is the
product of 4k random variables, which by assumption are 4k-wise independent,
we infer by linearity of expectation that

E[ZH(G)]

=E

 ∑
e1,··· ,ek
ei∈E[G]

∑
−→
T =(−→e1,··· ,−→ek)

 ∏
c∈V [H]

∏
w∈V−→

T

X
θ−→
T
(c,w)

c (w)

 ·
 ∏
w∈V−→

T

Y deg−→
T
(w)(w)




=
∑

e1,··· ,ek
ei∈E[G]

∑
−→
T =(−→e1,··· ,−→ek)

∏
c∈V [H]

∏
w∈V−→

T

E
[
Xθ−→

T
(c,w)

]
·
∏
w∈V−→

T

E
[
Y deg−→

T
(w)
]
.

Let

α(
−→
T) :=

∏
c∈V [H]

∏
w∈V−→

T

E
[
Xθ−→

T
(c,w)

]
·
∏
w∈V−→

T

E
[
Y deg−→

T
(w)
]
.

We will next show that α(
−→
T) is either zero or a nonzero constant independent

of
−→
T . The latter is the case if and only if GT is an occurrence of H in G.

We have E
[
Xi
]
6= 0 if and only if i = d or i = 0. Therefore for any

−→
T and

c ∈ V [H],
∏
w∈V−→

T
E[Xθ−→

T
(c,w)] 6= 0 if and only if θ−→

T
(c, w) ∈ {0, d} for all w. Since∑

w θ−→T (c, w) = degH(c) = d, there must be a unique vertex w ∈ V−→
T

such that

θ−→
T

(c, w) = d. Define ϕ : V [H] → V−→
T

as ϕ(c) = w. Then ϕ is a homomorphism
and ∏

c∈V [H]

∏
w∈V−→

T

E
[
Xθ−→

T
(c,w)

]
=

∏
c∈V [H]

E
[
Xd
]

= E
[
Xd
]|V [H]|

.

Since E[Y i] 6= 0 if and only if i = d or i = 0, so for any
−→
T ,
∏
w∈V−→

T
E[Y deg−→

T
(w)] 6=

0 if and only if every vertex w ∈ V−→
T

has degree d in the graph with edge set T .
Thus |V−→

T
| = 2k/d = |V [H]|, which implies that ϕ is an isomorphism mapping.

We have now shown that α(
−→
T) is either zero or the nonzero constant

α =
(
E
[
Xd
]
E
[
Y d
])2k/d

.

The latter is the case if and only if G−→
T

is an occurrence of H in G. Let (G−→
T
≡ H)

be the indicator expression that is one if G−→
T

and H are isomorphic and zero
otherwise. Then

E[ZH(G)] =
∑

e1,··· ,ek
ei∈E[G]

∑
−→
T =(−→e1,··· ,−→ek)

α(
−→
T) ·

(
G−→
T
≡ H

)
= α · aut(H) ·#(H,G) .

ut
For the case of cycles, we have aut(H) = 2k. We turn to construct hash functions
needed in Theorem 2. The basic idea is to choose a 8k-wise independent hash
function h : D → C and map the values in D to complex numbers with certain
properties. We first show a simple lemma about roots of polynomials of a simple
form.

Lemma 2. For positive interger r, let Pr(z) = 2 + zr and zj = 21/j · e
πi
j . The

complex number zj is a root of the polynomial Pr(z) if and only if j = r.

Proof. We first verify that zr is a root of the polynomial Pr(z): since zrr =
2 · eπ·i = −2, we have zrr + 2 = 0. To show the converse, we consider zrj for

r 6= j and verify that |zrj | =
∣∣∣2r/jeπ·i·rj ∣∣∣ = 2r/j . Since 2r/j 6= 2 if j 6= r, the claim

follows. ut
Let zj as in Lemma 2 and define random variable Hj as

Hj =

{
1, with probability 2/3,

zj , with probability 1/3.
(5)

Then E[H`
j] =

(
2 + z`j

)
/3 = P`(zj)/3 which is nonzero if j 6= `.

Theorem 3. For positive integers d and k, let

H =
∏

1≤j≤2k,j 6=d

Hj

where the Hj are independent. For all integers ` between 1 and 2k, E[H`] 6= 0 if
and only if d = `.

Proof. By independence, E[H`] =
∏

1≤j≤2k,j 6=d E[H`
j]. This product is nonzero

if ` is different from all j that are distinct from d, i. e., ` = d. ut

4 Proof of the Main Theorem

Now we bound the space of the algorithm for the case of cycles of arbitrary
length. The basic idea is to use the second moment method on the complex-
valued random variable Z. We first note a couple of lemmas that turn out to
be useful: the first lemma is a generalization of Chebyshev’s inequality for a
complex-valued random variable and the second lemma is an upper bound on
the number of closed walks of a given length in terms of the number of edges of
the graph. Recall that the conjugate of a complex number z = a+ ib is denoted
by z := a− ib.

Lemma 3. Let X be a complex-valued random variable with finite support and
let t > 0. We have that

Pr[|X − E [X] | ≥ t · |E [X] |] ≤ E[XX]− E [X]E [X]

t2|E [X] |2
.

Proof. Since |X−E [X] |2 = (X−E [X])(X − E [X]) is a positive-valued random
variable, we apply Markov’s inequality to obtain

Pr [|X − E [X] | ≥ t · |E [X] |] = Pr
[
|X − E [X] |2 ≥ t2 · |E [X] |2

]
≤ E[(X − E [X])(X − E [X])]

t2|E [X] |2
.

Expanding E[(X − E [X])(X − E [X])] we obtain that

E[(X − E [X])(X − E [X])] = E[XX]− E[XE[X]]− E[XE[X]] + E[X]E[X]

= E
[
XX

]
− E[X]E[X] .

The last equality uses the linearity of expectation and that E[X] = E[X]. ut

We now show an upper bound on the number of closed walks of a given
length in a graph. This upper bound will control the space requirement of the
algorithm.

Lemma 4. Let G be an undirected graph with n vertices and m edges. Then the

number of closed walks Wk with length k in G is at most 2k/2−1

k ·mk/2.

Proof. Let A be the adjacency matrix of G with eigenvalues λ1, · · · , λn. Since G
is undirected, A is real symmetric and each eigenvalue λi is a real number. Then
Wk = 1

2k ·
∑n
i=1(Ak)ii where for a matrix M , Mij is the ij-th entry of the matrix.

Because
∑n
i=1(Ak)ii = tr(Ak) =

∑n
i=1 λ

k
i ≤

∑n
i=1 |λi|k and

(∑n
i=1 |λi|k

)1/k ≤(∑n
i=1 |λi|2

)1/2
= (2m)1/2 for any k ≥ 2, we have Wk ≤ 1

2k ·
(∑n

i=1 |λi|2
)k/2

=
2k/2−1

k ·mk/2. ut

Corollary 1. Let G be a graph on m edges and H be a set of subgraphs of G such
that every H ∈ H has properties: (1) H has k edges, where k is a constant. (2)
Each connected-component of H is an Eulerian circuit. Then |H| = O(mk/2).

Proof. Fix an integer r ∈ {1, . . . , k} and consider graphs in H that have r con-
nected components. By Lemma 4, the number of such graphs is at most∑

k1,··· ,kr
k1+···+kr=k

r∏
i=1

Wki ≤
∑

k1,··· ,kr
k1+···+kr=k

r∏
i=1

2ki/2−1 ·mki/2

ki
≤ f(k) · (2m)k/2,

where f(k) is a function of k. Because there are at most k choices of r, we have
|H| = O(mk/2). ut

Observe that the expansion of E[ZH(G)ZH(G)] consists of m2k terms and
the modulus of each term is upper bounded by a constant. So a näıve upper
bound for E[ZH(G)ZH(G)] is O(m2k). Now we only focus on the case of cycles
and use the “cancellation” properties of the random variables to get a better
bound for E[ZH(G)ZH(G)].

Theorem 4. Let H be a cycle Ck with an arbitrary orientation and suppose
that the following properties are satisfied:

1. The random variables Xc(w) and Y (w), where c ∈ V [H] and w ∈ V [G] are
8k-wise independent.

2. Let Z be any one of Xc, c ∈ V [H] or Y . Then for any 1 ≤ i ≤ 2k, E
[
Zi
]
6= 0

if and only if i = 2.

Then E[ZH(G)ZH(G)] = O(mk).

Proof. By the definition of ZH(G) we express ZH(G)ZH(G) as

∑
−→
T1=(−→e1,··· ,−→ek)
−→
T2=(

−→
e′1,··· ,

−→
e′k)

ei,e
′
i∈E[G]

 ∏
c∈V [H]
w∈V−→

T1

Xc(w)
θ−→
T1

(c,w)

 ·
 ∏
w∈V−→

T1

Y (w)
deg−→

T1
(w)

 ·
 ∏
c∈V [H]
w∈V−→

T2

Xc(w)
θ−→
T2

(c,w)

 ·
 ∏
w∈V−→

T2

Y (w)
deg−→

T2
(w)

 ,

where the function θ−→
T

(·, ·) is defined in (4). Using the linearity of expectations
and the 8k-wise independence of the random variables Xc(w) and Y (w), we
obtain

E
[
ZH(G)ZH(G)

]
=

∑
−→
T1=(−→e1,··· ,−→ek)
−→
T2=(

−→
e′1,··· ,

−→
e′k)

ei,e
′
i∈E[G]

Q−→
T1,
−→
T2
,

where

Q−→
T1,
−→
T2

=

 ∏
c∈V [H]

∏
w∈V−→

T1
∪V−→

T2

E
[
Xc(w)

θ−→
T1

(c,w)
Xc(w)

θ−→
T2

(c,w)
] ·

 ∏
w∈V−→

T1
∪V−→

T2

E
[
Y (w)

deg−→
T1

(w)
Y (w)

deg−→
T2

(w)
] .

For any c ∈ V [H] and w ∈ V−→
T1
∪ V−→

T2
, we write

R−→
T1,
−→
T2

(c, w) = E
[
Xc(w)

θ−→
T1

(c,w)
Xc(w)

θ−→
T2

(c,w)
]
.

Let R−→
T1,
−→
T2

=
∏
c∈V [H]

∏
w∈V−→

T1
∪V−→

T2

R−→
T1,
−→
T2

(c, w). Then

Q−→
T1,
−→
T2

= R−→
T1,
−→
T2
·

∏
w∈V−→

T1
∪V−→

T2

E
[
Y (w)

deg−→
T1

(w)
Y (w)

deg−→
T2

(w)
]
.

We claim that if the term Q−→
T1,
−→
T2
6= 0, then every vertex in V−→

T1
∪ V−→

T2
has even

degree in the undirected sense. First, we show that using this claim we can
finish the proof of the theorem. Note that E[ZH(G)ZH(G)] =

∑
G−→
T1,
−→
T2
∈E2k Q−→T1,

−→
T2

where E2k is the set of directed subgraphs of G on 2k edges with every vertex
having even degree in the undirected sense. Observing that the undirected graph
defined by G−→

T1,
−→
T2

is a Eulerian circuit, by Corollary 1 we get E[ZH(G)ZH(G)] ≤∑
G−→
T1,
−→
T2
∈E2k |Q−→T1,

−→
T2
| ≤ c ·mk. Note that an upper bound for the constant c is

maxG−→
T1,
−→
T2
∈E2k |Q−→T1,

−→
T2
|.

Let us now prove that Q−→
T1,
−→
T2
6= 0 implies that every vertex in V−→

T1
∪ V−→

T2
has

even degree in the undirected sense. We first make the following observations: For
any vertex c of Ck and w in V−→

T1
∪V−→

T2
we have: E

[
Xi
c(w)

]
6= 0 if and only if i = 2.

After expanding ZH(G) and ZH(G), Xc(·), c ∈ V [H] appears twice in each term,
so we have

∑
w∈V−→

T1
∪V−→

T2

θ−→
T1

(c, w)+θ−→
T2

(c, w) = 4. Consider a subgraph G−→
T1,
−→
T2

on

2k edges such that R−→
T1,
−→
T2
6= 0. Assume for the sake of contradiction that G−→

T1,
−→
T2

has a vertex w of odd degree. This implies that there is a vertex c ∈ Ck such
that θ−→

T1
(c, w) + θ−→

T2
(c, w) is either one or three. However θ−→

T1
(c, w) + θ−→

T2
(c, w)

cannot be one since in this case both R−→
T1,
−→
T2

and Q−→
T1,
−→
T2

must vanish. Now con-

sider the case where θ−→
T1

(c, w) + θ−→
T2

(c, w) = 3. This means that R−→
T1,
−→
T2

(c, w) is

either E[X2
c (w)Xc(w)] or the symmetric variant E

[
Xc(w)Xc(w)

2]
. Assume that

R−→
T1,
−→
T2

(c, w) = E[X2
c (w)Xc(w)]. Since

∑
w∈V−→

T1
∪V−→

T2

θ−→
T1

(c, w) + θ−→
T2

(c, w) = 4,

there must be a vertex w′ 6= w in V−→
T1
∪ V−→

T2
such that R−→

T1,
−→
T2

(c, w′) = E[Xc(w′)].

This implies that R−→
T1,
−→
T2

vanishes and hence Q−→
T1,
−→
T2

must also vanish, which leads

to a contradiction. ut

Now we prove Theorem 1.

Proof (of Theorem 1). First, observe that

E[ZH(G)ZH(G)]− E2[ZH(G)]

|E[ZH(G)]|2
≤ E[ZH(G)ZH(G)]

|E[ZH(G)]|2
.

We run s parallel and independent copies of our estimator, and take the average
value Z∗ = 1

s

∑s
i=1 Zi, where each Zi is the output of the i-th instance of the

estimator. Therefore E[Z∗] = E[ZH(G)] and

E[Z∗Z
∗
]− |E [Z∗]|2 =

1

s

(
E[ZH(G)ZH(G)]− |E[ZH(G)]|2

)
.

By Chebyshev’s inequality (Lemma 3), we have

Pr [|Z∗ − E[Z∗]| ≥ ε · |E[Z∗]|] ≤ E[ZH(G)ZH(G)]− E[ZH(G)]E[ZH(G)]

s · ε2 · |E[ZH(G)]|2
.

Observe that

E[ZH(G)ZH(G)]− E[ZH(G)]E[ZH(G)] ≤ E[ZH(G)ZH(G)] = O(mk).

By choosing s = O
(

1
ε2 ·

mk

(#Ck)2

)
, we get Pr [|Z∗ − E [Z∗]| ≥ ε · |E[Z∗]|] ≤ 1/3.

The probability of success can be amplified to 1 − δ by running in parallel
O
(
log 1

δ

)
copies of the algorithm and outputting the median of those values.

Since storing each random variable requires O(log n) space and the number
of random variables used in each trial is O(1), so the overall space complexity is
as claimed. ut

5 Conclusions

In this paper we presented an unbiased estimator for counting the number of
occurrences of any d-regular graph H in a graph G. For the special case d = 2, we
proved that the variance of the computed random variables is not too big, thus
obtaining an efficient algorithm for computing approximate estimates for the
quantities in question. Our work raises a number of challenging open questions.

1. Is it possible to generalize the proposed approach to count other subgraphs,
such as for example general cliques? Our results provide an unbiased esti-
mator. However, is there any way of keeping the variance of the underlying
random variables small?

2. We used complex-valued hash functions to achieve the desired result. How-
ever, there might be other possibilities. Can we use hash functions that take
values from other structures, such as Clifford algebras, to obtain better upper
bounds for the space complexity of the algorithm?

3. Our algorithm improves significantly upon the näıve sampling algorithms.
Unfortunately, it is not clear at all what the optimal memory consumption
of an algorithm is. So another fundamental research direction is to obtain
lower bounds for counting subgraphs in the turnstile model.

Acknowledgement

The authors would like to thank Divya Gupta for helping them with the im-
plementation of an earlier version of the algorithm. Madhusudan Madhusudan
thanks Girish Varma for stimulating discussions.

References

1. Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. In Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 623–632, 2002.

2. L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algo-
rithms for local triangle counting in massive graphs. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 16–24, 2008.

3. I. Bordino, D. Donato, A. Gionis, and S. Leonardi. Mining large networks with
subgraph counting. In Proceedings of the 8th IEEE International Conference on
Data Mining, pages 737–742, 2008.

4. L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler.
Counting triangles in data streams. In Proceedings of the 25th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 253–262,
2006.

5. L. S. Buriol, G. Frahling, S. Leonardi, and C. Sohler. Estimating clustering indexes
in data streams. In Proceedings of the 15th Annual European Symposium, volume
4698 of Lecture Notes in Computer Science, pages 618–632. Springer, 2007.

6. S. Chien, L. E. Rasmussen, and A. Sinclair. Clifford algebras and approximating
the permanent. Journal of Computer and System Sciences, 67(2):263–290, 2003.

7. J. Flum and M. Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing, 33(4):892–922, 2004.

8. S. Ganguly. Estimating frequency moments of data streams using random linear
combinations. In Proceedings of the 8th International Workshop on Randomization
and Computation, volume 3122 of Lecture Notes in Computer Science, pages 369–
380, 2004.

9. H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles in
graphs. In Proceedings of 11th Annual International Computing and Combinatorics
Conference, volume 3595 of Lecture Notes in Computer Science, pages 710–716.
Springer, 2005.

10. N. Karmarkar, R. Karp, R. Lipton, L. Lovasz, and M. Luby. A Monte-Carlo
algorithm for estimating the permanent. SICOMP: SIAM Journal on Computing,
22:284–293, 1993.

11. A. McGregor. Open Problems in Data Streams and Related Topics, IITK Work-
shop on Algoriths For Data Sreams 2006. http://www.cse.iitk.ac.in/users/

sganguly/data-stream-probs.pdf.
12. S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and

Trends in Theoretical Computer Science, 1(2), 2005.

