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Abstract. We consider the problem of computing a minimum cycle basis in a directed graph.
The input to this problem is a directed graph G whose edges have nonnegative weights. A cycle
in this graph is actually a cycle in the underlying undirected graph with edges traversable in both
directions. A {−1, 0, 1} edge incidence vector is associated with each cycle: edges traversed by the
cycle in the right direction get 1 and edges traversed in the opposite direction get −1. The vector
space over Q generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis
of G if it forms a basis for this vector space. We seek a cycle basis where the sum of weights of the
cycles is minimum. The current fastest algorithm for computing a minimum cycle basis in a directed
graph with m edges and n vertices runs in Õ(mω+1n) time, where ω < 2.376 is the exponent of
matrix multiplication. We present an O(m3n + m2n2 logn) algorithm. We obtain our algorithm
by using fast matrix multiplication over rings and an efficient extension of Dijkstra’s algorithm to
compute a shortest cycle in G whose dot product with a function on its edge set is nonzero. We
also present a simple O(m2n + mn2 logn) Monte Carlo algorithm. The problem of computing a
minimum cycle basis in an undirected graph has been well studied. In this problem a {0, 1} edge
incidence vector is associated with each cycle and the vector space over Z2 generated by these vectors
is the cycle space of the graph. The fastest known algorithm for computing a minimum cycle basis
in an undirected graph runs in O(m2n+mn2 logn) time and our randomized algorithm for directed
graphs matches this running time.
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1. Introduction. Let G = (V,E) be a directed graph with m edges and n
vertices. A cycle in G is actually a cycle in the underlying undirected graph, i.e.,
edges are traversable in both directions. Associated with each cycle is a {−1, 0, 1}
edge incidence vector: edges traversed by the cycle in the right direction get 1, edges
traversed in the opposite direction get −1, and edges not in the cycle at all get 0.1

The vector space over Q generated by these vectors is the cycle space of G. A set
of cycles is called a cycle basis if it forms a basis for this vector space. When G is
connected, the cycle space has dimension d = m− n + 1.

We assume that there is a weight function w : E → R≥0, i.e., the edges of G have
nonnegative weights assigned to them. The weight of a cycle basis is the sum of the
weights of its cycles. A minimum cycle basis of G is a cycle basis of minimum weight.
We consider the problem of computing a minimum cycle basis in a given digraph.
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A related problem pertains to undirected graphs, where we associate a {0, 1} edge
incidence vector with each cycle; edges in the cycle get 1 and others get 0. Unlike
directed graphs where the cycle space is defined over Q, cycle spaces in undirected
graphs are defined as vector spaces over Z2. The minimum cycle basis problem in an
undirected graph G asks for the cycle basis of minimum weight in G.

The different possible settings for the minimum cycle basis problem are (i) the
minimum cycle basis problem in undirected graphs, (ii) the minimum cycle basis
problem in directed graphs (where the directions on the cycles are ignored), and
(iii) the minimum directed cycle basis problem in directed graphs, where the cycle
basis has to consist of cycles that traverse edges only along the direction of the edge.

We first compare problems (i) and (ii) and then discuss problem (iii). Problems (i)
and (ii) are essentially different, since the first problem deals with computing a min-
imum weight spanning set of cycles that is linearly independent over Z2 while the
second problem needs to compute a minimum weight spanning set of cycles that is
linearly independent over Q. Transforming cycles in a cycle basis of a directed graph
by replacing both −1 and 1 by 1 does not necessarily yield a basis for the underlying
undirected graph, since the given cycle basis could be linearly independent over Q but
linearly dependent over Z2. In addition, lifting a minimum cycle basis of the underly-
ing undirected graph by putting back directions does not necessarily yield a minimum
cycle basis for the directed graph. Examples of both phenomena were presented in
[22], which we include in section 2. Thus, one cannot find a minimum cycle basis for
a directed graph by simply working with the underlying undirected graph.

A directed cycle basis is a spanning set of cycles where the incidence vector of
each cycle in this basis is a vector in {0, 1}m, that is, each edge in a cycle here is
traversed in the right direction. Note that a directed graph need not admit a directed
cycle basis. Berge [2] studied the question of when a directed graph G admits such
a cycle basis. He showed that if G is strongly connected, then G admits a directed
cycle basis. Conversely, he showed that if G admits a directed cycle basis, then
each maximal weakly connected induced subgraph of G with no cut vertex has to be
strongly connected or a single arc.

Efficient algorithms for computing minimum cycle bases in the above settings
have several applications. The minimum cycle basis problem is a special case of the
null space problem. The null space problem is defined as follows: given a field F and
an n × m matrix A with n ≤ m, rank r, and entries in F, find a matrix with the
fewest nonzeros, whose columns span the null space of A. The null space problem
was studied by Coleman and Pothen [6, 7], and this problem is NP-hard in general.
The minimum cycle basis problem in undirected graphs with unit weights on the
edges arises when the underlying field is Z2 and A is the {0, 1} vertex-edge incidence
matrix of an undirected graph G(V,E). The null vectors of this A are the vectors

(xe)e∈E ∈ Z
|E|
2 such that for each v ∈ V we have

∑
e∈δ(v) xe = 0 (mod2), where δ(v)

is the set of edges incident on v. Note that the set of such vectors (xe)e∈E is the cycle
space of G, and a solution to the null space problem is a minimum cycle basis of G.

Similarly, the minimum cycle basis problem in directed graphs with unit weights
on the edges is an instance of the null space problem when the underlying field is Q

and A is the {−1, 0, 1} vertex-edge incidence matrix of a directed graph G(V,E). The
null vectors of such an A are the vectors (xe)e∈E ∈ Q|E| such that for each v ∈ V
we have

∑
e∈δ+(v) xe −

∑
e∈δ−(v) xe = 0, where δ+(v) and δ−(v) are the set of edges

leaving v and entering v, respectively. It is easy to see that the set of such vectors
(xe)e∈E is the cycle space of G. The minimum cycle basis of G is a solution to this
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null space problem. Indeed, assume that B is a minimum solution to the null space
problem. We may assume that the entries of B are integral, as multiplication by a
suitable constant makes all entries integral and does not change the number of nonzero
entries. So assume that B contains a column C whose entries are not in {0,±1}. Since
C belongs to the null space of the vertex-edge incidence matrix A, C decomposes into
a set of simple cycles C1 to Ck. Each Ci uses a subset (not necessarily proper) of
the edges of C and B \ C ∪ Ci is a basis for some i. We conclude that there exists a
solution with 0,±1 entries to this null space problem, which implies that a minimum
cycle basis of the directed graph G is a solution to this null space problem.

Some of the applications of minimum cycle bases arise from the above character-
ization of minimum cycle bases as the solutions of the null space problem in graphs.
The cycle analysis of electrical networks [9] corresponding to Kirchoff’s law is such
an example. Applications of minimum cycle bases have also been shown in structural
engineering [5], chemistry and biochemistry [11, 19], and surface reconstruction from
point clouds [23]. The minimum directed cycle basis has applications in metabolic
flux analysis [12]. A cycle basis of minimum weight in a directed graph whose d×m
cycle-edge incidence matrix satisfies the constraint that all its regular d × d subma-
trices have determinant ±1 has been found to be very useful in cyclic timetabling
[20, 21]. Books by Deo [10] and Bollobás [4] have in-depth coverage of cycle bases.

Horton [15] designed the first polynomial time algorithm to compute a minimum
cycle basis in an undirected graph and there are now several polynomial time al-
gorithms for this problem [3, 9, 13, 18], the fastest running in O(m2n + mn2 log n)
time [18]. Gleiss, Leydold, and Stadler [12] used Berge’s characterization of directed
cycle bases and showed that a generalization of Horton’s minimum cycle basis al-
gorithm in undirected graphs computes a minimum directed cycle basis in strongly
connected directed graphs. The first polynomial time algorithm for computing a min-
imum cycle basis in a directed graph had a running time of Õ(m4n) [17]. Liebchen
and Rizzi [22] gave an Õ(mω+1n) algorithm for this problem, where ω < 2.376 [8] is
the exponent of matrix multiplication; this was the fastest deterministic algorithm so
far for this problem in directed graphs.

In this paper we present an O(m3n + m2n2 log n) deterministic algorithm and
an O(m2n + mn2 log n) Monte Carlo algorithm to compute a minimum cycle basis
in a directed graph G with m edges, n vertices, and nonnegative edge weights. The
running time of our deterministic algorithm is m times the running time of the fastest
algorithm for computing minimum cycle bases in undirected graphs, we leave it as a
challenge to close the gap. The increased complexity seems to stem from the larger
base field. Arithmetic in Z2 suffices for undirected graphs. For directed graphs, the
base field is Q, which seems to necessitate the handling of large numbers. Also, the
computation of a shortest cycle that has a nonzero dot product with a given vector
seems more difficult in directed graphs than in undirected graphs.

The framework used in our algorithms was introduced by de Pina [9] and was also
used in [3, 18, 17]: we compute cycles Ci and supporting vectors Ni so that each Ci

is a shortest cycle not orthogonal to its corresponding Ni, and each Ni is orthogonal
to all previous Cj , j < i. This collection of cycles Ci is known to be a minimum cycle
basis. Our algorithms for computing the Ci’s and Ni’s rest on two ideas.

First, we show how to compute the vectors Ni efficiently using fast matrix mul-
tiplication and inversion. Our basic algorithm updates all vectors Nj with j > i in

iteration i, which results in an Õ(m4) algorithm. The improvement rests on an idea
already used in [18] to delay the update of vectors with higher index and to perform
these updates in bulk using matrix multiplication and inversion. However, this creates
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a problem since the numbers involved in the arithmetic get very large. We show two
approaches to solving this problem, leading to an O(m2n + mn2 log n) randomized
algorithm and an O(m3n + m2n2 log n) deterministic algorithm. In the randomized
algorithm we work over a finite field Zp for a small prime p, which ensures that the
numbers involved here do not get large. We show that we compute a minimum cy-
cle basis with a probability of at least 3/4 when p is a prime chosen uniformly at
random from a set of d2 small primes. In the deterministic algorithm, we could run
into intermediate numbers whose bit size is Θ̃(m2) when we use fast matrix inversion
algorithms. This makes the running time of our algorithm Θ̃(mω+2), which is worse
than the original iterative algorithm. We circumvent the problem by working over
a suitable ring ZR. The important point is that there is no fixed R over which we
work during the entire algorithm: whenever we perform the matrix multiplication and
inversion, we determine a suitable R so that the inverse of the matrix that we seek to
invert exists in ZR. This leads us to the vectors Ni mod R, and the number R will
be large enough so that we can easily recover the original vectors Ni from Ni mod R.
The total time needed now is Õ(mω+1).

The second key step in our algorithm is a subroutine to compute a shortest cycle
whose dot product with a given vector Ni is nonzero modulo a small number p. We
present an O(mn+n2 log n) algorithm to compute such a cycle Cp. This algorithm is
obtained by computing two types of paths between each adjacent pair of vertices. The
first path is a shortest path between these two vertices and the second is a shortest
path whose residue class is different from the residue class of the first path. Thus this
yields an O(m2n + mn2 log n) algorithm over Zp for computing the d cycles. For the
deterministic algorithm, the computation of each cycle can be reduced via the Chinese
remainder theorem to computing a shortest cycle Cp whose inner product with Ni

is nonzero modulo p for some p ∈ {p1, . . . , pd}, which is a collection of small primes.
This procedure is repeated for each p ∈ {p1, . . . , pd} yielding O(m2n+mn2 log n) time
for each Ci and thus O(m3n + m2n2 log n) time overall for all of the d cycles.

Organization of this paper. In section 2 we discuss some preliminaries and describe
the examples from [22] that were mentioned in section 1. Our framework is given in
section 3, and we present a simple deterministic algorithm from [17] that follows
from this framework. Section 4 lays the approach for a faster scheme and shows the
problem of large numbers that such an approach runs into. Section 5 describes the
deterministic algorithm that overcomes this problem, and section 6 gives a randomized
algorithm. Section 7 describes the subroutine for computing the required cycles.

2. Preliminaries. We are given a digraph G = (V,E), where |V | = n and |E| =
m. Without loss of generality, the underlying undirected graph of G is connected.
Then d = m − n + 1 is the dimension2 of the cycle space of G. So a minimum cycle
basis of G consists of d cycles C1, . . . , Cd. We describe cycles by their incidence vectors
in {−1, 0,+1}m.

A cycle basis of a directed graph need not project onto an undirected cycle

2Fix any spanning tree of G. For a nontree edge e, the fundamental cycle Fe induced by e consists
of e plus the tree path connecting its endpoints. This set of cycles is clearly independent as every
nontree edge is contained in a single cycle. We need to show that it spans all cycles. Consider any
cycle C = (xe)e∈E and define the sum S =

∑
e is a nontree edge xeFe, in which every fundamental

cycle is multiplied with the multiplicity of its defining edge in C. The vector S is in the cycle space
and so is Z = S − C. The entries of Z corresponding to nontree edges are zero (by the definition
of S) and Z satisfies the flow conservation constraints. Hence the entries of Z corresponding to tree
edges must also be zero. Thus Z = 0 and the fundamental cycles form a basis. The number of
fundamental cycles is exactly m− n + 1.
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basis. Consider the following three 4-cycles in the directed graph in Figure 2.1:
C1 = (e1, e2, e3, e4), C2 = (e1, e6, e3, e5), and C3 = (e2, e5, e4, e6) given by the vectors
(1, 1, 1, 1, 0, 0), (1, 0,−1, 0,−1,−1), and (0, 1, 0,−1,−1, 1). It is easy to see that these
vectors are linearly independent over Q. Hence they form a cycle basis for the directed
K4. But in the underlying undirected graph, each of these cycles is equal to the sum
modulo 2 of the other two, so C1, C2, C3 do not form a cycle basis for the undirected
K4.

1 2

34

ee
e

e1

24

1 2

34

56
e

e
3

Fig. 2.1. Directed K4 and the underlying undirected graph.

Further, there are directed weighted graphs in which the minimum cycle basis
has lower weight than any cycle basis of the underlying undirected graph; such an
example was given in [22]. Consider the generalized Petersen graph P7,2 in Figure 2.2.

a

b

c

de

f

g 0

1

2

34

5

6

Fig. 2.2. The generalized Petersen graph P7,2.

Call an edge (u, v) an inner edge if {u, v} ⊂ {0, 1, . . . , 6}. Similarly call an edge
(u, v) an outer edge if {u, v} ⊂ {a, . . . , g}. The seven edges that remain are called
spokes. Assign weight two to the seven inner edges and weight three to the outer
edges and spokes. The shortest cycle in this graph has a weight of 14 and there are
precisely eight cycles having a weight of 14, namely the cycle CI consisting of only
inner edges, and the seven cycles using one inner edge, two spokes, and two outer
edges. Use Ci, 0 ≤ i ≤ 6, to denote the cycle using the inner edge connecting i and
i + 2 mod 7. Every other cycle has a length of at least 15.

Every edge of P7,2 belongs to precisely two of the eight cycles with a weight of 14.
Therefore in the undirected case, these 8 = m−n+1 cycles are not independent over
Z2. Thus in the undirected case, every cycle basis has a weight of at least 113. In the
directed case, these 8 cycles under any orientation of edges are linearly independent.3

So there is a directed cycle basis of weight 112.

3Direct the inner edges clockwise, the spokes outward, and the outer edges counterclockwise.
Then all eight cycles use their inner and outer edges in the forward direction. Assume αICI +∑

0≤i≤6 αiCi = 0. The edge (i, i + 2 mod 7) is used only by CI and Ci, and hence we must have
αi = −αI for all i. But then the outer edges do not cancel out.
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We will assume for the rest of this paper that the edges in E = {e1, . . . , em}
are ordered so that edges ed+1 to em form the edges of a spanning tree T of the
underlying undirected graph. This means that the first d coordinates, of each of
C1, . . . , Cd, correspond to edges outside the tree T , and the last n− 1 coordinates are
the edges of T . This will be important in our proofs in section 3. We can also assume
that there are no multiple edges in G. It is easy to see that whenever there are two
edges from u to v, the heavier edge (call it a) can be deleted from E, and the least
weight cycle (call it C(a)) that contains the edge a can be added to the minimum
cycle basis computed on (V,E \ {a}). The cycle C(a) consists of the edge a and the
shortest path between u and v in the underlying undirected graph. All such cycles can
be computed by an all-pairs-shortest-paths computation in the underlying undirected
graph of G, which takes Õ(mn) time. So we will assume from now on that m ≤ n2.

3. Framework and a simple algorithm. We begin with a structural char-
acterization of a minimum cycle basis. This characterization uses auxiliary rational
vectors N1, . . . , Nd which serve as a scaffold for proving properties of C1, . . . , Cd, as
described below. We use 〈v1, v2〉 to denote the standard inner product or dot product
of the vectors v1 and v2.

Theorem 3.1. Cycles C1, . . . , Cd form a minimum cycle basis if there are vectors
N1, . . . , Nd in Qm such that for all i, 1 ≤ i ≤ d:

1. Prefix orthogonality: 〈Ni, Cj〉 = 0 for all j, 1 ≤ j < i.
2. Nonorthogonality: 〈Ni, Ci〉 	= 0.
3. Shortness: Ci is a shortest cycle with 〈Ni, Ci〉 	= 0.

Proof. First, we show that C1, . . . , Cd is a cycle basis of G by showing that these
are linearly independent over Q (recall that any set of d linearly independent cycles
is a cycle basis). Suppose it is not. Then a rational linear combination of a subset of
these cycles yields 0. Let the cycle with the largest index in this subset be Ci. By
properties 1 and 2 of the theorem, taking the dot product of this linear combination
with Ni yields a nonzero value on one side of this linear combination and a 0 on the
other side, a contradiction.

Second, we show that C1, . . . , Cd is a minimum cycle basis of G. Suppose it is
not. Then consider the smallest i ≥ 1 such that C1, . . . , Ci are not in any minimum
cycle basis. Then C1, . . . , Ci−1 belong to some minimum cycle basis; call this basis
K (in the event that i = 1, let K be any minimum cycle basis). We will exhibit a
cycle K ∈ K such that (i) 〈Ni,K〉 	= 0 and (ii) K can be written as a rational linear
combination of Ci along with cycles in K/{K}. Demonstrating such a cycle K ∈ K
is easy: since K is a basis not containing Ci, the cycle Ci must be a rational linear
combination of cycles in K. At least one of these cycles K ∈ K satisfies 〈Ni,K〉 	= 0,
because 〈Ni, Ci〉 	= 0 by property 2 in the theorem. Therefore (i) holds. Further, (ii)
follows by rewriting the above linear combination to switch the sides of Ci and K.

Property 1 of the theorem and condition (i) ensure that the cycle K is not one of
C1, . . . , Ci−1. Condition (ii) implies that K/{K} ∪ {Ci} is a cycle basis. Property 3
of the theorem and condition (i) imply that Ci has weight at most that of K and
therefore K/{K} ∪ {Ci} is also a minimum cycle basis. C1, . . . , Ci belong to this
minimum cycle basis, a contradiction.

We present a simple deterministic algorithm from [17] that computes Ni’s and
Ci’s satisfying the criteria in Theorem 3.1.

The algorithm deterministic-MCB.
1. Initialize the vectors N1, . . . , Nd of Qm to the first d vectors e1, . . . , ed of the

standard basis of Qm.
(The vector ei has 1 in the ith position and 0’s elsewhere.)
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2. For i = 1 to d do
• compute Ci to be a shortest cycle such that 〈Ci, Ni〉 	= 0,
• for j = i + 1 to d do

update Nj as: Nj = Nj −Ni
〈Ci, Nj〉
〈Ci, Ni〉

,

normalize Nj as: Nj = Nj
〈Ci, Ni〉

〈Ci−1, Ni−1〉
.

(We take 〈C0, N0〉 = 1.)
The above algorithm needs the vector Ni in the ith iteration to compute the cycle

Ci. Instead of computing Ni from scratch in the ith iteration, it obtains Ni by update
and normalization steps through iterations 1 to i− 1. We describe how to compute a
shortest cycle Ci such that 〈Ci, Ni〉 	= 0 in section 7. Let us now show that the Ni’s
obey the prefix orthogonality property. Lemma 3.2, proved in [17], shows this and
more.

Lemma 3.2. For any i, at the end of iteration i − 1, the vectors Ni, . . . , Nd

are orthogonal to C1, . . . , Ci−1, and, moreover, for any j with i ≤ j ≤ d, Nj =
〈Ni−1, Ci−1〉(xj,1, . . . , xj,i−1, 0, . . . , 0, 1, 0, . . . , 0), where 1 occurs in the jth coordinate
and the vector x = (xj,1, . . . , xj,i−1) is the unique solution to the set of equations:

(3.1)

⎛
⎜⎝

C̃T
1
...

C̃T
i−1

⎞
⎟⎠x =

⎛
⎜⎝

−c1j
...

−c(i−1)j

⎞
⎟⎠ .

Here C̃k, 1 ≤ k < i, is the restriction of Ck to its first i− 1 coordinates and ckj is the
jth coordinate of Ck.

Proof. The claim is certainly true after the 0th iteration, that is, at the beginning
of the algorithm. So consider the ith iteration and assume that the claim is true at
the end of iteration i− 1. In iteration i, we determine Ci with 〈Ci, Ni〉 	= 0 and then
update the Nj ’s for all j with i + 1 ≤ j ≤ n. Consider any j with i + 1 ≤ j ≤ n and
use N ′

j to denote the updated value of Nj .
Nj is updated by subtracting a scalar multiple of Ni from it. Since Nj and Ni

are orthogonal to Cl for l < i by induction hypothesis, N ′
j is orthogonal to Cl. The

update step also guarantees orthogonality to Ci. Indeed,

〈Ci, N
′
j〉 = 〈Ci, Nj〉 − 〈Ci, Ni〉

〈Ci, Nj〉
〈Ci, Ni〉

= 0.

By induction hypothesis, Nj is of the form (tj,1, . . . , tj,i−1, 0, . . . , tj,j , 0, . . .), where
tj,j = 〈Ci−1, Ni−1〉 and Ni has nonzero entries only in its first i coordinates. So N ′

j

has the form (t′j,1, . . . , t
′
j,i, 0, . . . , tj,j , 0, . . .). After normalization, the jth coordinate

of N ′
j is

tj,j
〈Ni, Ci〉

〈Ni−1, Ci−1〉
= 〈Ni−1, Ci−1〉

〈Ni, Ci〉
〈Ni−1, Ci−1〉

= 〈Ni, Ci〉.

Hence N ′
j has the form

N ′
j = 〈Ni, Ci〉(uj,1, . . . , uj,i, 0, . . . , 1, 0, . . . , 0).
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Since N ′
j is orthogonal to C1, . . . , Ci and 〈Ni, Ci〉 	= 0, (uj,1, . . . , uj,i) is a solution to

the following set of equations:

(3.2)

⎛
⎜⎝

C̃T
1
...

C̃T
i

⎞
⎟⎠x =

⎛
⎜⎝

−c1j
...

−cij

⎞
⎟⎠ ,

where C̃k, for k = 1, . . . , i, is the restriction of the vector Ck to its first i coordinates
and ckj is the jth coordinate of the vector Ck. We show that the matrix of C̃k’s is
nonsingular, hence (uj,1, . . . , uj,i) is the unique solution of (3.2). The proof of the
nonsingularity of this matrix mimics the argument in Theorem 3.1. Consider any
linear combination of the rows adding to the zero vector:

(3.3)

i∑
k=1

αkC̃k = 0.

Assume that one of the αk’s is nonzero and consider the largest � such that α� 	= 0. We
take the inner product of both sides of (3.3) with Ñ�, where Ñ� is the restriction of the
vector N� to its first i coordinates. Note that Ñ� has all of the nonzero entries of N�

since � ≤ i and only the first � entries of N� may be nonzero. So 〈C̃k, Ñ�〉 = 〈Ck, N�〉 for

all k ≤ �. Hence the left-hand side is
∑�

k=1 αk〈Ck, N�〉 = α�〈C�, N�〉 since 〈Ck, N�〉 = 0
for each k with k < �. Since α� and 〈C�, N�〉 are nonzero while the right-hand side is
zero, we get a contradiction. Thus all of the αk’s in (3.3) are zero and so the matrix
with C̃k’s as its rows is nonsingular and the proof is complete.

Remark. Note that the ith coordinate of Ni is nonzero. This readily implies
that there is at least one cycle that has nonzero dot product with Ni, namely the
fundamental cycle Fei formed by the edge ei and the path in the spanning tree T
connecting its endpoints. The dot product 〈Fei , Ni〉 is equal to the ith coordinate of
Ni, which is nonzero.

We next give an alternative characterization of these Nj ’s. This characterization
helps us in bounding the running time of the algorithm deterministic-MCB. Let M
denote the (i−1)× (i−1) matrix of C̃k’s in (3.1), and let bj denote the column vector
of −ckj ’s on the right. We claim that solving Mx = det(M) · bj leads to the same
vectors Nj for all j with i ≤ j ≤ d. We first show the following claim.

Lemma 3.3. 〈Ni−1, Ci−1〉 = det(M).
Proof. Let X be the (i − 1) × (i − 1) matrix with its kth column equal to Nk

truncated to its first i− 1 coordinates. We know from Lemma 3.2 that X is an upper
triangular matrix with X[k, k] = 〈Nk−1, Ck−1〉. So det(X) =

∏i−1
k=1〈Nk−1, Ck−1〉. The

product MX has 〈Cj , Nk〉 as its (j, k)th element, so it is a lower triangular matrix
by prefix orthogonality. Hence det(MX) is the product of its diagonal values, i.e,

det(MX) =
∏i−1

k=1〈Nk, Ck〉. Since det(M) · det(X) = det(MX), 〈N0, C0〉 = 1, and
〈Nk, Ck〉 	= 0 for all k, the lemma follows.

We know by Lemma 3.2 that (xj,1, . . . , xj,i−1) is the unique solution to Mx = bj .
In the ith iteration of the algorithm, we could have directly computed the vector
Ni = 〈Ni−1, Ci−1〉(xi,1, . . . , xi,i−1, 1, 0, . . .), which is det(M)(xi,1, . . . , xi,i−1, 1, 0, . . .)
(by Lemma 3.3), by solving the set of equations Mx = det(M)bi and appending
(det(M), 0, . . . , 0) to x. However, such an algorithm would be slower—it would take
time Θ̃(mω+2), where ω < 2.376 is the exponent of matrix multiplication. The updates
and normalizations in the algorithm deterministic-MCB achieve the same result in a
more efficient manner.
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Let us now bound the running time of the ith iteration of deterministic-MCB. We
will show in section 7 that a shortest cycle Ci such that 〈Ci, Ni〉 	= 0 can be computed
in O(m2n+mn2 log n) time. Let us look at bounding the time taken for the update and
normalization steps. We take O(m) arithmetic steps for updating and scaling each Nj

since each Nj has m coordinates. Thus the total number of arithmetic operations in
the ith iteration is O((d− i)m) = O(md) over all j, i + 1 ≤ j ≤ d. We next estimate
the cost of the arithmetic. The coordinates of Nj are determined by the system
Mx = det(M)bj and hence are given by Cramer’s rule. Fact 1 below shows that each

entry in Nj is bounded by dd/2. Thus we pay Õ(d) time per arithmetic operation.

Thus the running time of the ith iteration is Õ(m3), and hence the running time of
deterministic-MCB is Õ(m4).

Fact 1. Since M is a ±1, 0 matrix of size (i−1)×(i−1) and bj is a ±1, 0 vector,
all determinants used in Cramer’s rule in solving Mx = det(M)bj are bounded by ii/2

using Hadamard’s inequality. Therefore, the absolute value of each entry in Nj in the
ith iteration, where j ≥ i, is bounded by ii/2.

4. A faster scheme. The update and normalization steps form the bottleneck in
the algorithm deterministic-MCB. We will reduce their cost from Õ(m4) to Õ(mω+1).

• First, we delay updates until after several new cycles have been computed.
For instance, we update N�d/2�+1, . . . , Nd not after each new cycle but in bulk
after all of C1, C2, . . . , C�d/2� are computed.

• Second, we use a fast matrix multiplication method to do the updates for all
of N�d/2�+1, . . . , Nd together, and not individually as before.

The scheme. The faster deterministic algorithm starts with the same configura-
tion for the Ni’s as before, i.e., Ni is initialized to the ith unit vector, 1 ≤ i ≤ d.
It then executes three steps. First, it computes C1, . . . , C�d/2� and N1, . . . , N�d/2�
recursively, leaving N�d/2�+1, . . . , Nd at their initial values. Second, it runs a bulk
update step in which N�d/2�+1, . . . , Nd are modified so that they become orthogonal
to C1, . . . , C�d/2�. And third, C�d/2�+1, . . . , Cd are computed recursively modifying
N�d/2�+1, . . . , Nd in the process.

A crucial point to note about the second recursive call is that it modifies N�d/2�+1,
. . . , Nd while ignoring C1, . . . , C�d/2� and N1, . . . , N�d/2�; how then does it retain
the orthogonality of N�d/2�+1, . . . , Nd with C1, . . . , C�d/2� that we achieved in the
bulk update step? The trick lies in the fact that whenever we update any Nj in

{N�d/2�+1, . . . , Nd} in the second recursive call, we do it as Nj =
∑d

k=�d/2�+1 αkNk,
where αk ∈ Q. That is, the updated Nj is obtained as a rational linear combination
of N�d/2�+1, . . . , Nd. Since the bulk update step prior to the second recursive call
ensures that N�d/2�+1, . . . , Nd are all orthogonal to C1, . . . , C�d/2� at the beginning of
this step, the updated Nj ’s remain orthogonal to C1, . . . , C�d/2�. This property allows
the second recursive call to work strictly in the bottom half of the data without looking
at the top half.

The base case for the recursion is a subproblem of size 1 (let this subproblem
involve C�, N�) in which case the algorithm simply retains N� as it is and computes
C� using the algorithm in section 7. With regards to time complexity, the bulk update
step will be shown to take O(mdω−1) arithmetic operations.

We describe the bulk update procedure in the recursive call that computes the
cycles C�, . . . , Ch for some h and � with h > �. This recursive call works with the
vectors N�, . . . , Nh: all of these vectors are already orthogonal to C1, . . . , C�−1. The
recursive call runs as follows:
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1. Compute the cycles C�, . . . , Cmid, where mid = �(� + h)/2� − 1, using the
vectors N�, . . . , Nmid recursively.

2. Modify Nmid+1, . . . , Nh, which are untouched by the first step, to make them
orthogonal to C�, . . . , Cmid.

3. Compute Cmid+1, . . . , Ch using these Nmid+1, . . . , Nh recursively.
Step 2 is the bulk update step. We wish to update each Nj , mid + 1 ≤ j ≤ h, to a
rational linear combination of N�, . . . , Nmid and Nj as follows:4

Nj =
〈Nmid, Cmid〉
〈N�−1, C�−1〉

Nj +

mid∑
t=�

αtjNt,

where the αtj ’s are to be determined in a way which ensures that Nj becomes orthog-
onal to C�, . . . , Cmid. That is, for all i, j, where � ≤ i ≤ mid and mid+ 1 ≤ j ≤ h, we
want

(4.1)
〈Nmid, Cmid〉
〈N�−1, C�−1〉

〈Ci, Nj〉 +

mid∑
t=�

αtj〈Ci, Nt〉 = 0.

Rewriting the above relations in matrix form, we get

(4.2) A · Nd ·D = −A · Nu ·X,

where (let k = mid− � + 1)
• A is a k ∗m matrix, the ith row of which is C�+i−1,
• Nd is an m ∗ (h− k) matrix, the jth column of which is Nmid+j ,
• D is an (h− k) ∗ (h− k) scalar matrix with 〈Nmid, Cmid〉/〈N�−1, C�−1〉 in the

diagonal,
• Nu is an m ∗ k matrix, the tth column of which is N�+t−1, and
• X is the k ∗ (h − k) matrix of variables αtj , with t indexing the rows and j

indexing the columns.
To compute the αtj ’s, we solve for X = −(A ·Nu)−1 ·A ·Nd ·D. Using fast matrix

multiplication, we can compute A · Nu and A · Nd in O(mkω−1) time by splitting the
matrices into d/k square blocks and using fast matrix multiplication to multiply the
blocks. Multiplying each element of A ·Nd with the scalar 〈Nmid, Cmid〉/〈N�−1, C�−1〉
gives us A ·Nd ·D. Thus we compute the matrix A ·Nd ·D with O(mkω−1) arithmetic
operations. Next, we find the inverse of A ·Nu with O(kω) arithmetic operations (this
inverse exists because A · Nu is a lower triangular matrix whose diagonal entries are
〈Ci, Ni〉 	= 0). Then we multiply (A · Nu)−1 with A · Nd ·D using O(kω) arithmetic
operations. Thus we obtain X. Finally, we obtain Nmid+1, . . . , Nd from X using
the product Nu ·X, which we can compute in O(mkω−1) arithmetic operations, and
adding Nd ·D to Nu ·X. The total number of arithmetic operations required for the
bulk update step is thus O(mkω−1).

The total number of arithmetic operations required for the bulk update step is
O(mkω−1); however, each arithmetic operation is quite expensive since we deal with
large numbers here. In this algorithm, the entries in (A · Nu)−1 could be very large.
The elements in A · Nu have values up to dΘ(d), which would result in the entries
in (A · Nu)−1 being as large as dΘ(d2). So each arithmetic operation then costs us

4Note that the coefficient 〈Nmid, Cmid〉/〈N�−1, C�−1〉 for Nj is chosen so that the updated vector
Nj here is exactly the same vector Nj that we would have obtained at this stage using the algorithm
deterministic-MCB (section 3).
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up to Θ̃(d2) time, and the overall time for the outermost bulk update step would be
Θ̃(mω+2) time, which makes this approach slower than the algorithm deterministic-
MCB.

5. A fast deterministic algorithm. In the approach described in the previous
section, we saw that entries in the matrix (A ·Nu)−1 (refer to (4.2)) could be as large

as dΘ(d2). Thus we were not able to use the faster scheme for updating the vectors
Nj , since each arithmetic operation could cost us up to Θ̃(d2) time. But observe that
the αtj ’s are just intermediate numbers in our computation. That is, they are the
coefficients in

mid∑
t=�

αtjNt +
〈Nmid, Cmid〉
〈N�−1, C�−1〉

Nj .

Our final aim is to determine the updated coordinates of Nj which are at most dd/2

(see Fact 1), since we know Nj = (y1, . . . , ymid, 0, . . . , 0, 〈Nmid, Cmid〉, 0, . . . , 0), where
y = (y1, . . . , ymid) is the solution to the linear system: My = det(M)bj ; M is the
mid ×mid matrix of C1, . . . , Cmid truncated to the their first mid coordinates, and
bj is the column vector of negated j coordinates of C1, . . . , Cmid.

Since the final coordinates are bounded by dd/2 while the intermediate values
could be much larger, this suggests the use of modular arithmetic here. We could
work over the finite fields Zp1

,Zp2 , . . . ,Zps where p1, . . . , ps are small primes (say,
in the range d to d2) and try to retrieve Nj from Nj mod p1, . . . , Nj mod ps, which
is possible (by the Chinese remainder theorem) if s ≈ d/2. Arithmetic in Zp takes
O(1) time and we thus spend O(s ·mkω−1) time for the update step now. However,
if it is the case that some p is a divisor of some 〈Ni, Ci〉 where � ≤ i ≤ mid, then
we cannot invert A · Nu in the field Zp. Since each number 〈Ni, Ci〉 could be as
large as dd/2, it could be a multiple of up to Θ(d) primes which are in the range
d, . . . , d2. So in order to be able to determine d primes which are relatively prime
to each of 〈N�, C�〉, . . . , 〈Nmid, Cmid〉, we might in the worst case have to test about
(mid− �+1) ·d = kd primes. Testing kd primes for divisibility with respect to k d-bit
numbers costs us k2d2 time. We cannot afford so much time per update step.

Another idea is to work over just one finite field Zq where q is a large prime. If
q > dd/2, then q can never be a divisor of any 〈Ni, Ci〉, so we can carry out all of our
arithmetic in Zq since the matrix A · Nu will be nonsingular in Zq. Arithmetic in Zq

costs us Θ̃(d) time if q ≈ dd. Then our update step takes Õ(m2kω−1) time, which will
result in a total time of Õ(mω+1) for all of the update steps, which is our goal. But
computing such a large prime q is a difficult problem.

The solution is to work over a suitable ring instead of over a field; recall that fast
matrix multiplication algorithms work over rings. Let us do the above computation
modulo a large integer R, say, R ≈ dd. Then intermediate numbers do not grow more
than R and we can retrieve Nj directly from Nj mod R, because R is much larger
than any coordinate of Nj .

What properties of R do we need? The integer R must be relatively prime to
the numbers: 〈N�, C�〉, 〈N�+1, C�+1〉, . . . , 〈Nmid, Cmid〉 so that the triangular matrix
A · Nu which has these elements along the diagonal is invertible in ZR. And R must
also be relatively prime to 〈N�−1, C�−1〉 so that 〈Nmid, Cmid〉/〈N�−1, C�−1〉 is defined
in ZR. Once we determine such an R, we will work in ZR. We stress the point that
such an R is a number used only in this particular bulk update step—in another bulk
update step of another recursive call, we need to compute another such large integer.
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It is easy to see that the number R determined below is a large number that
is relatively prime to 〈N�−1, C�−1〉, 〈N�, C�〉, 〈N�+1, C�+1〉, . . . , and 〈Nmid, Cmid〉 by
doing the following.

1. Right at the beginning of the algorithm, compute d2 primes p1, . . . , pd2 , where
each of these primes is at least d. Then form the d products: P1 = p1 · · · pd,
P2 = p1 · · · p2d, P3 = p1 · · · p3d, . . . , Pd = p1 · · · pd2 .

2. Then during our current update step, compute the product

L = 〈N�−1, C�−1〉〈N�, C�〉 · · · 〈Nmid, Cmid〉.

3. By doing a binary search on P1, . . . , Pd, determine the smallest s ≥ 0 such
that Ps+1 does not divide L.

4. Determine a p ∈ {psd+1, . . . , psd+d} that does not divide L. Let R = pd.
Cost of computing R. The value of π(r), the number of primes less than r, is

given by r/6 log r ≤ π(r) ≤ 8r/log r [1]. So all the primes p1, . . . , pd2 are Õ(d2), and
computing them takes Õ(d2) time using a sieving algorithm. The products P1, . . . , Pd

are computed just once in a preprocessing step. We will always perform arithmetic
on large integers using Schönhage–Strassen multiplication, so that it takes Õ(d) time
to multiply two d-bit numbers. Whenever we perform a sequence of multiplications,
we will use a tree so that d numbers (each of bit size Õ(d)) can be multiplied in Õ(d2)
time. So computing P1, . . . , Pd takes Õ(d3) preprocessing time.

In the update step, we compute L, which takes Õ(d2) time. The product Ps+1 =
psd+1 · · · psd+d is found in Õ(d2) time by binary search in the set {P1, . . . , Pd}. De-
termine a p in the set {psd+1, . . . , psd+d} that does not divide L by testing which of
the two products psd+1 · · · psd+�d/2� or psd+�d/2�+1 · · · psd+d does not divide L, and

recurse on the product that does not divide L. Thus R can be computed in Õ(d2)
time.

Computation in ZR. We need to invert the matrix A · Nu in the ring ZR. Recall
that this matrix is lower triangular. Computing the inverse of a lower triangular
matrix is easy. If

A · Nu =

(
W 0
Y Z

)
, then we have (A · Nu)−1 =

(
W−1 0

−Z−1YW−1 Z−1

)
.

Hence to invert A · Nu in ZR we need the multiplicative inverses of only its diagonal
elements: 〈C�, N�〉, . . . , 〈Cmid, Nmid〉 in ZR. Using Euclid’s greatest common divisor
(gcd) algorithm, each inverse can be computed in Õ(d2) time, since each of the num-
bers involved here and R have bit size Õ(d). The matrix A · Nu is inverted via fast
matrix multiplication, and once we compute (A · Nu)−1, the matrix X, that consists
of all the coordinates αtj that we need (see (4.1)), can be easily computed in ZR as
−(A·Nu)−1 ·A·Nd ·D by fast matrix multiplication. Then we determine all Nj mod R
for mid + 1 ≤ j ≤ h from Nu ·X + Nd ·D. It follows from the analysis presented in
section 4 that the time required for all of these operations is Õ(m2kω−1) since each
number is now bounded by dd.

Retrieving the actual Nj. Each entry of Nj can have absolute value at most dd/2

(from Fact 1). The number R is much larger than this, R > dd. So if any coordi-
nate, say, nl in Nj mod R, is larger than dd/2, then we can retrieve the original nl

as nl − R. Thus we can retrieve Nj from Nj mod R in O(d2) time. The time com-
plexity for the update step, which includes matrix operations, gcd computations, and
other arithmetic, is Õ(m2kω−1 + d2k) or Õ(m2kω−1). Thus our recurrence becomes
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(assuming Lemma 7.4 from section 7, which shows that the base case T (1) takes
O(m2n + mn2 log n) time)

T (k) =

{
2T (k/2) + Õ(m2kω−1) if k > 1,

m2n + mn2 log n if k = 1.

The recurrence solves to T (k) = O(k(m2n + mn2 log n) + kω−1m2 · poly(logm)),
and hence T (d) = O(m3n + m2n2 log n) + Õ(mω+1), which is O(m3n + m2n2 log n),
because m ≤ n2 implies Õ(mω+1) is always o(m3n). Thus we have shown the following
theorem.

Theorem 5.1. A minimum cycle basis in a weighted directed graph with m edges
and n vertices and nonnegative edge weights can be computed in O(m3n+m2n2 log n)
time.

6. Faster arithmetic via randomization. Suppose we could perform each
arithmetic operation in O(1) time; then our recurrence relation for T (k), k > 1 will
be given by:

T (k) = 2T (k/2) + O(mkω−1).

We would also like to show that T (1) is O(mn + n2 log n). Then this yields a run-
ning time of O(n2d log n + nmd + mω) or O(m2n + mn2 log n), since mω is o(m2n).
Such a running time matches the complexity of minimum cycle basis computation in
undirected graphs.

Now we will show that we can perform each arithmetic operation in O(1) time.
This will require working modulo a randomly chosen prime p. We will perform all
arithmetic over the finite field Zp and not over the rationals. The danger now is
that the results of working in this field could be different from those obtained by
working over rationals. Fortunately, the following theorem claims that the results
remain the same, provided the prime p chosen satisfies certain properties. In the
description below, let Ci, Ni denote the results obtained by the fast deterministic
algorithm working over the rationals, and let C ′

i, N
′
i be the counterparts obtained by

the fast deterministic algorithm working over Zp.
Theorem 6.1. If 〈Ci, Ni〉 	= 0 (mod p) for all i, 1 ≤ i ≤ d, then C ′

i = Ci and
N ′

i = Ni (mod p).
Proof. Recall that the fast deterministic algorithm has a recursive structure. We

use an inductive argument that mimics this recursion. At the very beginning, N ′
i = Ni

( mod p) for all i, 1 ≤ i ≤ d, as the Ni’s are {0, 1} vectors. Each recursive subproblem
(when working with rationals) then takes a contiguous subset N�, N�+1, . . . , Nh and
computes C�, C�+1, . . . , Ch using only N�, N�+1, . . . , Nh, modifying the latter in the
process. We claim that if this recursive subproblem began with N ′

�, N
′
�+1, . . . , N

′
h

instead of N�, N�+1, . . . , Nh, where

N ′
� = N� (mod p), N ′

�+1 = N�+1 (mod p), . . . , N ′
h = Nh (mod p),

and subsequently worked modulo p, then it would still produce the same cycles
C�, . . . , Ch and in addition, after modification, the relations N ′

� = N� (mod p), N ′
�+1

= N�+1 (mod p), . . . , N ′
h = Nh (mod p) will continue to hold. We will use induc-

tion on � − h + 1 to prove this claim. We will explicitly show the base case when
�−h+1 = 1. We will then assume that the claim is true for all recursive subproblems
with 1 ≤ �− h + 1 < t and then prove it for �− h + 1 = t.
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Consider a subproblem of size 1 (� − h + 1 = 1, i.e., � = h). When working
over rationals, N� does not change and C� is defined as the shortest cycle such that
〈C�, N�〉 	= 0. When working (mod p), N ′

� does not change and C ′
� is defined as the

shortest cycle such that 〈C ′
�, N

′
�〉 	= 0 (mod p). Assuming N ′

� = N� (mod p) at the
beginning of this subproblem, and given that p satisfies 〈C�, N�〉 	= 0 (mod p), it
follows that C ′

� = C�. This shows the base case.

Next, consider the three-step process used in the fast deterministic algorithm.
First, consider the first recursive step which computes C�, . . . , Cmid. By the in-
duction hypothesis, at the end of this step, we have C ′

� = C�, . . . , C
′
mid = Cmid

and N ′
� = N� (mod p), . . . , N ′

mid = Nmid (mod p). The vectors N ′
mid+1, . . . , N

′
h

are untouched by this step and by virtue of the initial assignment, stay identi-
cal to Nmid+1, . . . , Nh. Second, consider the bulk update step. This step mod-
ifies N ′

mid+1 . . . N
′
h as a function of N ′

�, . . . , N
′
mid and C ′

�, . . . , C
′
mid. Since N ′

� =
N� (mod p), . . . , N ′

mid = Nmid (mod p) and C ′
1 = C1, . . . , C

′
mid = Cmid, it follows

that N ′
mid+1 = Nmid+1 (mod p), . . . , N ′

h = Nh (mod p) after the bulk update step.
This sets up the necessary initial condition for the second recursive step which com-
putes C ′

mid+1, . . . , C
′
h from N ′

mid+1, . . . , N
′
h alone. Applying the induction hypothesis

again proves the theorem.

Selecting the number p. It remains to show how p is chosen. Consider a pool of
d2 primes, each of which is bigger than d2, and suppose we choose a prime at random
from this pool. Lemma 6.3 shows that it satisfies the conditions of Theorem 6.1 with
probability of at least 3/4. Let us first make the following definition.

Definition 6.2. Call a prime p good if 〈Ci, Ni〉 	= 0 (mod p) for each i ∈
{1, . . . , d}. Call a prime p bad if it is not good.

Lemma 6.3. Let P be a set of d2 primes, each of which is at least d2. Then at
least 3/4th of the set P is good.

Proof. We will use Lemma 3.3 here. Lemma 3.3 shows that for all 1 ≤ j ≤ d,
〈Cj , Nj〉 = det(M), where M is the j × j matrix of C̃k’s on the right-hand side
of (3.1). Hadamard’s inequality tells us that the absolute value of det(M) is at
most dd/2, since the entries in M are 0,±1. Hence for all 1 ≤ i ≤ d, we have
0 	= |〈Ci, Ni〉| ≤ dd/2. Since each prime in P is at least d2, at most d/4 elements in P
can be divisors of 〈Ci, Ni〉. So the number of primes in P that can divide at least one
of 〈C1, N1〉, 〈C2, N2〉, . . . , 〈Cd, Nd〉 is at most d2/4. Hence the fraction of bad primes
in P is at most d2/4d2 ≤ 1/4.

We now need to show how to compute the pool P of d2 primes, each bigger than
d2. As mentioned earlier, the value of π(r), the number of primes less than r, is given
by r/6 log r ≤ π(r) ≤ 8r/log r. So the elements in P can be bounded by 100d2 log d.
Using sieving, we can compute the set of primes in the first 100d2 log d numbers in
O(d2 log2 d) time. So the set P can be determined in O(d2 log2 d) = O(m2 log2 n) time.
Note that this term does not appear in the final complexity of O(m2n + mn2 log n)
because it is completely dominated by the m2n term.

Arithmetic modulo p. Under the assumption that arithmetic on O(logm) bits
takes unit time, it follows that addition, subtraction, and multiplication in Zp can
be implemented in unit time since p is O(d2 log d) = O(m2 logm). However, we
also need to implement division efficiently. Once p is chosen, we will compute the
multiplicative inverses of all elements in Z∗

p by the extended Euclid’s gcd algorithm
by solving ax = 1(modp) for each a ∈ Z∗

p. This takes time O(log p) for each element

and hence O(p log p) = O(d2 log2 d) for all of the elements. Thereafter, division in Zp

gets implemented as multiplication with the inverse of the divisor. The O(d2 log2 d)
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term does not appear in the final complexity of O(m2n + mn2 log n) because it is
completely dominated by the m2n term.

Lemma 7.3, proved in section 7, shows that T (1), the time taken to compute the
shortest Ci such that 〈Ci, Ni〉 	= 0(modp), is O(mn+mn2 log n). Hence Theorem 6.4
follows from the recurrence relation for T (·) (refer to the beginning of this section).

Theorem 6.4. A minimum cycle basis in a directed graph with n vertices and m
edges, with nonnegative weights on its edges, can be computed with a probability of at
least 3/4 in O(m2n + mn2 log n) time.

7. Computing nonorthogonal shortest cycles. Now we come to the second
key routine required by our algorithm—given a directed graph G with nonnegative
edge weights, compute a shortest cycle in G whose dot product with a given vector
Ni ∈ Zm is nonzero. We will first consider the problem of computing a shortest cycle
Cp such that 〈Cp, Ni〉 	= 0 (mod p) for a number p = O(d2 log d). Recall that Cp can
traverse edges of G in both forward and reverse directions; the vector representation
of Cp has a 1 for every forward edge in the cycle, a −1 for every reverse edge, and
a 0 for edges not present at all in the cycle. This vector representation is used for
computing dot products with Ni. The weight of Cp itself is simply the sum of the
weights of the edges in the cycle. We show how to compute Cp in O(mn + n2 log n)
time.

Definitions. To compute shortest paths and cycles, we will work with the undi-
rected version of G. Directions will be used only to compute the residue class of a
path or cycle, i.e., the dot product between the vector representation of this path or
cycle and Ni modulo p. Let puv denote a shortest path between vertices u and v and
let fuv denote its length and ruv its residue class. Let suv be the length of a shortest
path, if any, between u and v in a residue class distinct from ruv. Observe that the
value of suv is independent of the choice of puv.

We will show how to compute fuv and suv for all pairs of vertices u, v in O(mn+
n2 log n) time. As is standard, we will also compute paths realizing these lengths in
addition to computing the lengths themselves. The following claim tells us how these
paths can be used to compute a shortest nonorthogonal cycle—simply take each edge
uv and combine it with svu to get a cycle. The shortest of all these cycles having a
nonzero residue class is our required cycle.

Lemma 7.1. Let C = u0u1 . . . uku0 be a shortest cycle whose residue class is
nonzero modulo p and whose shortest edge is u0u1. Then the path u1u2 . . . uku0 has
a residue class different from the residue class of the edge u1u0, the length of the path
u1u2 . . . uku0 equals su1u0 , and the length of the edge u0u1 equals fu1u0 .

Proof. First, we show that the path u1u2 . . . uku0 and the edge u1u0 have different
residue classes. Let x denote the residue class of the path, and let y denote the residue
class of the edge u0u1. Since C is in a nonzero residue class, x + y 	≡ 0 (mod p), so
x 	≡ −y (mod p). Since the incidence vector corresponding to u1u0 is the negation of
the incidence vector corresponding to u0u1, the residue class of the edge u1u0 is −y.
Thus the claim follows.

Now, if the length of u1u0 is strictly greater than fu1u0 , then consider any shortest
path π between u1 and u0 (which, of course, has length fu1u0

). Combining π with
u1u0 yields a cycle and combining π with u1u2 . . . uku0 yields another cycle. These
cycles are in distinct residue classes and are shorter than C. This contradicts the
definition of C. Therefore, the edge u1u0 has length fu1u0 .

Since u1u2 . . . uku0 has a different residue class from the edge u1u0, the length of
u1u2 . . . uku0 cannot be smaller than su1u0 , by the very definition of su1u0 . Suppose,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FASTER ALGORITHMS FOR MINIMUM CYCLE BASIS 1445

for a contradiction, that the length u1u2 . . . uku0 is strictly larger than su1u0
. Then

combining the path between u1 and u0 which realizes the length su1u0
along with the

edge u1u0 yields a cycle which is shorter than C and which has a nonzero residue
class modulo p. This contradicts the definition of C. The lemma follows.

Computing fuv and suv. We first find any one shortest path (among possibly
many) between each pair of vertices u and v by Dijkstra’s algorithm; this gives us
puv, fuv, and ruv for each pair u, v. The time taken is O(mn+n2 log n). For each pair
u, v, we now need to find a shortest path between u, v with a residue class distinct
from ruv; the length of this path will be suv. Use quv to denote any such path. We
show how a modified Dijkstra search can compute these paths in O(mn + n2 log n)
time. The following lemma shows the key prefix property of the quv paths needed for
a Dijkstra-type algorithm.

Lemma 7.2. For any u and v, the path quv can be chosen from the set {puw ◦
wv, quw ◦ wv : wv ∈ E}. Here p ◦ e denotes the path p extended by the edge e.

Proof. Consider any path π between u and v that realizes the value suv, i.e., it
has length suv and residue class distinct from ruv. Let w be the penultimate vertex
on this path, and let π′ be the prefix path from u to w. Clearly, π cannot be shorter
than puw ◦wv. Hence, if the residue class of puw ◦wv is distinct from ruv, then we are
done. So assume that puw ◦ wv has residue class ruv. Then π′ must have a residue
class distinct from puw and hence quw exists. Also, the length of π′ must be at least
the length of quw, and the residue class of quw ◦ wv is distinct from the residue class
of puw ◦ wv and hence distinct from ruv. Thus quw ◦ wv realizes suv.

We now show how to compute the suv’s for any fixed u in time O(m + n log n)
with a Dijkstra-type algorithm. Repeating this for every source gives the result. The
algorithm differs from Dijkstra’s shortest path algorithm only in the initialization and
update steps, which we describe below. We use the notation keyuv to denote the key
used to organize the priority heap; keyuv will finally equal suv.

Initialization. We set keyuv to the minimal length of any path puw ◦ wv with
residue class distinct from ruv. If there is no such path, then we set it to ∞.

The update step. Suppose we have just removed w from the priority queue. We
consider the u-w path of length keyuw which was responsible for the current key value
of w. For each edge wv incident on w, we extend this path via the edge wv. We
update keyuv to the length of this path provided its residue class is different from ruv.

Correctness. We need to show that keyuv is set to suv in the course of the
algorithm (note that one does not need to worry about the residue class since any
path that updates keyuv in the course of the algorithm has residue class different
from ruv). This follows immediately from Lemma 7.2. If suv is realized by the path
puw ◦ wv for some neighbor w, then keyuv is set to suv in the initialization step. If
suv is realized by the path quw ◦ wv for some neighbor w, then keyuv is set to suv
in the update step. This completes the proof of correctness. Thus we have given an
O(mn+n2 log n) algorithm to compute the suv’s for all u, v ∈ V . We have thus shown
the following lemma.

Lemma 7.3. A shortest cycle Cp in G, whose dot product with Ni is nonzero
modulo p, can be computed in O(mn + n2 log n) time.

We now consider the complexity of computing a shortest cycle Ci whose dot
product with Ni is nonzero, instead of the condition that the dot product is nonzero
modulo p. But any cycle Ci which satisfies 〈Ci, Ni〉 	= 0 satisfies 〈Ci, Ni〉 	= 0 ( mod p)
for some p ∈ {p1, . . . , pd/2}, where p1, . . . , pd/2 are distinct primes, each of which is
at least d. This follows from the isomorphism of the ring Z∏

pi
to the ring Zp1 ×



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1446 R. HARIHARAN, T. KAVITHA, AND K. MEHLHORN

Zp2
× · · · × Zpd/2

. So any nonzero element whose absolute value is less than
∏d/2

i=1 pi
is mapped to a tuple of its residues that is not the zero vector.

We have |〈Ci, Ni〉| ≤ dd/2 (from Lemma 3.3 and Hadamard’s inequality). Thus

|〈Ci, Ni〉| <
∏d/2

i=1 pi. So if 〈Ci, Ni〉 is nonzero, then it is a nonzero element in
Z∏

pi
, and so it satisfies 〈Ci, Ni〉 	= 0 (modp) for some p in {p1, . . . , pd/2}. Thus

a shortest cycle Ci such that 〈Ci, Ni〉 	= 0 is the shortest among all the cycles Cp,
p ∈ {p1, . . . , pd/2}, where Cp is a shortest cycle such that 〈Cp, Ni〉 	= 0 (mod p).
Hence, by Lemma 7.3, the time taken to compute C is O(d · (mn + n2 log n)) or
O(m2n + mn2 log n). Thus we have shown Lemma 7.4.

Lemma 7.4. A shortest cycle Ci in G, whose dot product with Ni is nonzero, can
be computed in O(m2n + mn2 log n) time.

8. Conclusions. We considered the minimum cycle basis problem in directed
graphs with nonnegative edge weights. We presented an O(m3n + m2n2 log n) deter-
ministic algorithm and an O(m2n+mn2 log n) randomized algorithm for this problem,
where m is the number of edges and n is the number of vertices. These algorithms use
the framework of computing cycles C1, . . . , Cd and their supporting vectors N1, . . . , Nd

using fast matrix multiplication. However, this approach leads to large intermediate
numbers and the cost of arithmetic becomes high. We overcome this problem in the
randomized algorithm by working over a finite field Zp for a small random prime p
and by working over suitable rings ZR in the deterministic algorithm. We also pre-
sented an efficient algorithm, based on Dijkstra’s algorithm, to compute a shortest
cycle whose dot product with a function on its edge set is nonzero.
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