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DETERMINISTIC SIMULATION OF IDEALIZED PARALLEL COMPUTERS
ON MORE REALISTIC ONES*

HELMUT ALTY, TORBEN HAGERUPi#, KURT MEHLHORN:f AND FRANCO P. PREPARATA$

Abstract. We describe a nonuniform deterministic simulation of PRAMs on module parallel computers
(MPCs) and on processor networks of bounded degree. The simulating machines have the same number n
of processors as the simulated PRAM, and if the size of the PRAM’s shared memory is polynomial in n,
each PRAM step is simulated by O(log n) MPC steps or by O((log n)?) steps of the bounded-degree network.
This improves upon a previous result by Upfal and Wigderson. We also prove an Q((log n)?/log log n)
lower bound on the number of steps needed to simulate one PRAM step on a bounded-degree network
under the assumption that the communication in the network is point to point.

As an important part of the simulation of PRAMs on MPCs, we use a new technique for dynamically
averaging out a given work load among a set of processors operating in parallel.
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1. Introduction and models of computation. Most parallel algorithms in the
literature are designed to run on a PRAM (parallel RAM). The PRAM model was
introduced by Fortune and Wyllie [FW]. A PRAM consists of some finite number n
of sequential processors (RAMs), all of which operate synchronously on a common
memory consisting of, say, m storage cells (also called “‘variables”), cf. Fig. 1. In every
step of the PRAM, each of its processors executes a private RAM instruction. In
particular, the processors may all simultaneously access (read from or write into) the
common memory. Various types of PRAMs have been defined, differing in the conven-
tions used to deal with read/write conflicts, i.e., attempts by several processors to
access the same variable in the same step. In the most restrictive model, exclusive
read-exclusive write or EREW PRAMs, no variable may be accessed by more than
one processor in a given step. In contrast, CRCW (concurrent read-concurrent write)
PRAMs allow simultaneous reading as well as simultaneous writing of each variable,
with some rule defining the exact semantics of simultaneous writing.

Shared

memory

F1G. 1. The PRAM model. P,, - - -, P, are processors.
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PRAMs are very convenient for expressing parallel algorithms since one may
concentrate on the problem of “parallelizing,” i.e., decomposing the problem at hand
into simultaneously executable tasks, without having to worry about the communication
between these tasks. Indeed, any intermediate result computed by one of the processors
will be available to all the others in the next step, due to the shared memory.
Unfortunately, the PRAM is not a very realistic model of parallel computation. Present
and foreseeable technology does not seem to make it possible for more than a constant
number of processors to simultaneously access the same memory module. A model of
computation that takes this problem into account is the MPC (module parallel computer,
[MV]), cf. Fig. 2. An MPC consists of n processors (RAMs), each equipped with a
memory module. Every processor may access every memory module via a complete
network connecting the processors. However, the memory modules are sequential
devices, i.e., able to satisfy only one request at a time. More precisely, a memory
module M operates as follows: If several processors try in the same step to access a
variable stored in M, exactly one of the processors is allowed to carry out its read or
write instruction; the remaining access requests are discarded. All processors are
informed of the success or failure of their access attempts. We make no assumptions
about how the single successful processor is selected from among the processors
competing to access M.

The MPC model is still not realistic for large n because of the postulated complete
network connecting the processors. This leads us to consider a third model which we
shall call the network model. Here the processors are connected via a network of
bounded degree, i.e., each processor is linked directly to only a constant number of
other processors, cf. Fig. 3. Since each step of a completely interconnected processor
network may be simulated by O(log n) steps of a bounded-degree network ([AKS],
[L]), efficient algorithms for the MPC model translate into asymptotically efficient
algorithms for the network model.

The simulation of the idealized parallel machine, the PRAM, on the more realistic
one, the MPC, has been considered in several previous papers. A naive approach
represents each variable x of the PRAM by one variable (x) of the MPC. Now if a
PRAM step accesses the variables x;, - - -, x;, collisions may occur in the simulating

Complete network

FI1G. 2. The MPC model. P,, - - -, P, are processors, M, , - - - , M,, memory modules.
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FIG. 3. The network model. P,,- - -, P, are processors, My, - - - , M,, memory modules.
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machine because (x,),- - -, ¥(x;) are not necessarily located in distinct memory
modules. If m = n, the m variables may be allocated to m different memory modules,
and a trivial O(1)-time simulation is possible. However, we are concerned with the
case in which m is considerably larger than n. Here a major problem is to find a
memory correspondence between the PRAM and the MPC such that, for all possible
access patterns of the PRAM, the maximum number of variables requested from a
single MPC memory module is kept low. Note that, for specific PRAM algorithms
such as matrix multiplication, there may be very efficient ways of assigning variables
to modules; we refer the reader to § 4 of the survey paper by Kuck [K]. Here we are
interested in universal simulations that work efficiently no matter which algorithm is
executed by the PRAM.

Some results have been obtained previously using probabilistic methods: Mehlhorn
and Vishkin [MV] used universal hashing to define the memory correspondence. They
obtained several upper bounds, for example, an average of O(log n) MPC steps to
simulate one PRAM step, with the total amount of memory used by the MPC larger
than the PRAM memory by a factor of O(logn). Upfal [U] found a probabilistic
simulation of O((log n)*) average time for one PRAM step on a bounded-degree
network; this was recently improved to O(log n) by Karlin and Upfal [KU].

This paper is concerned with deterministic simulations. We define the slowdown
of a simulation as the number of steps needed by the simulating machine in the worst
case to simulate one step of the simulated machine. Note that if m = n’ the simple
scheme outlined above (x is represented by ¢(x)) performs poorly: An adversary could
make the PRAM step access n variables x,, - - -, x, with ¥ (x;), - - -, ¥(x,) all in the
same module. Hence the slowdown is Q(n). This reasoning shows that each PRAM
variable must be represented by several “copies” stored in different modules. Mehlhorn
and Vishkin [MV] showed that read instructions can be handled very efficiently using
this idea. However, they did not know how to deal with write instructions. In a beautiful
paper Upfal and Wigderson [UW] resolved this problem and exhibited a simulation
which uses O(log n) copies of each PRAM variable. If m is polynomial in n, the
slowdown is O(log n(log log n)?). They also showed an Q(log n/log log n) lower bound
on the slowdown for a large class of simulations.

Using similar techniques, this paper improves the upper bound to O(log m). If
m is polynomial in n, this is O(log n). Consequently, a PRAM step may be simulated
in O(log n log m) time on a bounded-degree network. On the other hand, we show
that Q(log nlog m/loglog m) time is necessary under certain assumptions on any
bounded-degree network whose communication is restricted to be point to point. A
similar result was also obtained by Karlin and Upfal [KU]. The assumption of point
to point communication is not satisfied by our simulation algorithm which uses more
general communication patterns.

The PRAM simulations which we consider will be based on emulations of the
PRAM'’s shared memory. We conceptually retain the n PRAM processors while
replacing (or, equivalently, implementing) the PRAM’s (physically infeasible) shared
memory by a (more feasible) suitably programmed MPC or bounded-degree network
with n processors, called the emulating processors. Each PRAM processor, which was
formerly connected to the shared memory, is now instead connected to one of the
emulating processors called its associated processor, each emulating processor being
associated with exactly one PRAM processor, cf. Fig. 4. We require the change to be
completely transparent, i.e., all PRAM programs must run without change (though
possibly slower) on the modified machine. Note that although the most direct PRAM
simulation implied by a memory emulation as above uses a total of 2n processors, it
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FIG. 4. Emulation of the shared memory of a PRAM. Fori=1,- - -, n, P, is a PRAM processor and P
its associated emulating processor.

is a trivial matter to reduce the number of processors to n by coalescing each pair of
associated processors into a single processor. For expository reasons we prefer to keep
the clean separation between PRAM processors and (emulated) shared memory.

Our simulation algorithms are nonuniform. This means that they are not given
explicitly. Instead we merely prove that algorithms with the desired properties exist.
For fixed values of n and m, such algorithms may be found by exhaustive search in
a large but finite set. We return to this aspect in the concluding section.

It has been known since Adleman’s work [A] that probabilistic algorithms may
be converted into nonuniform deterministic ones. Hence the result by Karlin and Upfal
[KU] automatically translates into a nonuniform deterministic simulation of PRAMs
on a bounded-degree network. However, if the translation is based on Karlin and
Upfal’s analysis of their algorithm and uses known techniques, it introduces an
Q(n)-increase in the product of time and number of processors [R, Thm. 6]. Since it
is not difficult to devise a uniform deterministic simulation which uses O(n?/(log n)?)
processors and has a slowdown of O(log n) (the construction is similar to one presented
in the remark ending § 3), deterministic algorithms derived from Karlin and Upfal’s
probabilistic simulation are of little interest. The same is true of all other known
probabilistic solutions.

The remaining part of the paper is structured as follows: In § 2 we describe our
simulation of PRAMs on MPCs and show that its slowdown is O(log m). As part of
the development of the algorithm, we define and solve a so-called “‘redistribution
problem.” Section 3 considers the simulation of PRAMs on bounded-degree networks
and establishes upper and lower bounds of O(lognlogm) and Q(lognlog m/
log log m), respectively. In § 4 we return to the redistribution problem and prove a
stronger result than what was needed in § 2. Finally, § 5 addresses some interesting
and important open issues.

2. Simulation of PRAMs on MPCs. In this section we describe an emulation with
O(log m) slowdown of the shared memory of an EREW PRAM with n processors
and m shared memory cells by an MPC with n processors. A standard method allows
the emulation to be extended using only O(log n) extra time per simulated step to
cover all common variants of CRCW PRAMs. We shall not give the details of this but
refer the reader to [BH].

We will assume that n <m =2". This is no restriction: If m=n, an O(1)-time
solution is possible as argued in the previous section. And if m > 2", even the trivial
sequential simulation on just one MPC processor is within the time bound of O(log m).
We further allow our construction to fail for values of n and m smaller than some
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(unspecified) constant number N. Again this is no restriction. Note that whenever we
employ the “big-oh” notation, the limiting process implied is that of n and m tending
to infinity while other parameters may take on arbitrary legal values.

For concreteness, let us assume that each PRAM processor P has two instructions
for communicating with the shared memory: LOAD Xx, where x is a shared variable,
replaces the contents of a distinguished register in P, called its accumulator, by the
current value of x (which is held in the shared memory), and STORE x updates x
with the contents of P’s accumulator. We also assume that each PRAM variable x has
a unique identification which we shall call its name and denote symbolically by “x’.

We can now describe the computational task that must be performed by the
emulating machine. In the beginning of each PRAM step, each emulating processor
P’ receives from its associated PRAM processor P as input one of the following:

(1) The name “x” of a PRAM variable x, meaning that P’s current instruction
is LOAD x. In this case we will say that P’ reads x in the current (PRAM) step.

(2) A pair (“x”, a), where “x” is the name of a PRAM variable x, meaning that
P’s current instruction is STORE x, and a is the contents of P’s accumulator. We say
that P’ writes or updates x in the current step.

(3) A signal NoOp, meaning that P does not access the shared memory in the
current step.

In cases (1) and (2), we will also say that P’ is the origin of x and that x is accessed
in the current PRAM step.

At the end of the simulation of each PRAM step, each emulating processor reading
a variable x in that step must have computed the current value of x and must output
it to the associated PRAM processor. The current value of x is defined in the obvious
way as the second component of the pair (“x”, a) with first component “x”’ most
recently input by some emulating processor in a PRAM step prior to the current step
(since we are considering only correct EREW PRAM programs, the pair (“x”, a) is
well-defined).

Our emulation algorithm is based on an idea introduced by Upfal and Wigderson
[UW]:

Each variable x of the PRAM is represented by 2c—1 memory cells
Ui(x), "+, r_1(x) of the emulating MPC, where c¢= |log m]." These cells will be
called the copies of x.

Whenever a processor of the PRAM executes the instruction STORE x, the MPC
will access a majority, i.e., at least ¢, of x’s copies and store the new value into them
together with a time stamp indicating the number of PRAM steps simulated so far.

The simulation of the instruction LOAD x also consists of accessing at least ¢
copies of x. Since this is again a majority, at least one of the copies must contain the
current value of x, and the most recently updated copy is readily identified using the
time stamps.

Remark. 1t suffices to count time modulo m if each PRAM variable is “‘cleaned”
once every m simulated steps. Cleaning a variable means inspecting all its copies and
replacing each of their time stamps by the appropriate one of two special values
“invalid”” and “‘oldest™. Since this takes O(c) = O(log m) sequential time, one variable
may be cleaned after each simulated step at only a constant-factor increase in simulation
time. Furthermore, if variables are cleaned in a fixed cyclical order known to all MPC
processors, the modified time stamps allow the MPC to determine the most recently

! “log” without subscript denotes the logarithm to base 2.
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updated copy much as before. In the light of this observation, we shall assume that
time stamps can be manipulated in unit time.

We partition the processors of the MPC into k= [n/(2c¢ —1)] clusters containing
2¢—1 processors each. (We assume that 2¢ —1 divides n perfectly. If this is not the
case, there will be an incomplete cluster. But if we let each MPC processor simulate
two “‘virtual processors” at the price of increasing the execution time by at most a
constant factor, there will be more than enough processors to fill the last cluster. Hence
our assumption implies no loss of generality.) For i=1,---,kand j=1,---,2c—
denote by P,; the jth processor in the ith cluster, and for r=1,---,2c— 1, let ?/’(r)
be the set of the first r processors from each cluster, i.e., ?(r) ={P,; [l=siskl1=sj=r}
All processors within a cluster cooperate when an access to a variable is attempted by
trying to access its different copies.

From now on consider the simulation of a single PRAM step called the current
step. For each variable x accessed in the current step, there will be an MPC processor
P responsiole for x. Conversely, we shall say that x is in P’s custody and sometimes
think of x as residing in P. Initially, x is in the custody of its origin.

Responsibilities are changed during calls of the procedure REDISTRIBUTE to
be described later. We maintain the invariant, however, that each processor at any
given time is responsible for at most one variable.

Following is a description of the major subroutines used by our algorithm. In
each case, all clusters operate in parallel.

ACCESS(j): (1SjS2c¢—1). Within the ith cluster, for i=1, - - -, k, all processors
simultaneously try to access the different copies of the variable x; which is in P;;’s
custody. More specifically: For /=1, - - -, 2c¢ —1, if P;; has not previously been success-
ful in an access to ¢;(x;), it tries to access ;(x;). If P,; is currently not responsible
for any variable, or if P, has already succeeded in accessing ¢;(x;), P,; remains idle.
We shall say that the variables which are in the custody of some processor P,;
(i=1,---,k) are in the range of the call ACCESS(j).

Since processors from different clusters may attempt to-access memory cells within
the same module at the same time, in which case only one of them can be served,
there will be successful and unsuccesstul attempts. Each processor which is successful
in accessing its copy records this fact in an internal table. If the copy is of a variable
x which is read in the current step, the processor also records the value and the time
stamp of the copy; if x is written in the current step‘, the processor updates the copy
with the new value and time stamp.

By assumptlon the execution time of ACCESS 15 0(1).

COUNT(r): (1SrS2c—1). For each variable x which is in the custody of some
processor P,; in ?(r), this procedure counts the number of successful attempts by
processors in the ith cluster to access copies of x. The variables for which this number
is =c are declared dead, meaning that it is not necessary to access any more of their
copies. COUNT uses for each cluster C a virtual complete binary tree T of processors,
the processors of C being its leaves. Since T contains less than twice as many
processors as C, the virtual processors in T may easily be simulated by the physical
processors in C, each processor (except one) acting both as a leaf and as a particular
internal node of T.

The counting is done for each variable x going up level by level in T, where C
is the cluster containing the processor responsible for x. Initially C’s processors acting
as leaves of T transmit to their parents an integer, 1 if they have successfully accessed
a copy of x, 0 otherwise (recall that this information was stored in an internal table
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during the calls of ACCESS). Each internal node adds the two numbers received from
its children and forwards the sum to its parent. After h steps, where h is the height
of T, the root will have computed the total number of successful access attempts. If
that number is Zc¢ (<c), the root sends the information that x is dead (alive) down
the tree.

If x is read in the current step, the values and time stamps of copies of x are also
propagated up the tree. Each internal node selects among the (value, time stamp) pairs
of its children the one with the most recent time stamp. If x is declared dead the root
is able to determine its valid value and to propagate it to the leaves of T, where it
will be stored internally by the processor responsible for x.

When the above procedure has been carried out for all variables concerned, each
processor which is responsible for a now dead variable x read in the current step sends
the value of x to the origin of x (this is the processor actually needing the value of
x). Since the values transferred go to distinct destinations, this step may be carried
out in constant time. At this point all memory accesses involving dead variables have
been successfully simulated, allowing us to forget about variables that died in this call
of COUNT. In particular, we shall no longer consider them to be in the custody of
any processor.

Since all clusters operate simultaneously, doing the counting for one variable per
cluster takes O(h) = O(log c) = O(log log m) time. We are actually doing the counting
for r variables per cluster. However, since each variable uses only one level at a time
in the corresponding tree T, it is possible to pipeline the propagation of information
up and down the tree. Hence a call COUNT(r) may be executed in O(r+loglog m)
time.

BROADCAST(r): (1SrS2c—1). Before all processors within a cluster can attempt
to access the different copies of a variable x, the name of x and, if x is written in the
current step, its new value must be broadcast by the processor responsible for x to all
other processors in the cluster.

This is done using the same trees T as in COUNT. The processor responsible
for x sends the information about x up the tree, the root sends copies down to both
subtrees, etc., so that the information reaches all processors in the cluster and may be
stored in a table within each processor. BROADCAST(r) operates only on variables
in the custody of processors in 2(r). Since a pipelining technique similar to the one
adopted in COUNT may be used, the time bound of O(r+loglog m) again applies.

BROADCAST-ACCESS-AND-COUNT(s, r): (s21,1S5rS2c¢—1). This is a
simple combination of the above procedures defined by the program segment:

BROADCAST(r);
do s times
for j:==1to r do
ACCESS(j);
od;
COUNT(r);
od;

A call BROADCAST-ACCESS-AND-COUNT(s, r) first broadcasts information
about the live variables which are in the custody of some processor in ?(r) (say again
that these are in the range of the call). It then goes s times through a cycle in which
it first attempts to access all live variables in the range and then calls COUNT to
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determine which of the access attempts were successful. The execution time of BROAD-
CAST-ACCESS-AND-COUNT(s, r) is O(s(r+1loglog m)).

REDISTRIBUTE. Even if (responsibilities for) the live variables are distributed
about evenly among the clusters at some point in time, we cannot guarantee that this
will still be true after several calls of ACCESS and COUNT since the processors in
some clusters may be much more successful than processors in other clusters. It is
crucial for efficiency to periodically average out the work load among the clusters. We
do this by means of two variants of a procedure REDISTRIBUTE.

As we argue below, the redistribution problem is reducible to that of sorting the
variables. This observation together with a fast parallel sorting algorithm [AKS]
immediately gives us an O(log n)-time procedure EXACT-REDISTRIBUTE for doing
a perfect redistribution of the live variables. However, since we cannot always afford
to spend O(log n) time, we also need another redistribution procedure which is
considerably faster but, in exchange, less accurate. Here the construction is more
complicated. A comparatively short argument given below proves an upper bound on
the time needed for an approximate redistribution. The bound, although weak, suffices
for our purposes. Since we consider the redistribution problem to be interesting and
important in its own right, however, we reconsider the redistribution problem in § 4
and obtain a much stronger result. Both of our proofs are inspired by the construction
of e-halvers in [AKS]. Let us first state the problem precisely. We distinguish between
a weak and a strong form. The weak form will be used in the present section and the
strong form in § 4.

DEeFINITION. Consider n locations divided into k equal-size groups. Each location
may hold a record, and given a set of n records, we call a particular association between
the locations and the records a configuration. For integers R and y, the weak (strong)
redistribution problem with n elements, upper bound R, and y allowable errors is as
follows: Given a configuration of n records, each containing a key equal to either 0
or 1 and such that the set U of records with keys equal to 0 contains at most R
elements, permute the records so that, in the resulting configuration for some set veU
with |U\ V| =y, there is no group whose locations contain more than [R/k] ([|U|/k],
respectively) records belonging to V.

In our application the groups correspond to clusters of processors, and the records
to names of variables together with any other relevant information (e.g., if a variable
is read in the current step, an identification of its origin). A key equal to 0 indicates
a live variable. Hence the strong redistribution problem asks for the live variables to
be evenly redistributed among the clusters such that no more than y live variables “go
wrong.” The redistribution problem is closely related to that of approximate data
compaction:

DEerINITION. Consider n locations arranged in a fixed order and each capable of
holding a record. For integers R and y, the weak (strong) approximate data compaction
problem with n elements, upper bound R, and y allowable errors is as follows: Given
a configuration of n records, each with a key equal to either 0 or 1 and such that the
number Q of records with keys equal to 0 is at most R, permute the records such that
in the resulting configuration at most y records with keys equal to 0 are not in one of
the first R(Q, respectively) locations.

We shall consider algorithms for the above problems consisting of a sequence of
parallel comparison-exchange steps. A comparison-exchange operation compares the keys
of two records A and B, with the location of A, say, preceding the location of B. If
B’s key is smaller than A’s key, the records A and B are swapped. A parallel
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comparison-exchange step on a set £ of locations consists of a number of comparison-
exchange operations executed in parallel on disjoint pairs of locations in Z. It is clear
that if each of n MPC processors holds one of n locations, the MPC can execute any
parallel comparison-exchange step on the n locations in constant time.

Suppose that we are given a redistribution problem. If we number the groups
1,---,k and for i=1,---,k denote the locations in the ith group by L,
Li,,---, L .u then it is easy to see that solving the weak (strong) approximate data
compaction problem with upper bound R and y allowable errors relative to the location
order

Ll,l, Lz,n Y Lk,la Ll,Za Y Lk,z, T, Ll‘n/k’ Y Lk,n/k

also solves the weak (strong)-redistribution problem with upper bound R and y
allowable errors. Hence we need only consider the approximate data compaction
problem which allows of a more convenient terminology. Note that data compaction
is a special case of sorting in which there are only two distinct key values.

For all p, geN, let

[pla=p(p—1)---(p—q+1).

We shall make repeated use of the inequalities given in the proposition below of which
one expresses a simple combinatorial fact and the other follows from Stirling’s approxi-
mation of the factorial function.

ProOPOSITION 1. (1) Given sets A, A, B, B’ with A'c A, B'< B and |A|=|B|, the
fraction, among all injective functions A - B, of those injective functions A - B which map
each element of A’ to an element of B’ is

[lBII]lA'|< |_B_'l =1
[,Bl]lA’|=<{B') '

q q

LEMMA 2.1. For all n, R, and y with 1=y = R =n/2, the weak approximate data
compaction (or redistribution) problem with n elements, upper bound R, and y allowable
errors is solved by an algorithm consisting of [4(n/y)log(n/y)] parallel comparison-
exchange steps on n elements.

Proof. Let us consider the approximate data compaction problem and call it that
of “compacting with at most y errors.” Let the ordered sequence of locations be
L,,---,L,. We shall henceforth ignore the actual information to be permuted and
consider each record to consist of a single bit, its key. Following [ AKS], we translate
the problem into a graph-theoretic setting and show the existence of certain expander-
like graphs. Let A={L,,-- -, Lg}, B={Lg+y," ", L,}, and veN. For each choice of
v injective functions m,, - - -, 7, mapping A into B, we may construct a labeled bipartite
graph on the node sets A and B by drawing an edge labeled I from a to m(a) for all
I=1,---,v,a€ A Let 9, denote the set of all such labeled graphs obtained by varying
I

To each graph in %, there corresponds an algorithm consisting of v parallel
comparison-exchange steps on L, -+, L,: Interpret an edge labeled / linking L;€ A
and L;€ B as a comparison-exchange operation between L; and L; to be performed
in the Ith step. Note that by the ordering of the locations, the smaller value will be
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placed in L;. Forae A’c A and b e B’ c B, we will say that the edge (qa, b) (if it exists)
joins A’ and B’. Now call a graph G € ¥4, “good” if it has the following property:

For all sets A’c A, B'< B with |A’|=|B’| = y, there is at least one edge in G joining
A’ and B'.

We claim that the algorithm & corresponding to a good graph compacts with at most
y errors. Suppose the contrary. Then there is a set B’ B, |B’| = y, such that all locations
in B’ contain a 0 after the execution of . Since the total number of 0’s is at most R,
there is also a set A’ A, |A|=y, such that all locations in A’ contain a 1 after the
execution of . Since the graph is good, there is at least one edge joining A’ and B'.
Suppose that such an edge is labeled I and links L; € A with L; € B. Then after the Ith
step of the algorithm, the value held by L; is no less than the value held by L; by the
interpretation of the edge. On the other hand, L; holds a 1 and L; holds a 0 after the
last step. But this is impossible since the values held by locations in A never increase,
while those held by locations in B never decrease.

It still remains to show that ¥, contains good graphs for all n for sufficiently
small values of ». If a graph in ¥, is not good (call it “bad”), there are sets A’ A,
B'c B, |A’'|=|B’| =y, such that no edge joins A’ and B’. Hence the fraction f, of bad
graphs in ¥, is bounded by

CIC =)

y/\ vy [n—R1l, /]

Here (}) is the number of possible choices of A’, ";R) is the number of possible
choices of B’, and [(n—R)—y],/[n—R],, for fixed A’ and B’, is by Proposition 1 the
fraction of injective mappings of A into B with the property that no element of A’ is
mapped to an element of B’. Using again Proposition 1, we get

_(€RY (e(n=R)\*((n=R)=\” _(en’( _»\"\"
f”=<y)( y )( n—R ) :(y2<1 ">>

and it is clear that f, <1 provided that

2log (en/y)
—log (1-y/n)’

Finally observe that since

we have

2log(en/y) _ n( n) 1 n n( 1 1 ) n n

———————=2—\|loge+log— =2—log—|———+—) <4—log—.

“log (1—y/n)~ y\'°® 8y)10ge” "y *y\log (n/y) loge y oy
0

Let us denote a call of the MPC algorithm implied by Lemma 2.1 by APPROXI-
MATE-REDISTRIBUTE(R, y). As a technical point, define APPROXIMATE-
REDISTRIBUTE(R, 0) for arbitrary R to be equivalent to EXACT-REDISTRIBUTE.
Note that we may assume that a call APPROXIMATE-REDISTRIBUTE(R, y) moves
all except y live variables to processors in ?([R/k]) and analogously for EXACT-
REDISTRIBUTE, i.e., the live variables are moved to the first processors in each cluster.
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The algorithm for simulating the memory accesses of one PRAM step consists
of three parts: Part 1 decreases the number of live variables from at most n to
O(nloglog m/log m), Part 2 reduces it further to O(m2 '°8™/!°8l°e™) and Part 3
eliminates all remaining live variables.

The following program segment describes Part 1 of the algorithm. It uses a variable
R that will be an upper bound on the number of live variables. a, and y are design
parameters to be determined in the subsequent analysis of the algorithm. Let us call
an execution of lines (4)-(6) a stage. Part 1 of the algorithm consists of an initialization
phase followed by u = [log log m —log loglog m] stages.

Part 1

(1) For each origin P of a variable x,
declare P to be responsible for x;
(2) R=mn;
(3) do [loglog m—logloglog m] times
(4) BROADCAST-ACCESS-AND-COUNT(a,, [R/k]);
(5)  R:=[R/2];
(6) APPROXIMATE-REDISTRIBUTE(R, [yR]);
(7)  od;

So far we have said nothing about how the 2c—1 copies of each variable are to be
distributed among the memory modules of the MPC. Any such arrangement may be
represented by a Boolean m x n matrix whose rows correspond to variables and whose
columns correspond to memory modules. The ijth entry is 1 if and only if the jth
memory module contains a copy of the ith variable (i.e., each row in the matrix has
exactly 2c —1 entries equal to 1). Such an arrangement is called a memory organization
scheme (MOS).

By a counting argument, Upfal and Wigderson proved the following lemma:

LEMMA 2.2 (Lemma 3.3 in [UW], slightly adapted). There exists a constant 7,
0<m <1, such that for all n and m there is an MOS with the following property:

For any call of BROADCAST-ACCESS-AND-COUNT (s, r), if the number of
live variables in the range of the call before the call is w, then after the call it is at
most 2n°w.

Furthermore, the fraction of MOS’s not having the above property among all possible
MOS’s is o(1/n).

We are now in a position to analyze Part 1 of the algorithm. Choose a constant
1 and an MOS as given by Lemma 2.2. Then let a, be an integer large enough to make
27 strictly less than 3 and put £ =29, y=(3—¢)/(1—¢). Denote for i=0, 1, - - - by
R; the value of the variable R after exactly i stages, and let r,,; = [R;/k]. We will
show by induction that the invariant

At the beginning of the ith stage, there are at most R;_, live variables

holds for i=1,2,---. Since R,=n, the assertion is trivially true for i=1. Thus let
i=1 and assume that at the beginning of the ith stage, there are at most R,_, live
variables. We must show that the ith stage reduces the number of live variables to R;.

If i>1, the inductive hypothesis implies that the call of APPROXIMATE-
REDISTRIBUTE which ended the previous stage was applied to a legal input. In
particular, the first argument R is always at most n/2 as required by our construction.
Hence we may conclude that y = yR;_,, where y is the number of live variables outside
the range of the call of BROADCAST-ACCESS-AND-COUNT in the ith stage. But
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then the total number Q of live variables at the end of the ith stage is at most
YHER 1 —y)=(1—-&y+ER_1=((1-8y+ER_=Ri_,/2,
and since Q is an integer, we have in fact Q = | R;,_,/2| = R;, completing the inductive
step. Thus Part 1 of the algorithm reduces the number of live variables to at most
n2t<n 10_310#"_
log m
As for the running time T(n, m) of Part 1, we have
T(n, m)= O( Y. (r;+loglog m+S,-)>
i=1

where S; is the time spent in the ith call of APPROXIMATE-REDISTRIBUTE. Now

I =

i

u [R. O .
=Yy ('—‘+1) =0 Y 27'+u=0(log m),
1 i=1 k k i=0

and since n/(yR;)=2"""/y= 0(2'), we have S;= O(i2") by Lemma 2.1 and

S; = O0(u2") = O(log m).
i=1
Hence T(n, m) = O(log m).

Part 2 of the algorithm is as follows:
Part 2

EXACT-REDISTRIBUTE;
BROADCAST-ACCESS-AND-COUNT([a, log m/loglog m], [2loglog m]);

The exact redistribution together with the fact that Part 1 leaves at most
n(log log m/log m) =2k log log m live variables guarantees that all live variables are
in the range of the call of BROADCAST-ACCESS-AND-COUNT. Hence the number
of live variables is reduced to at most

loglog m
n g g 2 allogm/loglogmén2—logm/loglogm‘

log m
The running time is O(log n+ (log m/log log m) log log m) = O(log m). Summing up,
we have shown:
LeEMMA 2.3. For a suitable choice of an MOS and of the constants a, and v, Parts
1 and 2 together reduce the number of live variables to at most n2~'°8™/!°8loe™ Tpe
execution time of each part is O(log m).
Part 3 is described by the program segment:

Part 3

(1) EXACT-REDISTRIBUTE;
(2) BROADCAST(1);

(3) do [a,log n/loglog m] times
(4) do [a;loglog m] times

(5) ACCESS(1);
(6) od;

(7) COUNT(1);
(8) od;

Call an execution of lines (4)-(7) a stage. a, and a; are design parameters to be
chosen later. Since the execution time of ACCESS is O(1) and that of COUNT(1) is
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O(log log m), Part 3 clearly requires no more than O(log n) time. It remains to show
that Part 3 eliminates all remaining live variables for suitable constants a, and as.

Notice that Part 3 uses a strategy different from the one adopted in Parts 1 and
2. A variable is accessed several (in fact, ®(log log m)) times before a COUNT is done
to find out if it has died. Thus variables may be accessed even though they have fewer
than ¢ remaining live copies (copies that were not yet accessed). This means that
Lemma 2.2 is not applicable. We will now show, however, that the idea of Lemma 2.2
still works as long as the variables being accessed have an average of at least c¢? live
copies each for some g > 0.

LEMMA 2.4. For all constants p, q and n with 0<p, q, n<1 and p+q> 1, there
is a constant N such that for all n, m with m> n= N, there exists an MOS with the
Jollowing property:

If a call of ACCESS attempts to access exactly Q=n2"""™" pariables and the

total number of live copies of these variables before the call is W = QcY, then after

the call at most nW of the copies are still alive.

Furthermore, the fraction of MOS’s not having the above property among all possible
MOS’s tends to 0 as n tends to infinity.

Proof. Call an MOS “‘good” if for any choice of Q = Q.. = |72~ "°#™"] variables
and any choice of W= Qc? live copies of these variables, the number of modules
containing at least one of the W live copies is at least (1 —n) W. It is clear that a good
MOS guarantees the elimination of at least (1 —n) W live copies. Hence we need only
show that there are sufficiently many good MOS’s.

For each choice of Q and W (1= Q = Qpax, Qc?= W= Q(2c—1)) denote by fo w
the fraction of MOS’s that fail to have the above property because they map some set
of W copies of Q variables to fewer than (1 —n) W modules. We now derive an upper
bound on f, w. There are

(g) ways to choose the set of Q variables,
(2¢-1)Q ways to choose the W live copies from the set of all copies
%% of the Q variables, and

n ways to choose |(1—mn) W] modules to contain all the live
[(1—n)W] variables.

For each choice of W live copies and |(1 —n) W| modules, the fraction of MOS’s that
map the chosen live copies to the chosen modules is by Proposition 1 at most

([(l—n)WJ)W.

n
Hence

f°~W§<g)((2c‘_vl)Q)<t(1 —':;)WJ><[(1 _:)WJ)W

(5 () ()

= [e2—n+Q/ W(l _ n)an/WQI—Q/ W(ZC - 1) Wn—ln—n]W

Q)" v
§[2e2—n+Q/WmQ/WC<W) an—n]
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w
= [2e3m°_qc‘_"“_”)(g)n] ,
n

where the relation Q/ W = ¢™ was used in the last step. We will show that the quantity
8o in square brackets is dominated by its last factor (Q/n)". Consider for this purpose
its logarithm:

loggo=1+3loget+c “logm+(1—-q(1-7n))logc+n logg.

Now
¢ logm=0((logm)' %) and (1-—q(1—7))logc=O(loglogm)

while
log gg —(log m)”.

Since 1—¢q < p, we may conclude that for all y with 0<y <n,
log go = —x(log m)”
and hence
fQ,W = Z—XW(log m)P

for all sufficiently large values of m.
Now the fraction f of bad MOS’s (for some values of Q and W) is bounded as
follows:

Qmax (2¢-1)Q © Wil v
fé Z Z fQ,Wéomax Z 2 X o8
Q=1 W=[Qc] w=[c]

éQ 2—xcq(logm)" § (2—X(log m)P)WéQ 2—K(log m)P+a
max T max
for some constant k > 0 (and sufficiently large values of m). Using Q.. = n, we finally
get

log f=—«(log m)?*?+log n,

and since p + ¢ > 1 and m = n, this shows that f - 0 as n > 0. In particular, good graphs
exist for all sufficiently large values of n. This concludes the proof of Lemma 2.4. [

For i=1,2,---, let Q; be the number of live variables immediately before the
ith stage of Part 3 of the algorithm. By Lemma 2.3,

Ql = n2—log m/log log m.

This is less than k=n/(2[log m| —1) and also less than n27"¢™” for any p<1 for
sufficiently large values of m. Hence all remaining live variables are in the range of
the calls of ACCESS, and Lemma 2.4 is applicable. Let p, g and n be constants with
0<p, g, <1 and p+q>1 and choose an MOS as given by Lemma 2.4.
We want the following assertion (1) to be true for all i:
(1) The number of live copies decreases in the ith stage from at most Q;(2c—1) to
at most Q;c?.
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As long as there are more than Q,c? live copies, each call of ACCESS will decrease
their number by a factor of at least n by Lemma 2.4. Hence s iterations of the inner
loop are sufficient to guarantee (1) if

7°Qi(2¢—1) = Qicf,
ie., if

- 2c—1
sz logy,
Since ¢=log m, we have log,,,((2¢—1)/c?) = O(loglog m). Hence (1) holds given
only that a; is chosen large enough.
By (1), the number of live copies at the beginning of the (i+1)st stage, for

i=1,2,---,is at most Q,c’. And each live variable has at least c live copies since the
ith stage ended with a call of COUNT. But then
c9 R
Q== Qe = 0™,

where the last step followed by induction. Hence ¢ stages will eliminate all live variables
if

Qe <1,
ie., if

log Q4
(1-g)logc’

Since Q,=n and log c =Q(log log m), the smallest solution ¢ is O(log n/loglog m).
In conclusion, we have proved:

LEMMA 2.5. For a suitable choice of an MOS and of the constants a, and a;, Part
3 eliminates all live variables remaining after the execution of Parts 1 and 2. Its execution
time is O(log n).

In order to combine Parts 1, 2 and 3 of the algorithm we must use an MOS that
satisfies both Lemma 2.2 and Lemma 2.4 (i.e., has the properties described in the
lemmas). But since the fraction of MOS’s not satisfying Lemma 2.2 goes to 0 as n goes
to infinity, as does the fraction not satisfying Lemma 2.4, the proportion of MOS’s
satisfying both conditions tends to 1, i.e., such MOS’s certainly exist. Even a randomly
chosen MOS for large n with high probability has the desired properties.

Summarizing our results about Parts 1, 2 and 3 as expressed in Lemmas 2.3 and
2.5, we have the following theorem:

THEOREM 1. The shared memory of any EREW PRAM with n processors and m
cells of shared memory may be emulated by an n-processor MPC with a slowdown of
O(log m).

Remark 1. As indicated in the first paragraph of § 2, Theorem 1 remains true even
if we allow the simulated machine to be a CRCW PRAM.

Remark 2. It follows from the discussion towards the end of § 1 that for any
PRAM program H running on an n-processor CRCW PRAM and using at most m
cells of shared memory, there exists an equivalent MPC program which runs on an
n-processor MPC and simulates the execution of H with a slowdown of O(log m).

3. Simulation of PRAMs on bounded-degree networks. This section considers emu-
lations of PRAM memories by bounded-degree networks. We give an upper bound
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on the slowdown which follows as a corollary to Theorem 1 and devote most of the
section to the proof of a lower bound of Q(log n log m/loglog m). A similar lower
bound was shown independently by Karlin and Upfal [KU].

For added clarity, let us use the word ‘““cycle” instead of “step” when talking
about network computations. In this section we will say that a data item is stored in
a network processor meaning that it is stored in that processor’s memory module.

THEOREM 2. The shared memory of any CRCW PRAM with n processors and m
cells of shared memory may be emulated by an n-processor bounded-degree network with
a slowdown of O(log n log m).

Proof. This is a consequence of Theorem 1, the remark following it, and the
general result that any step of an n-processor MPC may be simulated by O(log n)
cycles of an n-processor bounded-degree network. The latter fact in turn follows from
the existence of algorithms which sort on bounded-degree networks in O(log n) time
([AKS], [L]), together with the observation that a scheme for doing partial routing
within the same time bound may be derived from any such algorithm.

Let us now turn to the lower bound and first describe our model and the assump-
tions made. We consider an n-processor bounded-degree network emulating the shared
memory of an n-processor PRAM and identify the network processors with the nodes
and the links between network processors with the edges of an undirected graph
G =(V, E). The distance dist (u, v) between two network processors u and v is the
number of edges on a shortest path in G from u to v.

Recall that when a PRAM processor executes the instruction STORE x, it presents
to its associated network processor a pair (“x”’, a), where a is the new value of x. We
call such a pair a copy of x. The copy is said to be valid until the next PRAM step in
which x is updated (forever, if x is never again updated). We will assume that any
network processor reading a PRAM variable x in a given PRAM step must contain a
valid copy of x at the end of that step. We also assume that the network treats copies
of variables as indivisible entities capable only of being input from or output to PRAM
processors, of being routed through the network and of being stored in network
processors (cf. Fig. 4). In particular, the network cannot ‘“synthesize” copies of
variables.

Regarding the cost of communication, we will assume that for each pair (u, v) of
network processors, sending a copy of a variable from u to v needs at least dist (u, v)
atomic actions by the network, where an atomic action is a “‘processor-step,” i.e., the
amount of work associated with a single network processor executing a single RAM
instruction. This is reasonable since each processor on a path in G from u to v must
devote at least one cycle to passing on the copy.

We finally require all communication in the network to be point to point. Note
that while our other assumptions were innocuous, this is a serious restriction. Point
to point communication means that copies of variables are physical entities that cannot
be subjected to duplication by the network. We allow a network processor writing a
PRAM variable x to obtain an arbitrary number of copies of x from its associated
PRAM processor; but any network processor which receives a copy of x from a network
neighbor may forward the copy to at most one neighboring (PRAM or network)
processor. As an example, if a network processor u writing a PRAM variable x wants
to send a copy of x to each of h processors lying close together in the network but
far from u, then u must obtain h separate copies from its associated PRAM processor
and have them routed through the network. A less restrictive model would allow u to
send just one copy that would be replicated by the network in the vicinity of the h
destinations. We will use the assumption of point to point communication to conclude
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that if during the simulation there are h instances of a processor sending a copy of a
variable to a processor at a distance of at least g, then the network must perform a
total of at least hq atomic actions.

Most of our assumptions may be visualized by imagining copies of variables to
be contained in sealed envelopes which are carried by the network between processors
of the PRAM.

Note that the assumption of point to point communication is not satisfied by our
emulation algorithm, nor by the one by Upfal and Wigderson. Both algorithms use a
form of load redistribution in which conceptually variables, not copies of variables,
are transported through the network. This corresponds to “bundles” of 2¢ —1 copies
of the same variable being transported together at unit cost or, equivalently, to the
replication of copies after they have been sent, something which is forbidden by the
assumption of point to point communication. Thus the lower bound which we are
about to derive does not apply to any of these cases. Partly due to the well-known
difficulty of obtaining any sort of lower bounds for most natural problems, we neverthe-
less believe the result to be interesting.

Upfal and Wigderson showed in [UW] an Q(log n/log log n) lower bound on the
slowdown associated with a simulation of a PRAM on an MPC. Our proof is a variation
of their argument which we will therefore briefly review.

They start out with the observation (also made in [MV]) that if there is an average
of r valid copies of each variable, then some PRAM steps in which all processors read
need Q((m/n)" ") cycles for their simulation. On the other hand, if an average of r
valid copies is maintained, then the average cost of simulating a writing step is Q(r).
Thus one cannot do better than

1/(2r)
a(mn((7) " +7)) -0l
r n loglog n

the desired lower bound. Of course, this informal argument ignores a lot of detail.
The main ideas behind our modified proof are as follows: Suppose that a processor
u sends copies of some variable to a number of other processors. We will then (in the
lower bound argument) count only those copies that go to processors at a distance of
at least g=~log n/(2log d) from u, where d is the maximum degree of the network;
transmission of all other copies is considered free. Since every counted copy requires
Q(log n) atomic actions, the network will need Q(r log n) cycles to simulate a writing
step updating n variables if an average of r counted copies per variable is to be kept.
What happens to reading steps? There is now for every variable an average of r
counted copies and at most ~d?=~+/n free copies. However, the free copies always
cluster in a small “sphere” in the network, and the free copies of many variables cluster
in the same sphere. This allows us to prove that the free copies are of little use in the
sense that the simulation of a reading step may require Q((m/(4n%))"“") cycles. Thus

the slowdown is
m\ Y@ log n log m)
i — +rl =Q —————).
Q(mrm ((4n2) r log n)) Q( p——

The details follow.

Before we state the lower bound, let us define a single instruction-multiple data
(SIMD) program for a PRAM to be a program whose execution never causes two
processors to carry out different types of instructions in the same step.

THEOREM 3. If m=Q(n**°) and T=(1+¢)(m/n) for some fixed ¢ >0, then the
worst-case simulation time for a straight-line SIMD program running for T steps on an
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n-processor EREW PRAM with m cells of shared memory is

Q( T min {\/n logn, log_nlo-g_rf}>

log log m
for any on-line emulation of the shared PRAM memory by an n-processor bounded-degree
network that uses only point to point communication.

Remark 1. In particular, the (worst-case) slowdown is Q(min{vnlogn,
log nlog m/loglog m}), but the theorem is slightly stronger: There are arbitrarily
long programs that cause an ‘“‘average slowdown” of Q(min {V/n log n, log n log m/
log log m}).

Remark 2. Under the assumptions of Theorem 3, the simulation time is
Q((log n)*/log log n). If m is polynomial in n, this statement is equivalent to that of
Theorem 3.

Remark 3. The emulation being on-line means that each PRAM step must be
simulated without knowledge of memory requests in later steps. If this requirement is
relaxed, it is possible in some cases to beat the lower bound; see [VW].

Proof. Let 7= |(T—[m/n]—1)/2] and observe that r=Q(T). We consider
PRAM programs in which the ith processor, for i=1, - - -, n, executes a program of
the following form:

(1) LOADINDEX;

(2) fort:=1to [m/n] do
(3)  STORE y%;

(4) od;

(5) fort==1to 7 do

(6)  LOAD yk;

(7) STORE y'%;

(8) od;

Here the first instruction loads a well-defined value (the processor index, say) into the
accumulator, and the various y’s are PRAM variables. The above program as given
of course does not have the straight-line format, but may be thought of as a compact
representation of a straight-line program whose length is bounded by T.

We will call an execution of lines (6)-(7) a stage. The tth stage, for t=1,-- -, 7,
consists of a reading part which inspects all variables in the set Yr ={y%, -, y%'}
followed by a writing part which updates all variables in the set Y, ={y%, -, v}

Let X be the set of the PRAM’s m shared variables. Lines (2)-(4) simply assign
values to all variables in X in some arbitrary fixed way.

Suppose now that programs of the above form are run on a PRAM whose shared
memory is emulated by a bounded-degree network satisfying the assumptions of
Theorem 3 and running for at most S cycles. We will demonstrate that S is large by
exhibiting a particular choice of

(YR, Yw, -+, Y, Y})
which forces the simulation to be slow. We fix the Y’s one by one, choosing Y% and
Y'w depending on the state of the emulating network at the beginning of the rth stage.
The salient parameters of the state of the network are the redundancies of variables in
X as defined below.
Each network processor which writes a PRAM variable x may send copies of x

to other processors. For t=1,---,7+1 and x€ X, denote by I'’ the set of network
processors which have a valid copy of x at the beginning of the tth stage (‘“‘at the
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beginning of the (7+1)st stage” should be interpreted to mean at the end of the rth
stage). Identify the network with a graph G = (V, E) as in the definition of our model,
let d =2 be the maximum node degree of G, and for ue V, let B(u) be the sphere of
radius g =(log n—2loglog n)/(21log d) around u, i.e.,

B(u)={ve V|dist (u, v) = q}.

Fort=1,---,7+1and x € X, the redundancy r; of x at the beginning of the tth stage
is defined as

r;=mi9 [TA\B(u)

B

i.e., take the sphere B(u) best fitting the copies of x and count the number of copies
outside B(u). The total redundancy R' and the average redundancy r' at the beginning
of the rth stage are

R'=Y r
xeX
and
r'=R'/m.

The following Lemma 3.1 generalizes Theorem 4.1 in [UW] and § I11.1 of [MV].

LEMMA 3.1. Let 1=t=r1 and suppose that Yk, Y, -+, Y5, Y'" (and hence
r') are fixed. Then it is possible to choose Y% in such a way that the tth stage of the
simulation (in fact, its reading part) must consist of Q(g(r')) cycles, where

1/(4r)
min {\/ﬁlog n2, (_m_2> } if r>0,
r \4n
Vnlogn if r=0.

Proof. Let us drop the superscript ¢ from I'y, ri, R and r". Let {X,|ve V} be a
partition of X (empty sets allowed) such that

g(r)=

Vxe X,: r.=|T,\B(v)|.

Then there is an X, which is not much smaller than average and whose redundancy
is not much larger than average, i.e.,
Claim 1.

Jve Vi |X,|2—= and Y r=2rX,
2n xeX,

Proof. Assume otherwise and let U ={ve V||X,|=m/(2n)}. Then U # & and

R=ZY ¥ rn>7Y 2rle|>2rg=R

veU xeX, velU
since
m m
Y X, | <n—=—.
veU 2n 2

This is a contradiction. 0O
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Choose ve V as given by Claim 1, i.e., |X,|=m/(2n) and Yvex, Ix=2r|X,|. Then
there is a set A < X, with |A|=|X,|/2= m/(4n) such that ¥x € A: r, =4r. Let f = |B(v)|.
A simple combinatorial argument shows that

vn

ogn

fEdTH1= L

Now for any set W< V\B(v), let
Aw ={xe A|T,< B(v)U W}.
Claim 2. For any k with 0= k = n — f; there is a subset W of V\B(v) with |[W|=k

(L) /5)

Proof. Let W ={W < V\B(v)||W|=k}. For any x € A, there are exactly

(")

sets We W with xe Ay. Since r, = |4r| and hence
(n-—f—rx)><n—f~[4rj>
k—r. )\ k—|4r] )’

I vzl )

n—f
W:
(")
Claim 2 now follows by the pigeonhole principle. 0O

We can now finish the proof of Lemma 3.1. We consider only the case r>0 and
leave the verification for r =0 to the reader. Let

m —1/(4r)
k= [4r+ n(m) .

We may assume that r=n/8 and (m/(4n%))"“’ =3 since otherwise what we are
claiming is trivial. This allows us to also assume that n is large enough to make n — f = k.

Then
' [ m ( n >4r ( n )[4rj
e Bl|le—c=
n 4n’” \k—4r k—|4r]

2["‘f][m =<""f>/("‘f— [4VJ)
B [k][m k k—|4r] ’
and Claim 2 provides us with a subset W of V\ B(v) with |W|=k and |Ay|= n. Choose

Yk as any n-element subset of Ay. By construction, all valid copies of variables in
r are contained in a total of f+ k processors. Hence the network cannot possibly

and

we have

Since
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output copies of all variables in Yk, i.e., simulate line (6), in fewer than n/(f+k)
cycles. But since

~1/(4r) =)
f+k§ﬁ_+l+4r+n(—ﬁ2> +1=0(maX{ \/E r, n(lz) })’
log n 4n 4n

logn’

we have

n n [ m\YV®
. i - 1= . a
TR Q(mm {\/ﬁ log n, = (4n2) })

We now continue the proof of Theorem 3 and first give a rule for choosing Y%
and Y. For t=1,---, 7, Yk is chosen as in Lemma 3.1, and Y' is chosen among
all sets of n variables to maximize ¥, _, ri. Clearly ¥ _,: ri=nr'. Note that this
means that the writing part of stage ¢ invalidates at least nr' of those copies of variables
which are counted in the total redundancy. On the other hand, writing such a copy
costs 1(q) =Q(log n) atomic actions on the average, and each copy must be paid for
separately by the assumption of point to point communication. Tc see this, consider
a network processor u which writes a PRAM variable x in the tth stage, and let
ty=min {7+ 1}U{t'>t|xe Y}) (i.e., x is next updated in the t,th stage). Assume
that totalled over stages ¢, - - -, t; — 1, exactly h valid copies of x leave B(u). The cost
of this is clearly Q(hq) = Q(h log n) by the assumption of point to point communication.
On the other hand, rf, for t<t'=t,, can never exceed h since r’ by definition is the
minimum number of valid copies of x outside any sphere B(v), ve V. Hence the
average cost per counted copy is {(log n).

Since R'=0, R™"'=0, and the total number of atomic actions performed by the
network is at most Sn, we have the relation

L Y nr'=0
logn =

or

2) Sz=1flogn

where 7=(1/7)Y.;_, r' is the value of r' averaged over all stages.

Relation (2) expresses the cost of writing. In order to investigate the cost of reading
as given by Lemma 3.1, we shall consider separately the various ““cases” of the function
g Let

gi(r)=+nlogn,
gz(r)={

n/r if r>0,
o if r=0,

) {(m/(4n2))'/(4'> if r>0,
r —
= o if r=0,
and let {C,, C,, C5} be a partition of {1, - - -, 7} such that for i=1, 2, 3,
Vie C: g(r')=g:(r").
Next choose /€{1,2,3} such that C, is a biggest set in the partition, i.e., IC,[=
max, ;=3 |C;|. Then there is a subset C’ of €, with

]C’lzg and VieC':r'=6f
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By Lemma 3.1 and (2), we have

S=Q<max {Tf logn, ¥ g,(r')}) =Q(T(log n+ g,(67))).

teC’
Consider three cases depending on I For /{1, 2}, clearly

rp>i(r)1 (Flog n+g(67))=Q(vnlogn).

As for the case [=3, observe first that m =Q(n**®) implies m/(4n?) = Q(m*/?*+o).
Letting p = € log m/(48(2+ ¢) log log m), we find

Mﬂ)

min (7 log n+g;(67))=p logn =Q<
F=p log log m

and

] . . m 2(2+¢) loglog m/(e log m)
min (7 log n+gs(67)) = g;(6p) = <—5)
0=rF=p 4n

= Q((ms/(2+s))(2+e)2 log log m/(& log m))
1 1

—@*"tm) — ((log m)?) = a(w)
log log m

Putting the various cases together finally yields

S=Q<Tmin {\/nlog n,w}). 0
log log m

Remark. The lower bound of Theorem 3 makes it natural to wonder whether a
slowdown of close to O(v/n) is achievable for arbitrary values of m. This is indeed
the case. Assume for simplicity that n is a perfect square and consider the n emulating
processors as arranged in a vVn-by-vn array. We use the following idea: When a PRAM
processor P updates a variable x, its associated processor places a copy of x in each
processor in its row (call this a row operation). When P wants to read the value of a
variable x, the associated processor obtains a copy of x from each processor in its
column which has a copy of x (a column operation). Clearly one of the copies will be
valid, and it may be found using time stamps as in § 2.

It remains to determine the time needed for row and column operations. Observe
that the procedure BROADCAST of §2 actually performs a row operation if we
consider each row as a cluster and execute a call BROADCAST(vn). In the same
way, a column operation is part of what happens in the execution of COUNT(Vn)
with the columns considered as clusters. Hence if the emulating machine is an MPC,
the slowdown is O(v/n +log vn) = O(v/n). Since COUNT and BROADCAST both use
a fixed boundeded-degree interconnection pattern, namely a complete binary tree for
each cluster, the same slowdown is attainable on a bounded-degree network. However,
any such network must of course employ communication which is not point to point
since otherwise it would violate the lower bound of Theorem 3 for sufficiently large
values of m. On a bounded-degree network using only point to point communication, a
slowdown of O(+v/n log n) is achievable. In order to see this, note that the necessary
communication can be realized by a constant number of rounds, where in a round
each processor sends at most one message to each processor in its row (or column).
A round may clearly be implemented by v/n suitable permutations within each row
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(column), e.g., by cyclic shifts by 1,2, - - -, and finally by va positions, and each such
permutation may be routed in O(log n) time if the processors within each row (column)
are connected by, e.g., a cube-connected cycles network [PV].

4. An algorithm for approximate redistribution. This section establishes an upper
bound on the parallel complexity of the strong redistribution problem. We also show
how this result allows our simulation of PRAMs on MPCs to be somewhat simplified.

Our motivation for studying the redistribution problem is that it captures some
aspects of a problem which is fundamental in parallel computing, namely that of
distributing the work to be done evenly among the available processors in order to
keep them all busy for as long as possible. We believe that the results and methods
of this section may have applications outside of our simulation algorithm.

The main steps in the proof are as follows: We first show the existence of certain
expander graphs and then indicate how these may be used to construct fast e-halving
procedures. This part of the proof parallels arguments in [AKS] except that we are
being more explicit and want to correct a few inaccuracies. We then give an algorithm
based on repeated e-halving, bound its execution time and finally show that it solves
the strong approximate data compaction problem.

Given an undirected graph G=(V, E) and a set U< V of nodes, let us write
Fs(U) or I'(U) for the set of nodes adjacent to a node in U, ie., ['c(U)=
{ve V|(u, v) e E for some ue U}.

DEFINITION. A bipartite graph on the node sets V; and V, is called an expander
graph with parameters (n,, n,, A, a, v) if |V}|=n,, |V,|=n,, and

(1) Voe VU Vo: T({v})|=»,

(2) VAc Vi:|Al=san,_, = IT(A)|=A|A|, for i=1, 2.

LEMMA 4.1. For all b> 0, there is a constant K such that forallA =1 (A eR), n=1
and 5 € {0, 1} there exists an expander graph with parameters (n+ 5, n, A, 1/(A +b), KA?).

Proof. This is again a counting argument. We first consider the case § =0. Let A
and B be disjoint sets with |A|=|B|=n. Given v bijections m,, - - -, 7, from A to B,
we may as in the proof of Lemma 2.1 construct a bipartite graph of maximum degree
v on the node sets A and B by drawing an edge from a to m(a) forall I=1,---, v,
ac A. Let 4, denote the set of all such graphs and call a graph in 9, good if it is an
expander graph with parameters (n, n, A, 1/(A +b), v).

If a graph in ¥, is not good, then there is a subset U of either A or B such that
1=|U|=n/(A+b) and T(U)cV for some set V with |V|=|A|U|]. For z=
L.+, |n/(A+Db)], let f,, denote the fraction of graphs in %, for which there is such
a set U with |U|=z As in the proofs of Lemmas 2.1 and 2.4 it is easy to see that (the
factor 2 is due to the fact that one may choose U< A or U < B)

o) Y ) () ]

Proceeding under the assumption » = A +1, we further get

AZ v—A-—1 z /\ v—A—1 z
e (T ()
Jo: [e n 2| ¢ A+b Al

where z=n/(A +b) was used in the last step. Let

A v—A—1
A+1

, =t —— A
S (A +b>
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Then
b
logg,=(A+1)loge—(r—A—1)log 1+x +log A

—-A-1
é()\+1)loge—(v—/\—)log(1+b)+log)t

which is = -2 if

A(A+1)loge+AlogA+2A

v= +A+1.
log (1+b)
Hence if »= KA? for a suitable constant K depending only on b, we have
g.=3
and hence
2
==
fV,Z = 4Z

The total fraction of bad graphs in ¥, is then bounded by

ln/(A+b)] oo

2
= =
z=1 fu,z_zzl 4z<1
which proves the lemma for the case 6 =0.

We now turn to the case 8 = 1. Suppose that we must produce an expander graph
with parameters (n+1, n, A, 1/(A +b), KA %) for given b, A and n. First take an expander
graph G with node sets A and B and parameters (n+1,n+1, A +b/2,1/(A+b), KA?)
which exists by the proof for the case 8 =0 for some constant K depending only on
b. We may assume (increasing K as necessary) that extra edges have been added to
achieve that each node in G has at least 2A/b incident edges.

Now remove one node v € B and its incident edges. We claim that the resulting
graph G’ is an expander graph with parameters (n+1, n, A, 1/(A+b), KA?). We must
show that a sufficiently small subset U of either A or B\{v} has [T(U)|= A|U|. Since
this is trivial for U < B, we may assume that U < A, 1 =|U|=n/(A +b). Then

b
e U)|ZTa(U)[-12 (A +5)1U|—1,
and if |U| = 2/ b, this allows the desired conclusion [['/(U)|= A|U|. On the other hand,

if [U|=2/b, then an arbitrary node u in U by construction has a sufficient number of
neighbors, i.e.,

FeW)2ouhlz2azAlU] D

DEFINITION. A permutation 7 of {1, - - -, n} is said to be &-halved if

(1) Vie{l, -, [n/2]}: {i|[1=i=1and w(i)> [n/2]}|=el;

(2) Vie{[n/2]1+1, -, n}: {ill=si=n and w(i)=[n/2]}|=e(n—1+1).
Consider again n locations arranged in a fixed order and each containing a record
with a key. The configuration may be said to represent a permutation  of {1, - -, n}
if the record stored in the = (i)th location, for i=1, - -, n, contains the key i A

procedure is called an e-halver on n elements if it takes as input a configuration
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representing an arbitrary permutation of {1, - - -, n} and produces as output a configur-
ation representing an e-halved permutation. An e-halver thus approximately separates
the small and the big keys.

LEMMA 4.2. There is a constant K such that for all n=1 and all € > 0, there exists
an e-halver on n elements consisting of at most K(1/¢)* parallel comparison-exchange
steps on n elements.

Proof. Assume without loss of generality that ¢ =3. We consider two cases.

Case 1: n=8/¢>. Here Batcher’s well-known construction [B] gives us not only
an e-halver, but actually a sorting algorithm. For some constant K’, it consists of at
most K'(log n)>=25K'(log (1/¢))*=25K’(1/ ¢)* parallel comparison-exchange steps.

Case 2: n>8/¢> Now let A=(1—¢)/e and consider an ordered sequence
L,, -+, L, of nlocations whose contents represent a permutation of {1, - - -, n}. We
assume that each record consists only of its key.

By Lemma 4.1, there is an expander graph G with parameters ([n/2], [n/2], A,
1/(x +3), KA?) for some constant K. As in the proof of Lemma 2.1 we may identify
the node sets of G with A={L,,- -, L;,/2;} and B={L[,/21+1," " -, Lo} and consider
each edge (L;, L;) as a comparison-exchange operation to take place between L; and
L,. Since no node in G has more than K\? incident edges, it is possible to carry out
all comparison-exchange operations in at most KA*= K(1 /€)? parallel comparison-
exchange steps (this is true without additional assumptions on G; see [O, Thm. 7.5.6].
However, the reader may also imagine G to have been constructed as in the proof of
Lemma 4.1, in which case the claim becomes trivial).

Suppose that the resulting algorithm & is not an e-halver. We will show that this
leads to a contradiction. Assume without loss of generality (the other situation being
similar) that for some /€{1,- - -, [n/2]}, more than &l keys =I are in locations in B
after the execution of &£ Call a key “small” exactly if it is =/ and let B', |B/|=[el],
be a set of locations in B containing only small keys after the execution of /. Then

|B'|=[e[n/2]1=¢|n/2] +2§L"—/—2,i,
At+3
where the last inequality may be shown correct by elementary manipulations using the
relation n>8/¢? and the definition of A. But this means that B’ is small enough to be
“expanded” by G, i.e.,
T(B)|zA|B|z(1—¢)l

Since more than el small keys are in locations in B after the execution of &, fewer
than I— el =(1—-¢)! are in locations in A. But then some location in B’ is necessarily
linked by an edge to a location in A containing a bigger key. As in the proof of Lemma
2.1, this is impossible. Hence « is an e-halver. 0O

THEOREM 4. There exists a constant K such that foralln, R, andy with 1=y <R =n,
the strong approximate data compaction (or redistribution) problem with n elements,
upper bound R, and y allowable errors is solved by an algorithm consisting of at most

(5) [y

parallel comparison-exchange steps on n elements.

Proof. If y =1, we may use Batcher’s sorting network. Hence assume that y =2.
Let the locations L,, *-* -, L, contain the records to be permuted, and assume as usual
that each record is just a one-bit key. We will use repeated e-halving, first on the whole
set L,,- -+, L, of locations, then on its left and right halves, etc., until the pieces
become smaller than y. More formally, when I ={a, - - -, b} is a finite set of consecutive
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integers (call this an interval), we denote by I, and I, its left and right halves, i.e.,

oo [ e {5en )

We will also use the notation L, ={L;|ie I}. Let So={{1, - - -, n}},andfort=1,2, - - -,
let

S,={J|J=1I or J=1, for some I €S,_,}.
Choose T minimal such that |I|=y for all I € S; and let

R
3R(T+1)
The algorithm for approximate data compaction now is

(1) fort:=0to T do
2) for all I €S, pardo (* do in parallel *)

3) Run an e-halver on L;
(4) odpar;
(5) od;

We call an execution of line (3) an e-halving step. Each L; should of course be
considered ordered with L, <L; & i <j.

According to Lemma 4.2, the above algorithm may be implemented by (T +
1)K'(1/¢)? parallel comparison-exchange steps for some constant K'. Since T+1=
log (n/y)+2=3[log(n/y)] and hence 1/ =9(R/y)[log (n/y)], this is less than

R\? nl?
K(5) e
y y
for a suitable constant K.

It remains only to show that the algorithm is correct, i.e., solves the strong
approximate data compaction problem. We need a few definitions. First, denote by Q
the total number of keys equal to 0. Then for t=0,---, T+1and I € S,, let w,(I) be
the number of 0’s in (locations in) L, after ¢ e-halving steps, let & (I) be the number
of 0’s that would result from a perfect data compaction, and let ¢,(I) be the “surplus”
of 0’s. More precisely,

w,(I)=|{ie I|L; contains a 0 after exactly t e-halving steps}|,
A =IN{1,- -, Q}, and
¢.(I) = max {u,(I) - (1), 0}.
A global measure of the error accumulated after ¢ e-halving steps is given by

O(1)= IZS é.(I).

We claim that ® increases by at most €Q in a given e-halving step, say the rth. Let
IeS,_,. First it is obvious that if Q£ I, then ¢,(I})+ ¢,(I,) = ¢,_,(I). Hence we need
only consider the unique interval I € S,_; with Q€ I and show that
o (1) + b (I,)= ¢, (I)+ Q.

Note that e-halvers were designed to sort permutations of {1, - - -, n}. Since we consider
algorithms consisting exclusively of comparison-exchange steps, e-halving may also
be applied to sequences of 0’s and 1’s. In order to deduce what happens, it is useful
to imagine each one-bit key to have been augmented by a unique suffix and the

comparisons to take place using the lexicographic order on the augmented keys. This
would not change the resulting distribution of zero keys. Hence one may think of each
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key as belonging in one particular position in the sorted sequence. It is now easy to
see that the distribution of 0’s between L; and L; achieved by any e-halving of L,
may be obtained from the distribution that would result from a perfect sorting of L,
by moving at most eq 0’s from L;, to L; or vice versa, where g is the number of 0’s
in L;. Furthermore, this would change ¢,(I;) + ¢,(I,) by at most £q. On the other hand,
if the rth e-halving step happens to sort L; perfectly, then ¢,(I;)+ ¢,(I,) = ¢,—,(I).
Hence

o (L) + (L) = (I)+eq=¢,—(I)+£Q,
proving our claim.

Now for t=0,---,T+1, let y, be the number of errors in the configuration
obtained after ¢ e-halving steps, i.e.,

y:={ieN|Q<i=n and L; contains a 0 after exactly ¢ -halving steps}.

If I €S, is the interval containing Q, and J € S, is an interval to the right of I (i.e.,
i<jforalliel, jeJ), then ¢,(J)=pu,(J). Hence y, = ®(t)+|I|. In particular,

< Y < Y| < Y=Y .|2|l=
yT+1=®(T+1)+[2]=(T+1)8Q+[2.|=(T+1)eR-+[2]=3+[2]=y. 0

Consider now the implications on the simulation algorithm in § 2. Armed with
the result of Theorem 4, we are no longer constrained to run Part 1 of the simulation
for just O(log log m) stages. In fact, suppose that we increase the number of stages in
Part 1 to v=[(log m)"/*]. Then the total time spent in calls of APPROXIMATE-
REDISTRIBUTE is

v v

;Zl Si= o( T (log 2")3) = o(iz i3) O @l )

i=1 =1
and the same bound holds for the time spent in the remainder of Part 1. The number
of live variables is reduced to at most
n2 °=p2 loem
This suffices for an input to Part 3 of the simulation, as may be seen by reviewing the

proof of Lemma 2.5. Hence Theorem 4 allows us to simplify the simulation algorithm
by removing Part 2.

)1/4

5. Conclusion. In this paper we achieved an upper bound of O(log m) on the
slowdown incurred by an n-processor MPC emulating the shared memory of an
n-processor PRAM with m shared memory cells. Our scheme leaves open a number
of important problems.

The most troublesome unsolved problem is that of efficient (polynomial-time)
construction of good MOS’s. This computation needs to be carried out only once for
given values of n and m. However, we know no method for doing this except
systematically generating one MOS after another and testing “goodness” by brute
force, and this is not a feasible approach for interesting values of n and m like n = 10?
and m =10°

Finding a polynomial-time construction algorithm appears to be very difficult
because of the close connection to the problem of efficient construction of expander
graphs. A polynomial-time algorithm was discovered for the latter problem after a
considerable effort [GG]; the MOS construction problem, however, seems more difficult
(cf. Lemma 2.4). In fact, the graph should maintain the expanding property even when
an adversary is allowed to eliminate all but c¢? of the 2c —1 edges incident on each
node representing a PRAM variable.
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We assume, as do Upfal and Wigderson, that each MPC processor, when presented
with the name of a variable x, is able to tell which of the n memory modules contains
“its” copy of x (i.e., ,(x) if the processor is the Ith in its cluster). If this mapping
has no regularity to be taken advantage of, we need )(m log n) extra bits per processor
to store it in the form of a table, a very high overhead. Therefore it is important to
find a good MOS with a short description.

There are two ways in which one might want to strengthen the lower bound of
Theorem 3. First, we would like to get rid of the factor log log m in the lower bound
in order to obtain matching upper and lower bounds. In order to do this, it seems to
be necessary to refine the analysis to not only count the routing steps necessary to
bring copies to where they are needed, but also somehow take into account the difficulty
of deciding where a valid copy may be found. Note that our emulation algorithm
realizes a read instruction by accessing many copies and using time stamps to find a
valid copy.

The other obvious improvement would be to obviate the need for the assumption
of point to point communication. Even without this assumption, the cost of setting up
r copies of some variable is at least proportional to the number of edges in a smallest
Steiner tree spanning the processors containing the r copies. We believe that if the
processors containing the copies are chosen to often make this quantity significantly
smaller than r log n, i.e., writing is cheap, then the copies necessarily cluster, in a sense
still to be appropriately defined, and reading must be expensive.
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