MATHEMATICAL CENTRE TRACTS 108 (1979), 71-96

DYNAMIC DATA STRUCTURES

K. MEHLHORN

University of Saarland, Saérbrijcken, W. Germany

The organization and manipulation of large sets of data is one of the
-central problems of computer science. In commercial computing centers about
1/3 of the total computing time is spent on searching and sorting. Sets of
data are often dynamic in a twofold sense:

1) the set itsélf changes by inserting elements into it and deleting elements
from it.

2) the access behavior of the users changes, i.e. the points of interest in
the file change.

Let us look at an example: the set of books in a library. This set
changes by the acquisition of new books (INSERT) and by.discarding obsolete
books (DELETE). Also the books are charged out with different probabilities
(and these probabilities differ drastically from book to book). Furthermore,
the access probabilities vary over time, as reading habits change. This fact
could easily be accomodated for by counting the number of accesses to each
book. It is also conceivable that access probabilities can change drasti-
cgllyAsometimes.-Consider a university library. Whenever a new term starts
there will be a rush for the standard text books. Also, it should be pos-
sible to treat newly acquired books in different ways: the librarian might
want to make a guess at the importance of a new book. In conventional li-
braries this is done by putting some new releases at a special shelf near
the entrance door.

We propose the following definitions to model this situation.

Given is a subset S = {B .,Bn} of an ordered universe U. With every

11

element Bi € S we associate a weight (= access frequency) p; € N . The

basic operations are (d ¢ Z, p € N)

72

Member (X,S,d) ifXes
then return the information associated with X
and change the weight of X by &

else say "no"

Ingert (X,S,p) S « S u {X}; the initial weight of X is p
Delete (X,S) s +s - {x}.

REMARK. We do not assume that d is specified when the operation MEMBER
(X,5,d) is initiated. The case that d is a function of the old weight is
also conceivable.

In this series of lectures we shall study data structures which support
the three operations above efficiently. Since this is a formidable task, we
proceed in five stages.

STAGE 1. The uniform problem: (= first kind of dynamics), i.e. all weights
are equal to 1. In particular, @ = 0 in the Member instruction and p = 1 in
the Ingert instruction. This is the classic dictionary problem. Many solu-
tions to this problem are known (AVL-trees, 2-3 trees, HB-trees,...). We
will ﬁroaﬁ weight-balanced trees (Nievergelt and Reingold).

STAGE 2. The nonuniform static case; the initial weights p; are nonequal,

no Insert and Delete instructions are allowed, and @ = 0 in Member instruc-
tions. We will digcuss how to construct Binary Search Trees and how to esti:’
mate their behavior. '

s'rm:' 3. The nonuniform dynamic case I; this is as in stage 2, but we allow
d = 11 in Member instructions. In stage 3 the second kind of dynamics comes
into play. However, access frequencies may only change slowly. We propose
Dynamic Binary Search Trees (D-trees) as a solution to this problem. D-treef
will be' applied to digital search trees (TRIES).

STAGE 4. The uniform problem with the additional instructions Concatenate
and Split

Concatenate (51,82,83) Sy + S, v S,1 this operation is only applicable
if max s1 < min 52
Split (s,a,sl,sz) s1 +«{Xes; XxXs a}

s2+{xes;x>a}

73

The sets Sl,s2 (resp. S) cease to exist after execution of Concatenate
(resp. Split).

STAGE 5. The nonuniform dynamic case II, The full repertoire of Member, I. .
sert and Delete operations is allowed. No restriction on d and p is place
We will show how to extend D-trees in order to cope with the full problem

Finally we describe an application to sorting presorted files. Stage
1 and 3 will be discussed in some detail, only brief accounts are given
for the others.

STAGE 1: Weight Balanced Trees

In a binary tree a node has either. two sons or no sons at all. Nodes with
no sons are called leaves and are drawn as rectangular boxes in subsequen
figures. Non-leaf nodes (internal nodes) are drawn as circles and subtree:
are drawn as triangles.

DEFINITION. Let T be a binary tree. If T is a single leaf then the root-
balance p(T) is 1/2, otherwise we define o(T) = |7,|/[T|, where Iz, | 1s &
number of leaves in the left subtree of T and |T| is the number of leaves
in tree T. '

For the remainder of the paper a is a fixed constant, 0 < a < 1/2.

DEFINITION. A binary tree T is said to be of bounded balance a, or in th
set BB[al, if and only if

1. a < p(T) < 1-a

2. T is a single leaf or both subtrees are of bounded balance ¢

There are two ways of storing an ordered set S = {Bl""'nn] in a binary
tree T.

Leaf-oriented storage organization. The tree T has ISI leaves. The leaves

are labelled from left to right by the elements of S. An internal node v !
labelled by the largest element in the left subtree of v. Label Bi in in-
ternal node v corresponds to the query: '

if x < B:I. then goto root of left subtree
else goto root of right subtree.

74
The leaf labelled B i will be reached with all search argquments X such that

< = n,
81_1 <Xs Bi' if i < n, and Bn—l Xif i n

Node-oriented storage organization. The tree T has |S| internal nodes. The
internal nodes are labelled from left to right by the elements of S. Label

Bi in internal node v corresponds to the query:

case X ? B in

< : goto root of left subtree
= : found
> : goto root of right subtree

Leaves correspond to unsuccessful searches in this case.

EXAMPLE. S = {2,5,7,9,13}

[N W3 O W (T T A N A (N

Leaf-oriented Node-oriented

We search in a binary tree by comparing the search argument X with the
query in the root and then taking the appropiate action (= go to left
subtree,...). In our example the second leaf of the node-oriented tree will
be reached with all X such that 2 < X < 5, In the leaf-oriented tree nodes
u,v,w have balance 1/2, 2/5 and 2/3 respectively.

In the sequel we will always assume leaf-oriented storage organization
except when explicitly stated otherwise.

LEMMA 1. Let T € BBlal. Then the depth of T (= length of longest path from
root to leaf) is at most 1 + (log |T| - 1)/log(1/(1-0)) where |T| is the
number of leaves of T.

75

PROOF. Let vo,vl,...,vd be a longest path from the root v0 to a leaf vd.
Let W be the number of leaves in the subtree with root vy Then

W < (i-0) w, by the definition of BB[a] tree and hence 2 £ w <
i+l a-1 i ao1 -1

S (1-a)" ", Wy = (1-0) -|T|. Taking logarithms finishes the proof. [

EXAMPLE. o = 1-/2/2 = 0.2928. Then 1/log(1/(1-a)) = 2.

As an immediate consequence of Lemma 1 we have that MEMBER (X,S,0) in-
structions take time O(log |S[). Next we turn to INSERT (X,1) and DELETE (X)
instructions. We first perform a search for X; this search will end in the
leaf labelled B " with B:I.-i <Xs B:L' In the case of the INSERT instruction

we are done if X = B, . Otherwise we replace the leaf "by the sub-
tree

X Bi‘

In the case of a DELETE instruction we are done if X ¥ B:I.' Otherwise

X = Bi and leaf is either the left of right son of its father. If
it is the left son then we replace

Gy

G /)

byA. If it is the right son then we replace

A Curd

by A and furthermore we replace the interior node labelled B i {which
necessarily lies on the path from the root to leaf ') by an interio

node labelled 81_1. One problem remains. The new tree might not be in class
BBLal.

EXAMPLE. Suppose we want to insert 8 into set S. Also suppose a = 1-/;/2
& 0.29 (this choice of a becomes clear later on). We cbtain

76

and node w is out of balance; p(w) = 3/4 ¢ [a, 1-al. In general scme nodes
on the path of search will be out of balance. Two operations (rotation and
double-rotation) exist to restore balance. The figures show operations to
the left about A. Symmetrical variants also exist.

B1
o Rotation 81
‘!‘; B B +(1-B)B.
2 Bl+(1, 81)62

81+(1-81)82

Let 81'82(81.82:83) be the root-balances of nodes A,B(A,B,C) before the
rotation (double~rotation). Then the balances of these nodes after the ro-
tation (double-rotation) are as given in the figure above. Consider the
case of a rotation. Let xl,xz,x3 denote the number of leaves of the various
subtrees shown. Then B1 - xl/(x1+x2+x3) and 82 - x2/(x2+x3) . The balance

of node B after the rotation is

77

(x1+x2)/(x1+x2+x3) =8, + 82(x2+x3)/(xl+x
= 31 + 82(1-81).

2+x3)

The other nodes are treated analogously.

EXAMPLE CONTINUED. A double rotation about w yields

and this tree is in BB[1-/2/2].

In general a tree is rebalanced by walking back from the (inserted or
deleted) leaf to the root and performing rotations and double rotations as
necessary. An exact statement can be found in

LEMMA 2. (Blum and Mehlhorn). Let 0 < 6.5 0.01. Then there exists a mono-
tonically increasing function c with c(0) = 0, ¢(0.01) = 0.0045 such that:
if 1/4 < a < 1-Y/2])2 - c(8§) then rotations and double rotations suffice to
rebalance a BBlal-tree upon the insertion or deletion of a leaf.

More precisely: walk back from the inserted or deleted leaf to the root.
Say we reach node A and all subtrees below A are restored to be in BB[al.

CASE 1. p(A) ¢ [a,1-al; proceed to the father of A.

' CASE 2. p(A) < a; let B the right son of A. If p(B) < 1/(2-a) +
+ 8/([1+(1+8) (1-a) 1(2-a)) ‘then a rotation else a double rotation rebalances
the tree, i.e. '

p'(A),p' (B),p'(C) e [(148)a,1-(1-8)a].

Here p' denotes the balance after the rotation or double-rotation. Proceed
to the father'of A.

78

CASE 3. p(a) > 1 - a; symmetric to case 2.
PROOF. The lengthy but simple proof can be found in Blum and Mehlhorn. (]

Lemma 2 with é = O shows that rotations and double-rotations along the
path of search suffice to rebalance a BBla] tree after an insertion or de-
letion. We obtain:

THEOREM 1 . (Nievergelt and Reingold, Blum and Mehlhorn). BBLal~trees
(2/11 < « < 1 - /2]2) support the instructions MEMBER, INSERT and DELETE
with processing time 0(log IS]) per instruction.

REMARK. Theorem 1 was first stated by Nievergelt and Reingold. The first
complete proof is due to Blum and Mehlhorn.

Note that up to O(log |S|) rebalancing operations (= rotations, double
rotations) may be required after a single insertion or deletion. Experiments
show that on the average a constant number suffices. (Table 1 shows the
findings of Baer and Schwab.) It has been a long-standing open problem
whether this could actually be proven. The answer is theorem 2.

a depth average path rebalancing '
length operations
1-v272 | 12 9.26 426
0.25 14 9.46 206
0 22 12.14 0

»

TABLE I. (Baer and Schwab.) 1000 random insertions into an initially empty
tree were performed for different values of a. The depth, average path
length (see stage 2) of the resulting tree and total number of rebalancing
operations are shown.

THEOREM 2 .(Blum and Mehthorn). Let 2/11 <a < 1 ~/2]2 - c(8) , 0 S & < 0.01
and ¢ be defined as in Lemma 2. Then there is a constant A such that:

d.m rebalancing operation suffice to perform an arbitrary sequence of m in-
sertions and deletions on an initially empty BBL[al-tree.

@smin {k - 1 +301-0)/6a%; k € ™, k 2 12}).

REMARK. For a = 1/4, § = 0.01 we obtain d < 27. There is certainly room
for improvement.

79

The proof of theorem 2 relies upon lemma 2. The key observation is that
the root-balances of nodes A,B,C after a rebalancing operation will be quite
a distance (at least 8a) away from the critical values a and 1 - a. Hence a
large number of searches (about San where n is the current number of leaves
below such a node) can go through such a node without it being balanced
again. Proper counting of rebalancing operations and of the number of in~
sertions and deletions gives the desired result. The details can be found
in Blum and Mehlhorn.

STAGE 2: BINARY SEARCH TREES. .

In this section we treat the non-uniform static case; i.e. the initial
weights p, are non-equal, no Insert and Delete instructions are allowed and
d = 0 in Member instruction. The weights Py give rise to a probability dis-
tribution in a natural way: 81 + pi/w where W = !:pi. In order to cope with
leaf- and node-oriented storage organization we treat a slightly more
general problem. '

Given is a set S = {BI""'Bn} and 2n+1 probabilities
LI TRL URERL NPT LA oy 20,8, 20 and 1B, + Zaj = 1. Here B, is the
probability of accessing B 1 and a 3 is the probability of accessing elements
X with Bj < X< Bj+1‘ Let T be a node-oriented search tree for set S. (If
we want to talk about leaf-oriented search trees then we should set 8 L - 0

for all i and aj = probability of access of Bj) . Let bi be the depth of

node Bi in T and let ‘j be the depth of leaf (Bj,BjH) in tree T. Then
))
P o= B, (b, +1) + a, a
1= 1 y=0 1 3

is the weighted path length of tree T. It measures the average search time
in tree T. Note that bi + 1 are comparisons are required to find X = B, and

i

aj comparisons are required to find X with Bj <X< Bj+1.

THEOREM 3 (Mehlhorn 77b). There is a tree T such that

bi. < log 1/Bi

ajslog 1/nj+2

P s a(ao'ai'“"sn'an) + 2}:aj
where H = -281 log Bi - tuj log uj is the entropy of the frequency distri-
bution.

80

THEOREM 4 (Bayer). For every tree T
HSP+ ZBi[loq e -1+ log (p/r.Bi)].

A tree satisfying the requirements of theorem 3 can be found in only linear
time (Fredman). From theorem 4 we infer that this tree is close to optimal.
Theorems 3 and 4 are alphabetic versions of Shannon's noiseless coding
theorem. Algorithms for the construction of oi)timal trees are due to
Hu/Tucker and Garsia/Wachs in the leaf-oriented case (Mehlhorn/Tsagarakis
show that the two algorithms are actually the same) and due to Knuth

in the node-oriented case. They have time complexity O(n log n) and O(nz)
respectively. Extensions to non-binary trees can be found in Ita.i and
Altenkamp/Mehlhorn.

'l'heor_em 4 is the most important one for what follows. It shows that
no tree can have weighted path length much less than the entropy of the
distribution of access probabilities and provides us with a yardstick for
near optimality. We close this section with an example. Gotlieb/Walker took
a text of 106 words and counted word frequencies. Then they constructed
(nearly) optimal binary search trees for the N most common words, N = 10,
100, 1000, 10 000, 100 000. Let Py be the weighted

- log N

1 Q) S .

Y

log 500 log 10° log N

path length of the tree constructed foz‘,' the N most common words. The figure

(due to Gotlieb and Walker) suggests that PN + 11 for N + @, In view of
theorems 3 and 4 this observation may be explained analytically. Let B by be

81

the probability of occurrence of the i-th most frequent word. Then (cf.
Schwarz)

where ¢ = 1/ | kel
i=1

2 2

Bj_ —_— /il.l
and (by a simple calculation)

] s
H(B,,8,/85,...) =~] B, log B, ~10.2.
i=1
Since by theorems 3 and 4 entropy and weighted path length are closely re-
lated, this is an analytical explanation of the experiments.

STAGE 3. Dynamic Binary Search I (Mehlhorn 77c)

We are now ready to deal with the second kind of dynamics. We allow
weight changes of size 1. Let S = {81,...,Bn} and let p, : N be the weight
of Bi' Strictly speaking, we should add a superscript t: Py is then the

weight of object 81 at time t.

Several solutions were proposed, notably Allan/Munro, Baer, Unterauer,
Mehlhorn 77c. We describe the solution in Mehlhorn 77c, which is the only
one with a proven worst case bound. The solutions proposed by Baer, Unterauer
and Mehlhorn try to extend the BB[a] concept to weighted trees.

Suppose a = 1/5 and Py = 1, P ™ 2, Py = 1. Consider the following tree.
We could define the

root-balances:
plv) = 1/(142) = 1/3
plw) = (1+2)/(142+1) = 3/4 .

Executing MEMBER (Bz,l) twice increases p, to 4 and we have p(w] =

= (144)/(144+1) = 5/6. Neither a rotation or a double-rotation (not even
applicable) will help us. Even worse, there is no BB[1/5] tree for weights
1,4,1. What should we do? :

Baer and Unterauer suggest to give up on the strict BB[a] idea but re-
tain the balancing operations rotation and double-rotation. Baer expresses
the hépe and Unterauer proves (under reasonable probability assumptions)
that this will keep the tree nearly optimal on the average.

82

We follow a different approach. We stick to the strict BBf{al idea but
give up the concept that an cbject Bi € S has to be represented by a single
leaf of the tree. Why not represent object Bz by 2 leaves of weight 2 each

in our example? (See also van Leeuwen.) Then a double rotation helps and
gives

a tree in BB[1/5]. However, we have A new problem now. There are several
leaves labeled by Bz. The way out of this dilemma is the following: one
of these leaves "really" represents object 32 (the active 2-node below),
the others are only around to make rebalancing always possible (the non-
active 2-nodes below). In other words, the non-active 2 nodes only serve
for bookkeeping purposes. We show below that it is not necessary to store
them explicitly (compact dynamic trees). Of course, there is no a-priori
bound on the number of times a certain object has to split. However, our
knowledge of the non-weighted case (= ordinary BB[al-trees) tells us that
parts won't have to have weight less than one. It is therefore reasonable
to assume that an cbject of weight p consists of p "atoms" of weight 1.
We are now ready for the formal definition of D-trees

b-f.rees are an extension of BB[al-trees. We imagine an object B i of
weight Py to consist of p1 leaves of weight 1. A D-tree for set § is then
a BB[al-tree T with W = Py * By *-.-t P, leaves. The leftmost Py leaves

are labelled by B the next P, leaves are labelled by 32" e

1’

DEFINITION.

a) A leaf labelled by Bj is a j-leaf.

b) A node v of T is a j-node iff all leaves in the subtree with root v are
j-leaves and v's father does not have this property.

c) A node v of T is the j-joint iff all j-leaves are descendants of v and
neither of v's sons has this property.

d) Congider the j-joint v. p:'i j~leaves are to the left of v and p; j=~leaves

are to the right of v. If pi 2 p; then the j-node of minimal depth to
the left of v is active, otherwise the j-node of minimal depth to

83

the right of v is active.

e) The thickness th(v) of a node v 1s the number of leaves in the subtree
with root v.

Only parts of the underlying BBl al-tree actually need to be stored, in
particular all proper descendants of j-nodes can be pruned. Only their num-
ber is essential and is stored in the j-node. More precisely, a D-tree is
obtained from the BB[al-tree by

1) pruning all proper descendants of j-nodes
2) storing in each node.
a) a query of the form "if X < B then go left else go right"
b) the type of the node: joint node, j-node or neither of above
c) its thickness
d) in the case of the j-joint the number of j-ieaves in its left and
right subtree.

The queries are assigned in such a way as to direct a search for Bi to the
active i-node. More precisely, let v be any interior node of the D-tree
and let the active 1-node,..., j-node be to the left of v. Then the query

"if X < Bj then go left else go right" is stored in v.

The next figure shows a D-tree for the distribution (pi,pz,pa,p4) =
= (2,7,3,4) based on a tree in BB[1/4]. The j-nodes are indicated by squares
active j-nodes by double lines, the thickness of j-nodes is written below
them and the distribution of j-~leaves with respect to the j-joints is

written below the joint nodes. 2-joint

3-joint

2-nodes

84

The following Lemma shows that D-trees are good search trees.

LEMMA 3. Let bj be the depth of the active j-node in tree T. Then bj < cy
log W/Pj +) where ¢ = 1/log (1/(1~a)), c, = 1+ ey

EXAMPLE. For ¢ = {1 - /'2-'/2’ we have c = 2 and ¢y = 3. In the light of Theorem
4 we have that search time in D-trees is at most twice the search time in
optimum trees and usually much better (cf. experimental data below).

PROOF. Let v be the father of the active j-node. Then all j~leaves which are
on the same side of the j-~joint as the active j-node are descendants of v.

Hence th(v) 2 pj/Z. The argument of Lemma 1 will finish the proof. [0

Next we have to address the question of how to maintain D-trees. The
answer is exactly as for BBlaJ-trees, but be careful with the additional
D-tree information. Suppose we execute a MEMBER (B j,ti) instruction. The
search will end in the active j-node. We have to update the thickness of all
nodes on the path of search and the distribution of j-leaves with respect to
the j-joint. The j-joint lies on the path of search and so this is easily done.
Next we have to ascend the paf;h of search from the active j-node to the

root and perform rotations and double-rotations as required. Since a double-
rotation is two rotations

o double rotation
&-——-——_’
to the left

E ° about A

\ rotation to the right
about B

° rotation to the left

/5 ()
N ()
AN £

85

we only have to treat the case of a rotation. Let's call joint~nodes and
j-nodes special nodes. If no special node is involved in the rotation then

no additional actions are required. Suppose now, a special node is involved
in the rotation.

CASE 1. A j-node is involved. Then we have the following picture

(N &)
A — /A
AN [N [

and node B is a j-node before the rotation, i.e. trees x, and x, do not

exist explicitly. We create them by splitting B into twozj-node: of thick-
ness | th(B) /2) and l.-t.h(B)/Z‘-I respectively. What query should we assign to B
{Note that B is an interior node now)?. Suppose first that neither A nor B
is the j~-joint. Then A must be a left descendant of the j-joint. Otherwise
xl can only contain j-leaves and hence A would be a j-node and hence B would
not exist. So A must be a left descendant of the j-joint and hence the active
j-node lies to the right of A. But then it also lies to the right of B

(x3 could be it) and thus we only have to copy the query from A into B.

The discussion above also solves the case where B is the j-joint. Suppose
next that A is the j-joint. Then the active j-node will be to the left of

B after the split. Let Z be the nearest ancestor of A such that the left
link was taken out of Z during theh search. Copy Z's query into B. Z can be
found as follows: When the nodes on the path of search are stacked during
the search, they are also entered into either one of two linear lists: the
I-list or the R-list. The L-list contains all nodes which are left via their
left links and the R-list contains all nodes which are left via their right
links. Then Z is the first node on the L-list. This ends the discussion of

B being a j-node.

EXAMPLE. Rotation to the left about the 4-joint.

86

4-joint splitting 4~-joint

rotation

The second possibility is that x, and x, are j-nodes and hence A is j-node

after the rotation. In this case Xy and x2 are deleted after the rotation.

EXAMPLE. Rotation to the left about the father of the active 2-node

CASE 2. A joint node is involved, i.e. either A or B is a joint node or
both. If B is a joint node then no additional actions are required. So let
us consider the case that A is the j-joint. Let pi, p':i be the distribution
of j-leaves with respect to the j-joint A and let s be the thickness of the
root of xz. If 8 2 p; then x3 contains no j~leaves and hence A will be the
j-joint after the rotation. No action is required in this case.

If s < p; then B will be the j-joint after the rotation. The distribu-
tion of j-leaves with respect to B is p:; +8, p:',' -8,

CASE 2.1. P:'i +8 < p; - 8. Then P;'j < p’j‘ and the active j-node was to the

right of A, in fact it was node Xye Also the active j-node will be to the

87

right of B after the rotation and it still is to the right of A. Hence we
only have to copy A's query into B.

CASE 2.2. p5 + 8 > p; - g. Then the active j-node will be to the left of B

after the rotation, and hence it will be node Xy.
CASE 2.2.1. p:', < p'J‘. Then x, also was the active j-node before the rotatio:.
No additional action is required in this case.

CASE 2.2.2. pi > p;. Then the active j-node was to the.left of A and hence
to the left of B before the rotation. In this case B's query remains un-
changed, but A's query has to be changed. Suppose first that A's left son
is a j-node. Then A ceases to exist after the rotation and we are done.
Suppose next that A's left son is not a j-node. The next figure shows a

' microscopic view of tree Xy

/ the active j-node

We only have to copy 2Z's query into A. Z can be found by a brute force
search., Note that th(z) 2 pi 2 pj/2 Note also that the thickness s of xq is
less than p; < p /2. Since s = th(x } 2 a*th(B) (the underlying tree is in
BB[a]) and th(B) 2 (1-a)th(A) (a rotation to the left about A is performed)
we have s 2 a(l-a)th{a) and hence th(a) s pj/(2-u(1-c)) . The arqument used
in the proof of Lemma 1 shows that the depth of Z with respect to A is at
most log(a(l-a))/log(i-a).

REMARKS. For o = 1 - v2/2 we have log(a+(1-a))/log(i-a) & 4.4. Case 2.2.2
is not very likely to occur. In our simulations (several hundred thousand
MEMBER (,+1) instructions) it never occurred.

We summarize the discussion in

THEOREM 5 (Mehlhorn 77c). Consider a D-tree based on a BBLal-tree with
2/11 <asl- F/z Letpibetheweightofaiattimet, IS:LSnand

let W Z’_ -1 pi. A search for B, at time t takes time c, log W /px +c,.

i

88

Also a weight change by + 1 at time t takes time o, log Wt/p; + <, for some
small constants c1 and Cye

EXAMPLE. Suppose we want to execute a MEMBER (32'+1) instruction. This would
increase the thickness of the active j-node from 2 to 3 and move the balance
parameter of the root (the active 2-joint) out of the range [1/4,3/4]. A
double-rotation (to the left) about the root is required. It is simulated
by a rotation to the right about the 3-joint followed by a rotation to the
left about the 2-joint. The rotation about the 3-joint requires no special
action since s = th(father of active 3-node) = 5 > 2 = number of 3-leaves

to the left of 3-joint. We obtain

2-joint

same as
before

Next we have to rotate about the 2-joint. We have pé =2, p; = 6 and 8 = 3,

and hence case 2.2.1 of the discussion above applies. We obtain
2-join

3-joint

same as

baZaie same as before

89

Having described the theory of D-trees to some extent the reader might be
interested in experimental data. H. Reinshagen and A. del Fabro programmed
D-trees and carried out the following experiments. They took an arbitrary
BB[I-/E?Z] tree with 200 leaves and Py = .. ® pzo0 = 1. Then they executed
30 000 MEMBER (,+1) instructions according to a fixed probability distribu-
tion (distribution I: p; = 1001/(11 elOO), distribution II: obtained by
counting words starting with different 2 letter prefixes). The weighted path
length of the actual D-tree and the total number of rotations and double ‘

" rotations performed was recorded. The following table shows the

of searches‘feggggl:fggs-.100 ¥ ROT fEEEBEL:EEEE # RoT
opt opt

0 48.6 0 22.9 (o]

100 35.7 34 . 14.5 52
500 19.8 51 9.9 148
1000 11.9 58 7.6 ° 207
5000 1.7 84 . 5.8 370
10000 1.7 90 5.7 420
20000 1.8 93 S 440

30000 1.7 96

deviation (in percent) of the actual weighted path length from the weighted
path length of the optimal tree for distribution I and II respectively. It
also shows the number of rotations and double rotations required.

COMPACT D-TREES

Non-active j-nodes only serve bookkeeping purposes; they permit a uni-
form treatment of rebalancing operations. In this section we indicate that
they need not to be stored explicitly: compact D-trees. We introduce com-
pact D-trees by way of example, the full theory can be found in [Mehlhorn
77 €l.’

In compact D-trees only those nodes are actually stored which are es-
sential for the searches: the active j-nodes, the branch nodes (i.e. nodes
having active descendants in both subtrees) and the joint-nodes. All other
nodes are deleted, however their thickness is remembered.

20

Consider the following example; p, = 1, P, = 100. The compact version
of the D-tree

2-joint

2-joint

The expression [0,50] on the right side of the edge from the 2-joint to the
active l-node denotes that right subtx:ees of that path containing a total
number of 0 l-leaves and 50 2-leaves were deleted.

Compactification of (extended) D-trees to compact D-trees is a many-
one mapping, i.e. in general many D-trees are represented by the same com-
pact D-tree. The essential point is that one D-tree in the inverse image
of a compact tree with respect to the compactification mapping is computed
easily; in fact, reconstruction can be done locally.

Consider onr example again. Say we want to expand the edge /{0 ,501]
again. The query of the top node of the edge being By, we know that fo,50]
represents 0 l-leaves and 50 2-leaves. The thickness of the bottom node is
i. Hence we might partition the 50 2-leaves into pieces of size 1,2,4,8,16,
19 and obtain a tree in BB[1/4]. For full details we refer the reader to
[Mehlhorn 77c]. Some further compactifications are possible: it is possible
to approximately reconstruct the edge labels during the search and to use
height-balanced trees instead of weight-balanced trees [Del Fabro/Mehlhorn].

91

STAGE 4. The uniform problem with the additional instructions: Concatenate
and Split. The traditional name for data structures supporting the instruc-
tion Member, Insert, Delete, Concatenate and Split is COncaténable Queue.

It has long been known that height-balanced trees support the full reper-
toire of Concatenable Queue operations with 0(log|S|) processing time per
instruction. We show that weight-balanced trees also support the full reper-
toire with the same time bound.

LEMMA (Mehlhorn 78). BBl[al-trees support the full repertoire of concatenable
queue instructions with 0(loglS|) processing time per instruction.

STAGE 5. The nonuniform dyna.mic case II. We finally treat the full problem:
Member, Insert and Delete operations are allowed. No restriction on pand 4
is placed. Using the techniques developed in stage 4 we extend D-trees to

- cope with the full problem.

THEOREM 6 (Mehlhorn 78). Let 2/11 < a S 1-v/2/2 and let T be a D-tree for

set § = {B,/B,,...,B } based on a BBlal-tree. Let p, be the weight of B
and let W = Epi.

i

a) The operation Member (Bi,s,d) takes time O(minflog w/min(pi,pi-i-d) nl)
b} The operations Insert (X,S,p) and Delete (51'8) take time O(min(log W,n}).

Part a) of theorem 6 says that the execution time of the instruction
MEMBER (B1 +S,d) is at most proportional to the logarithm of the old access
probability w/p " or the new access probability W(pi+d) . (since a compact
D-tree has depth at most n, execution time is also O(n)). In view of theorem
4 th:l‘s is optimal up to a constant factor. Part b] is almost a corollary
of part a) if one cbserves that either the old weight (INSERT] or the new
weight (DELETE) is O in this case.

We are now at the end of a long journey. We finally arrived at a solu-
tion to the problem posed in the introduction. We close with a brief dis-
cussion of two applications.

AN APPLICATION TO TRIES

An alternative to searching based on key comparion is digital searching.
Here a key is identified by successive identification of its component
characters. One such method is the TRIE. A set of strings over some alphabet
L is represented by its tree of prefixes. So every node of a trie corresponds

92

to a word over L = {al,...,ap).

Several implementations of tries were proposed.

1) Each node of the trie is represented by a vector of length IE| (Predkin).
Identification of a character is done by indexing this vector. This
method is very fast (one access per character) but it uses a large amount
of storage.

2) Each node of the trie is represented by a linear list (Sussenguth). In
a node w this list contains only those characters a € I such that wa is
a prefix of some key. Identification of a character is done by a linear
search through the list. This method is slow (up to |I| comparisons per
character) but it saves storage space.

3) Each node of the trie is represented by a binary search tree (Clampton).
In a node w of the trie this tree contains those characters a ¢ I such
that wa is a prefix of éome key. Identification of a character is by tree
searching. This method is a comppomise in speed and space requirement.

Let S ='{Bl,...,Bn} < E* be the set of keys and suppose that all keys
are of equal length m (this is not essential but makes life easier)}, jsl = n.
Clampton proposed to use a balanced binary search tree for each node.

EXAMPLE. S = {ata?-k: 0<k<m 1<3j<pl. Then ISI = mep and a search
for X = a?-iaj takes time O(m log p) = O(ISlvlog p/p) -

We propose to use D-trees (or any other kind of nearly optimal search
trees). More precisely, for w ¢ t* let

P, =]{Bix w is prefix of Bi}l'

A node ¥ of a TRIE is represented by a D-tree for the distribution
{pwa' a e L}. A key Bi = ailaiZ"'aim is identified by successively iden-
tifying the character a, in the tree corresponding to the node

ail"'ai(k-i) of the tree. It takes time

/pa . ¥ f 02)

0(c1-1og p
11 ik

aii...ai(k_”

to identify a where €, 4C, only depend on the balance parameter (cf.

lemma 3). Hence B, can be identified in time

1

0(c, log PE/Pa

” + czm).= 0(c1 log n + czm).

...dm

93

Since log n comparisons are required in any scheme based on comparisons with
binary outcome and every character of the input has to be inspected we have
nearly optimal tries under implementation 3.

We use D-trees to implement the nodes of a trie because we want to deal
with updates, i.e. insertions and deletions of names. Suppose we want to
insert a new name B into the set S. This amounts to increase pw by 1 for
all prefixes of B. Retaining near optimality is no problem since we used
D-trees to implement the nodes of a trie. Conversely, suppose we want to
delete a name B from the set S. This amounts to decrease P, by 1 for all
prefixes of B. Again retaining near optimality causes no problems. We thus
proved

THEOREM 7. Let S be a set of keys of m characters each. If a trie is used
to represent the set S and every node of the trie is implemented as a D-
tree then searching for a key in S, inserting a new key into S and deleting

a key from S can be done in time 0(log|S|+ m) and this is uptimal up to a
constant factor.

EXAMPLE continued. In the example above, TRIES.+ D-trees guarantee that

searches never take more than O(m + log(mep)) time units.

Note that TRIES + D-trees give execution times which are independent
of I Zl. In database applications objects are often m~tuples (e.g. cities
given by geographical altitude and latitude). In these applications ltl =
is conceivable.

AN APPLICATION TO SORTING

Consider the problem of sorting a sequence xnxn-l" Xy by an insertion

sort. Insertion sort proceeds by successively inserting x; into its proper
' position. Let

£, 0= 1{3: x <% and J < i}].

When xi is inserted into the sorted version of sequence xj__:l...x1 then x;

has to be insorted after the f£ ~th position of that sequence. If the se-

i
quence is presorted, i.e. F = If is small with respect to n2 , then the

1
elements tend to be inserted near the front of the already sorted subse-

quence. Using the conceots developed in stage 3, Fredman has shown.that it

94

should be possible to sort the sequence with O(n log(F/n)) comparisons.
Later~on practical versions of Fredman's algorithm were developed by Guibas
et al., Brown/Tarjan and Mehlhorn 79. The algorithm described by Mehlhorn is
based on AVL-trees and has running time 26 n log F/n + 40n on the machine
described in Mehlhorn 77a (similar to MIX). Comparing this with Quicksort's
running time of 9n log n on the same machine gives

26 n log F/n + 40n S 9n log n
iff '
F < 0.314 n1.<375.

For presorted files the new method will be superior.

SUMMARY. New approaches to searching and sorting were discussed which ex-
ploit the fact that in some applications search requests or sequences to

be sorted are non~random. More specifically a tree structure (D-trees) was
presented which supports searching in, inserting into, deleting from and
changing weights in a weighted set S in time optimal up to a constant factor.
Rlso a sorting method which sorts presorted input sequences in time strictly

less than n log n was presented.

REFERENCES

ALLAN, A. & X. MUNRO, Self organizing binary search trees, JACM,ZQ (1978),
pp. 526-535.

ALTENKAMP, D. & K. MEHLHORN, Codes, unequal letter costs, unequal probabili-
ties, 5th JCALP, 1978, Springer Lecture Notes in Computer Science
.vol, 62, pp. 15-25, to appear JACM.

BAER, J.L., Weight-balanced trees, Proc. AFIPS, vol. 44 (1975), pp. 467-472.

BAER, J.L. & B. SCHWAB, A comparison of tree balancing algorithms, CACM 20
(1977}, 322-330.

BAYER, P., Improved bounds on the cost of optimal and balanced binary search
trees, techn. report, Dept. of Computer Sclence, MIT, 1975.

BLUM, N. & K. MEHLHORN, On the average number of balancing operations in
weight-balanced trees, 4th GI Conference on Theoretical Computer
Science, Aachen, 1979 (to appear}.

95

BROWN, M.R. & R.E. TARJAN, A representation for linear lists with movable
fingers, 10th ACM STOC, 1978, p. 19-29.

CLAMPTON, H.A., Randomized binary searching with tree structures, CACM

7, 3 (March 1964), 163-165.

DEL FABRO, A. & K. MEBLHORN, Further compactification of D-trees, in pre-

paration.
FREDKIN, E., Trie memory, CACM 3, 9 (sept. 60), 490-499.

FREDMAN, M.L., Two applications of a probabilistic search technique: Sorting
X+Y and building balanced search trees, Proc. 7th Annual ACM
Symp. on Theory of Computing, Albuquerque, 1975, —p_p.240—244.

GARSIA, A.M. & M.L. WACHS, A new algorithm for minimum cost binary trees,
SICOMP 4 (1977), 622-642.

GOTLIEB, C.C. & W.A. WALKER, A top-down algorithm for contructing nearly
optimal lexicographical trees, in: R.C. Read (ed.), Graph Theory
and Computing, Academic Press, London, 1972, pp.303-323.

GUIBAS, L.J., E.M. MCCREIGHT, M.F. PLASS, J.R. ROBERTS, A new representation
for linear lists, 9th ACM STOC, 1977, 49-60.

iiU, T.C. & A.C. TUCKER, Optimal computer search trees and variable length
alphabetic codes, SIAM J. Applied Math. 21, 1971.

ITAI, A., Optimal alphabetic trees, SICOMP 5 (1976), 9-18.

KNUTH, D.E., The art of computer programming, vol. 3, Sorting and searching,
Addison Wesley, 1973.

MEELHORN, K., 77a, Effiziente Algorithmen, Teubner Studienbicher Informatik,
Stuttgart 1977.

MEHLHORN, K., 77b, Best possible bounds on the weighted path length of
optimum binary search trees, SICOMP 6 (1977) pp. 235-239.

MEHLHORN, K., 77c, Dynamic binary search, 4th Colloquium on Automata, Lan-

quages and Programming Turku, 1977, Springer Lecture Notes in
Computer Science, vol. 52, pp. 323-336.

MEHLHORN, K., 78, Arbitrary weight changes in dynamic trees, Techn. Bericht,
Universitit des Saarlandes, ﬁay 1978.

