Information Processing Letters 35 (1990) 37-40
North-Holland

15 June 1990

DYNAMIC DEFERRED DATA STRUCTURING *

Yu-Tai CHING

Institute of Information Science, Academia Sinica, Taipei, Taiwan

Kurt MEHLHORN

Fachbereich 10-Informatik, Universitit des Saarlandes, Saarbriicken, FRG

Michiel H.M. SMID

Departments of Mathematics and Computer Science, University of Amsterdam, Amsterdam, Netherlands

Communicated by T. Lengauer
Received 16 January 1989
Revised 20 October 1989

Let S be a set of n reals. We show how to process on-line a sequence of r membership queries, insertions and deletions in
time O(r log(n + r)+(n + r) log r). This is optimal in the binary comparison model.

Keywords: Data structure, dictionary problem, on-line, weight-balanced trees, deferred data structure

Let S be a set of n elements drawn from an
ordered universe. We want to process on-line a
sequence of r membership queries, insertions and
delections. If r > n, then an optimal solution is to
sort S, construct a balanced search tree for it, and
then process the sequence for a total cost of
O(nlog n+rlog(n+r)). If r<n, then this
method is not optimal. For example, for r=1,
time O(n) certainly suffices by a simple scan of
set S. So the question arises whether there is a
solution which is optimal for all values of n and r.
Karp, Motwani and Raghavan [2] answered this
question positively in the static case, i.e., no inser-
tions and deletions are allowed, by giving an
O((n + r)log min(n, r)) solution and proving its

* This research was carried out while the second author was
visiting Academia Sinica. The third author was supported by
the Netherlands Organization for Scientific Research

(NWO).

optimality. They proved similar results for other
static query problems, e.g., the membership prob-
lem for the convex hull of n points in the plane.
In their paper, they posed the challenge to gener-
alize their results to the dynamic situation, i.e.,
insertions and deletions are also allowed. In this
paper, we answer this challenge for the dictionary
problem. For the convex hull membership prob-
lem considered in [2], the question remains open.
As in [2], our solution is based on the deferred (or
lazy) construction of a balanced search tree for S.

In this paper, we give only one dynamic solu-
tion. In Smid [6,7] it is shown that known tech-
niques for dynamizing static data structures (see
Overmars [5] for an overview of such techniques)
can be applied to obtain other dynamic deferred
dictionaries.

Let S be a set of n reals. The objective is to
process on-line a sequence of r membership
queries, insertions and deletions.

0020-0190,/90,/$3:50 © 1990 - Elsevier Science Publishers B.V. (North-Holland) 37



Volume 35, Number 1

Theorem 1. Let S be a set of n reals. Then a
sequence of r membership queries, insertions and
deletions can be processed in time O(r log(n +r) +
(n+r)log r), and this is optimal.

Karp, Motwani and Raghavan proved this the-
orem for the static situation, i.e., r membership
queries are to be processed. Their solution is based
on the deferred construction of a perfectly bal-
anced search tree for the set S. We use a weight-
balanced tree [4,3] instead.

Definition 2. A binary tree is called weight-bal-
anced if for every subtree T the following in-
equality holds:

1 1751 3

where T, denotes the left subtree of 7, and |- |
denotes the number of leaves of a tree.

Weight-balanced trees can be used as search
trees by storing the information in the leaves and
using the internal nodes to guide the search. Inser-
tions and deletions are processed by adding or
deleting a leaf and then rebalancing the tree along
the path of update by rotations and double rota-
tions, cf. Fig. 1.

The following fact is crucial to our approach.

Fact 3. Let T be a perfectly balanced tree with n
leaves, i.e., |3|T'|—|T"” || <1 for every direct
subtree T" of any subtree T' of T. Execute an
arbitrary sequence of r insertions and deletions on T
according to the rebalancing algorithm for weight-
balanced trees. Charge |T,| whenever a (double)
rotation is performed at a node v, where T, is the
subtree rooted at v. Then the total charge is
O(r log r).

Fact 3 is easily shown using the arguments in
Blum and Mehlhorn [1], Willard and Lueker [8];
cf. also Mehlhorn [3, Section II1.5.1].

A partially expanded weight-balanced tree is
obtained from a weight-balanced tree by deleting
some of its subtrees and replacing them by a
single leaf, called a pseudo-leaf or unexpanded

38

INFORMATION PROCESSING LETTERS

15 June 1990

v
—_—
w

Fig. 1. A rotation and a double rotation at note v. Symmetric

variants of these operations also exist. The path of updates

goes through all nodes drawn as circles. A double rotation at v
can be viewed as a rotation at w followed by a rotation at v.

node. All elements stored in the subtree are associ-
ated with the pseudo-leaf. For our analysis we
need the concept of potential of a (partially ex-
panded weight-balanced) tree, which is defined as
follows.

potential (T')

-z

v: v apseudo-leafof T

depth(v) - size(v),

where size(v) is the number of elements associ-
ated with v.

We are now ready for the membership and
update algorithms. A membership query for x is
processed as in an ordinary weight-balanced tree
with one major difference. Whenever the query
reaches a pseudo-leaf, the median of the elements
associated with the pseudo-leaf is determined and
the pseudo-leaf is replaced by a subtree consisting
of a node with two pseudo-leaf descendants. Of
course, the cost of this operation is proportional
to the increase in potential. In essence, a member-
ship query expands a search path to x if x €S or
to the successor of x if x € S. In either case, we
mark (for the purpose of analysis) the leaf where



Volume 35, Number 1

the search ends. For later use, we state two im-
portant properties of our membership algorithm:
(1) If v is a pseudo-leaf, then the parent of v
lies on a path to a marked leaf.
(2) The cost of a query is O(log(n + r)) plus
the increase in potential.

Lemma 4. Let T be a partially expanded weight-bal-
anced tree satisfying property (1) with r marked
leafs and an underlying weight-balanced tree of m <
n + r leaves. Then the potential of T is bounded by
O(m log r) = O((n + r)log r).

Proof. Let p; be the total contribution of pseudo-
leaves of depth i. Then p,<r-m-(3)'-i, since
there are at most r pseudo-leaves of depth i, each
one having a size of at most m - (3). Also, X%-4p;
<m-d for any d, since the pseudo-leaves parti-
tion the set stored in 7. Thus

ZP.'= zPi"' ZP:‘
i i<d i>d
<m-d+r-m- ¥ (3)"i

i>d
=O(m-d+r-m- (%)d-d).
With d = (log r)/(log %), the lemma follows. 0O

We turn to insertions and deletions next. We
first perform a membership query for the element
to be inserted or deleted. In the case of a deletion,
we also mark the successor of the element to be
deleted. Then we rebalance along the path of
insertion or deletion as usually, again with one
major exception. If we perform a (double) rotation
at v and a subtree consisting of a single node with
two pseudo-leaves arises, then the subtree is col-
lapsed into a single pseudo-leaf, cf. Fig. 2. Note
that this preserves property (1).

INFORMATION PROCESSING LETTERS

15 June 1990

Lemma 5. A (double) rotation at v causes the
potential to decrease by at most size(v).

Proof. Immediate from Fig. 2. O

It is now easy to complete the proof of Theo-
rem 1. The total cost of the r update operations is
O(r log(n + r)) for the search and the rebalanc-
ing. Furthermore, the total decrease of potential
due to rotations caused by updates is O(r log r)
by Fact 3. The total cost of the queries is
O(r log(n + r)) plus the total increase in poten-
tial. Finally, the total increase of potential is
bounded by the final potential (which is at most
O((n +r)log r) by Lemma 4) and the total de-
crease (which is O(r log r) by the argument
above). So the total cost of the r queries and
updates is O((n + r)log r+ r log(n+r)). If r > n,
then our solution is certainly optimal. If r<n,
then O((n+ r)log r+r log(n+r))=0((n+r)
X log min(n, r)). The optimality now follows from
the fact that Q((n + r)log min(n, r)) is a lower
bound even without updates, cf. [2, Theorem 1].

References

[1] N. Blum and K. Mehlhorn, On the average number of
rebalancing operations in weight-balanced trees, Theoret.
Comput. Sci. 11 (1980) 303-320.

[2] R.M. Karp, R. Motwani and P. Raghavan, Deferred data
structuring, SIAM J. Comput. 17 (1988) 883-902.

[3] K. Mehlhorn, Data Structures and Algorithms, Vol. 1: Sort-
ing and Searching (Springer, Berlin, 1984).

[4] J. Nievergelt and E.M. Reingold, Binary search trees of
bounded balance, SIAM J. Comput. 2 (1973) 33-43.

[5] M.H. Overmars, The Design of Dynamic Data Structures,
Lecture Notes in Computer Science 156 (Springer, Berlin,
1983).

o~ % — £
&7 T4

update path pseodo-leaves

collapsed

Fig. 2. A rotation which causes two pseudo-leaves to be collapsed.

39



Volume 35, Number 1 INFORMATION PROCESSING LETTERS 15 June 1990

[6) M.HM. Smid, Dynamic deferred data structures, ITLI age media, Ph.D. Thesis, University of Amsterdam,
Prepublication Series CT-89-01, Departments of Mathe- Amsterdam (1989).
matics and Computer Science, University of Amsterdam, [8] D.E. Willard and G.S. Lueker, Adding range restriction
Amsterdam (1989). capability to dynamic data structures, J. ACM 32 (1985)
[7] M.H.M. Smid, Dynamic data structures on multiple stor- 597-617.



