
Algorithmica (1997) 17:183-198 Algorithmica
~) 1997 Springer-Verlag New York Inc.

Maintaining Dynamic Sequences under Equality Tests
in Polyiogarithmic Time I

K. Mehlhorn , 2 R. Sundar, 3 and C. Uhr ig 2

Abstract. We present a randomized and a deterministic data structure for maintaining a dynamic family of
sequences under equality tests of pairs of sequences and creations of new sequences by joining or splitting
existing sequences. Both data structures support equality tests in O (1) time. The randomized version supports
new sequence creations in O(log 2 n) expected time where n is the length of the sequence created. The
deterministic solution supports sequence creations in O (log n (log m log* m +log n)) time for the mth operation.

Key Words. Algorithms, Data structures, Derandomization, Randomization, Sequences.

1. I n t r o d u c t i o n . We present a data structure for mainta ining dynamica l ly a family 3 r

o f sequences over a universe U. Let s l , s2 be sequences, aj c U for j ---- 1 n, and let

i be an integer, then the data structure supports the fo l lowing operat ions on an initially

empty family o f sequences:

�9 M a k e s e q u e n c e (s , a l) : Creates the sequence Sl --- a].

�9 Equa l (s1 , s2): Returns true if sj -- s2.
�9 C o n c a t e n a t e (s j , s2, s3): Creates the sequence s3 = sl,32 without destroying .31 and s2.

�9 Spl i t (s] , s2, s3, i): Creates the two new sequences s2 -- a] �9 �9 "ai and .33 ---- a i + j . . , a,~

without destroying s] ---- a] . . . a , , .

We present two solutions: one randomized and one determinist ic . The determinist ic

solution is essential ly a derandomiza t ion of the randomized solution. Table 1 lists the

t ime bounds for the ruth operat ion in a sequence o f operations. The incremental space

cost is given in Table 2. We use n to denote the total length of all sequences involved in

the ruth operation.
We use the standard R A M model o f computat ion. In particular, we assume that the

Word size w is at least log max(n , m), that ari thmetic on words o f length w takes constant

t ime, and that a random bitstring o f length w can be chosen in constant time. The problem

of mainta ining dynamic sequences with equali ty test arises mainly in the implementa t ion

o f high-level p rogramming languages like SETL, where sequences are supported as a

pr imit ive data type and equali ty tests are al lowed.

The best previous determinis t ic solut ion is due to Sundar and Tarjan [ST]. They

achieve constant t ime for the equali ty test and amort ized t ime O (~ + log m) for

I This work was supported by the ESPRIT Basic Research Actions Program, under Contract No. 7141 (Project
ALCOM I1).
2 Max-Planck-lnstitut fur Informatik, Im Stadtwald, D-66123 Saarbrticken, Germany.
3 Department of Computer Scieoce and Automation, Indian Institute of Science, Bangalore 560012, Iddia.

Received November 5, 1994; revised June 15, 1995. Communicated by B. Chazelle.

184 K. Mehltiom, R. Sundar, and C. Uhrig

Table 1. Time bounds.

Operation Randomized Deterministic

Equal 1 1
Makesequence 1 log m
Concatenate O(log 2 n) O(log n(log m log* m + log n))
Split O(log2 n) O(logn(logmlog*m+logn))

an update operation. The amortized space required per update is O (v/if). Our solution is
exponentially better. Pugh [P] and Pugh and Teitelbaum [PT] gave a randomized solution
for the special case of repetition-free sequences (i.e., ai 5s ai+l for all i, 1 < i < n). It
has logarithmic expected running time per operation.

We now give a brief account of our randomized solution. We compute for each
sequence s a unique signature sig(s) in [0 m3]. This signature is used to perform equality
tests. The signature of a sequence s = ala2 .. "an with ai 5 s ai+l for all i, 1 < i < n,
is computed as follows (the extension to general sequences is described in Section 3):
First, s is broken into blocks (subsequences) of length at least 2 and expected length
at most logn. Secondly, each block, say b = ai . . . aj , . is replaced by a single integer
which is computed in a Homer-like scheme by means of a pairing function p, i.e., b is
replaced by p(ai , p(ai+l p (a j -1 , a j)) . . .) . Afterward, the same rules are applied
to the shrunken sequence until the sequence has length 1. The depth of nesting in this
recursion is O(log n). Randomization is used to break a sequence into blocks. For each
element of the sequence a random real number is chosen and blocks begin at local
minima. In this way blocks (except maybe the first) have length at least 2. Also the
expected length of the longest block is O (log n) (since the probability that a sequence
of k random real numbers is increasing or decreasing is 2 /k !) . The update algorithms
only need to manipulate a constant number of blocks in each level of the recursion and
hence spend time O(log n) in each level. The O (log 2 n) time bound results.

In our deterministic solution we replace the randomized strategy for breaking a se-
quence into blocks by a deterministic one which we exhibit in Section 2. It is based
on an algorithm for three-coloring rooted trees (we consider a sequence to be a rooted
tree) by Goldberg et al. [GPS], which is a generalization of the so-called deterministic

coin-tossing technique of Cole and Vishkin [CV]. We generate blocks of length at most
4 and decide for each index i whether ai starts a new block by looking only at O (log* m)
neighbors of ai. The update algorithms have a recursion depth of O (log n). On each
level they have to manipulate a balanced tree of depth O (log n) spending O (log n) time.
Furthermore, they have to handle O(log* m) blocks spending O(log m) time for each.

This paper is structured as follows. In Section 2 we give randomized and deterministic
rules for decomposing a sequence into blocks, in Section 3 we define a hierarchical

Table 2. Incremental space cost.

Randomized Deterministic

O(log 2 n) O(log n(log n + log* m))

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time ! 85

representation of sequences based on the block decomposition, and in Section 4 we
show how to realize the various operations.

2. The Block Decomposi t ion . We first give the randomized block decomposition. Let
U be a universe and s = al . . �9 an with ai E U and ai ~ ai+l for all i, 1 < i < n - I.
Each element a 6 U is assigned a random priority prio(a) ~ [0, 1]. We represent these
priorities with sufficiently large finite precision that guarantees that all priorities are
distinct. In Section 4 we show that the expected number of bits in the representation of
a priority is small and that this will not affect the complexity of the operations.

An element ai of s is a local minimum of s if it has a successor in s and its priority is
a local minimum in the sequence prio(al) �9 �9 pr io (a ,) of priorities corresponding to s.

R A N D O M I Z E D MARKING RULE. Every local minimum is marked.

Then at every marked position (and at position 1) a block starts. It ends just before
the next marked position (the last block ends at position n).

We next give a deterministic construction to divide a sequence into suitable blocks.
As mentioned above, the underlying algorithm is essentially a sequential version of the
so-called three-coloring technique f o r rooted trees of Goldberg et al. [GPS] (which in
turn is a generalization of the deterministic coin-tossing technique of Cole and Vishkin
[CV]) and can be considered as a constructive proof of the following lemma.

LEMMA 1. Forevery integer N there is a funct ion f : [- I . . N - l] l~ ~ {0, 1}
such that f o r every sequence al . . "an ~ [0..N - l]* with ai ~ ai+l f o r all i with

l < i < n the sequence di . . . dn ~ {0, 1}* defined by di : = f(t~i-log* N-6 a i + 4) ,

where hj = aj f o r a l l j with 1 < j < n and {tj = - ! otherwise, satisfies:

I. di q-di+l <_ l f o r l < i < n,

2. di + di+l -k- di+2 + di+3 >_ I f o r all i, i < i < n - 3,

i.e., among two adjacent di 's there is at most one I, and among f o u r adjacent di ' S there

is at least one 1.

The sequence d l " ' " dn is used to decompose the sequence au �9 . .a , , into blocks ac-
cording to the following rule: Start a new block at index i -- i and at every index i with
di = 1. It is clear that no block has length exceeding 4 and that all but the first and last
block have length at least 2.

In the following subsection we review the three-coloring technique. Lemmas 2 and
3 are due to Goldberg et al. [GPS] but Lemma 4 is new. In Section 2.2 we explain the
decomposition rule and show how one can derive Lemma 1 from the coloring algorithm.

2.1. The Three-coloring Algorithm. Let s = a j -. �9 a,, with ai E [0 . . N - I] and ai 5 k
ai+l. We consider s as a linked list (which is a special form of rooted tree). A k-coloring
of a list is an assignment C: {aj a,, } -+ {0 k - 1 }. A valid coloring is a coloring
such that no two adjacent elements have the same color.

186 K. Mehlhorn, R. Sundar, and C. Uhrig

Informally it is done as follows. We first compute a valid [-log N]-color ing. Afterward
we replace the elements in the list by their colors, consider the set of colors to be the
new universe, and iterate the coloring procedure. After O(log* N) iteration steps we get
a valid six-coloring which we then reduce by a different procedure to a three-coloring
(of course it is easy to compute a valid two-coloring for a list in time O (n) , but for
our purpose the decisions have to be made "locally," that means the color of an element
must not depend on more than a small neighborhood of the element). The details are as
follows:

Identify each ai (and its color) with its binary representation (which has [-log N]
bits). The bits are numbered from zero and the j t h bit of the representation of a color
of element ai is denoted by Cg (j) . The following procedure has as input the sequence
s = a~ �9 �9 �9 an and computes a six-coloring for s. In each iteration every element ai is
assigned a new color by concatenating the number of the bit, where the old color of ct i
differs from the old color of ai - 1 and the value of this bit. We use C~ to denote the color
of ai and N c denotes the number of used colors.

1. P rocedu re Six-Colors(a1 �9 . . an: sequence);
2. beg in
3. N c + - - N ;
4. foral i i 6 { 1 n } do

5. Ci ~-- ai ;
6. od;
7. whi l e Nc > 6 do
8. C~ +- C1 (0);
9. foral l i 6 {2 n} do

10. j i +-- m i n { j l C i (j) :fi C i - I (j) } ;
1 I. bi +-- Ci (j i) ;
12. C~ +-- 2j i + bi;
13. od;
14. N c ~-- max{C/li ~ { 1 n}} + 1;
15. od;
16. end,

LEMMA 2. The procedure Six-Colors produces a valid s ix-coloring o f a list al �9 �9 "an

w h e r e a i ~ {0 N - l } f o r a l l i , 1 < i < n, i n t ime O(n log* N) .

PROOF. First we show that the procedure computes a valid coloring. Note that C is
valid at the beginning, since ai 7 & ai+l for all i, 1 < i < n - 1. Now suppose C is valid
when we enter the while-loop (line 7). Consider two adjacent elements ai and ai+l for
some i, 1 < i < n. In line 12 ai+l chooses some index j l such that C i + l (j l) --/: C i (J l)
and ai chooses some index j2 such that Ci(j2) 5 ~ C i - l (j 2) . The new color of ai+j is
2j l + Ci+l (j l) and the new color o fa i is 2j2 + Ci (j2) (note that in line 12 we concatenate
the number of the least significant bit, where the old color differs from the old color of
ai - i and the value of this bit). If j l r j2 the new colors are different and we are done.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 187

Otherwise jl = j2 but C i (j i) # Ci+l (j i) by the definition of jj and again the new colors
are different. Thus at the end of the loop the new coloring is also valid.

Now we give an upper bound on the number of iterations. Let L = Flog N] and Lk
denote the number of bits in the longest representation of a color after k iterations of the
while-loop. We show that Lk < I-log k L] + 2, if I-log k L] > 2.

Fork = 1 we have Lj < r logL] + 1.
Now suppose Lk-i < 2flog k-I L] + 2, rlog k L] > 2 and therefore [log k-I L] > 4.

Then

(1) Lk < [logLk_l] + 1

(2) < rlog(21og k-l L)] + 1

(3) < rlog k L] + 2 .

Here (1) follows from the fact that in line 10 ji < ILk- l] and (2) holds by the
induction hypothesis. After log*N + 1 iterations we have [log k L] = 1 and hence
Lk = 3. Then there are three possible values for the index j and two possible values
of the bit bi. Therefore, another iteration produces a valid six-coloring and, since each
iteration takes time O(n) , the time bound follows. []

We can easily compute a valid three-coloring by the following procedure, which
replaces each color Ci E {3, 4, 5} of an element ai by the smallest color in {0, 1,2} not
being assigned to one of its neighbors.

1. Procedure Three-Colors(aj . �9 �9 a,,: sequence);
2. begin
3. Six-Colors(aj �9 �9 �9 a,,);
4. C0 +- oo;
5. C,,+l <--- oo;
6. for c = 3 to 5 do
7. forall i 6 {! n} do
8. if Cg = c then
9. Ci +-- min{{0, 1,2} - {Ci - l , Ci+l }};

10. fi;
11. od;
12. od;
13. end;

LEMMA 3. Theprocedure Three-Colorsproduces a validthree-coloring o fa listal �9 �9 �9 a,,

where ai E {0 N - 1 }.for all i, ! < i < n in time O(n log* N).

PROOF. In line 3 the procedure computes a valid six-coloring. Then each of the three
iterations of the for-statement (line 6) removes one color and preserves the validity of

188 K. Mehlhorn, R. Sundar, and C. Uhrig

the coloring, since every list element whose color is replaced gets a new color different
from the (unchanged) colors of its two neighbors. Therefore, the three-coloring at the
end of the third iteration is still valid. The running time of lines 7-1 1 is obviously O (n)

and the time bound follows. []

2.2. The Decomposi t ion Rule. For any sequence a l . . . a n we define the sequence
dj . - . d , in the following way. We first compute a valid three-coloring by the proce-
dure Three-Colors presented above and then set d i = 1 iff the color of ai (which is now
considered to be an integer in {0, 1,2}) is a local maximum in the sequence of colors
and di ---- 0 otherwise.

For technical reasons, we define the elements ai with i < 1 or i > n to be empty

elements that have no influence on the computation (in Lemma 1 these elements are
written as - 1).

LEMMA 4. Given a sequence a l . . . a , , , the values dl"" dn defined above have the

fo l lowing properties:

1. d i + d i + l <_ l f o r all i, 1 < i < n.

2. d i + d i + l -}- d i + 2 q- d i + 3 >_ l f o r all i, 1 < i < n - - 3 .
3. The value o f di only depends on the subsequence ai-log* N-6 " �9 "ai+4.

PROOF. Property 1 follows from the fact that in a valid coloring any two colors of
consecutive elements are different and thus there are no neighboring local maxima.

For property 2 note that any sequence of four consecutive elements either contains
the color 2 which is always a local maximum or it contains the subsequence 010 where
I is a local maximum.

We prove property 3 in several steps. First, we prove by induction on the number of
iterations of the while-statement in the procedure Six-Colors that for each ai the color
of the valid six-coloring computed only depends on the subsequence ai-log* N-2 ' " " a i .

More precisely, we argue that the color of ai after the kth iteration depends on the
subsequence a i - k �9 �9 " a i . (Remember that k < log* N + 2 (see Lemma 2).) However, this
is easy to see. Before the first iteration, the color of ai is given by ai directly and does
not depend on another element. Now suppose that for each i, l < i < n, the color of ai

after the (k - l) th iteration depends on the subsequence ai-k+l " .ai . During the next
iteration each element ai with 1 < i < n is assigned a new color by concatenating the
binary string representation of the lowest index of the bit where the old color (its binary
representation) differs from the old color of a i - I , and the value of this bit. Therefore, the
new color of ai only depends on its old color Ci and the old color C i - I of element ai - I.

Since Ci depended on ai-k+l �9 " �9 ai and Ci- j on ai-k �9 �9 a i - j , the new color depends on
ai-k " �9 �9 ai, and the induction step is completed.

Next we argue that for each ai the color computed by the procedure Three-Colors only
depends on the subsequence ai-log* N-5 " ' " a i + 3 . This again can be seen by induction on
the number of iterations of the procedure. Before the first iteration, each color Ci depends
on the subsequence a i - l o g * N--2 " " " a i (a s shown above). In each iteration the new color
of an element depends on the old colors of its two neighbors. Since there are only three
iterations, the color of ai in the six-coloring depends on the six-coloring of the elements

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 189

ai-3 �9 �9 �9 ai+3 and therefore on the elements ai-log* N-5 �9 " ' ai+3. To complete the proof for
property 3 note that the value of di is set in dependence on the colors Ci_ ~, C~, and Ci+~

and therefore of the subsequence ai_log. N-6 �9 �9 "ai+4. []

PROOF OF LEMMA 1. Now note that by the definition of the di's the existence of the
functions as demanded in Lemma 1 is proven. []

DETERMINISTIC MARKING RULE. Every position i with di = 1 is marked.

As mentioned before, we now decompose the sequence into blocks by starting a new
block at position 1 and at every marked position.

3. A Hierarchical Representation of Sequences. As mentioned in the Introduction
we implement efficient equality tests by assigning unique signatures to sequences. In
this section we explain how this is done and how sequences are represented. A signature
is a small integer. More precisely, after m operations there is no signature exceeding m 3.
Since we maintain a hierarchy of sequences, i.e., signatures are also assigned to blocks
and subsequences of shrunken sequences, we need more than m signatures.

_/,, with ai 7 & ai+l for all i, Each sequence s can be uniquely written as @ . . .u, ,

l < i < n, and all li being positive integers, where @ denotes a subsequence of li

repetitions of the element ai. Informally, a signature is assigned to a sequence s =
i, . . a[;' in the following way. Each element ai c U gets a signature (this will be a I �9

done by the function si-g(s)). In order to eliminate repetitions, to each power a I' (for
1 < i < n) a signature is assigned. Afterward we compute a block decomposition of the
sequence s i g (@) �9 �9 s i g (@) according to the methods introduced in Section 2. Note that
all neighboring elements in this sequence are different. Then for each block a signature
is computed by repeated application of a pairing function, i.e., pairs of signatures are
encoded by a new signature. The resulting sequence is denoted by shr ink (s) . Afterward
the whole procedure is applied on shr ink (s) , the sequence of block encodings (instead
of the original sequence), and this is repeated until the original sequence is reduced to a
single integer, its signature. We now give the details.

Let S be the cun'ent set of signatures, S = [0..max_sig]. Each element in S encodes
either an element of U or a pair in S x S or a power in S • N>2, i.e., S is the disjoint
union St: USe U SR and there are injections u: Su --', U , p: Sp - ~ {(a, b); a, b 6 S and
a ~: b} and r: SR --~ {(a, i); a ~ S and i 6 N, i > 2}. The inverse functions u, p, and r
are maintained as dictionaries (in the randomized case based on dynamic perfect hashing
and in the deterministic case based on balanced binary trees). In the randomized scheme
every element s 6 S that encodes a power also has a random real priority pr io (s) ~ [0, l]
associated with it. For each such s we only store a finite approximation o f p r i o (s) ; the
approximations are long enough to be pairwise distinct. They are chosen in a piecemeal
fashion, i.e., whenever two priorities need to be compared and are found to be equal they
are extended by a random word. Lemma 9 shows that only approximations of logarithmic
length are needed on average.

We now give a constructive definition of the signature s ig(s) of a sequence s =

190 K. Mehlhorn, R. Sundar, and C. Uhrig

all~ l, with ai ~ ai+l for all i, 1 < i < n and n > 1. The funct ions shrink(s) and
� 9 a n

sig(s) which are used in this defini t ion are defined afterward.
The function sig is defined recursively. In all cases marked by (.) , maxsig is incre-

mented and the corresponding funct ion (r in the definit ion of sig, and u and p in the
definit ion of sig) is extended�9

| s--~(a 1) if

/ r -~ ((a l , l l)) if
sig(s) = | m a x s i g + I if (*)

| s ig(shrink(s)) if

Next we define the function shrink(s) �9 Let n > 1, then the funct ion e lpow(s) (elimi-
nate powers) is defined by

elpow(s) = sig(atl') . . . sig(a~'),

n = l a n d l l = 1,
n = 1, Ii > 1, and (at , I t) E range(r) ,
n = 1, Ii > 1, and (a j , l i) r range(r) ,
n > l .

i.e., every power is replaced by its signature (which is defined above). We denote elpow(s)
�9 l i by gl " ' �9 gn where gi = stg(a i) for all i , 1 < i < n. Note that gi ~ gi+l for all i ,

1 < i < n. Therefore, we can apply the block decomposi t ion introduced in Section 2.
Now let bj �9 . . bk denote the block decomposi t ion of e l p o w (s) , i.e., each bi for all i,
1 < i < k, is a block�9 Then we define shrink(s) by

m

shr ink(s) = sig(bl) - . . sig(bk).
m

Now note that if sig is defined for all sequences s = aj �9 �9 �9 an with ai ~ ai+l for all
i, 1 < i < n (i.e., s contains no powers), then sig is completely defined.

"al if n = l a n d a l E S ,
u - I (a l) i f n----- 1, at E U,

and al ~ range(u) ,
m a x s i g + l if n-----l, a l E U ,

and al ~ range(u) , (*)
p-l((s--~g(aj), s ig(a2))) if n ----- 2 and

(s ig(al) , sig(a2)) ~ range(p) ,
maxsig + 1 if n - : 2 and (s ig(al) , sig(a2))

r range(p) , (*)
sig(a~, sig(a2 sig(a,,_i, a ,) - . .)) if n > 2.

In order to show the correctness of the operation Equal(s l , S2) we have to prove

m

sig(s) =

LEMMA 5. Let st , s2 ~ .T. Then sl = s2 r162 s ig(s i) = sig(sz).

PROOF. It is easy to see that each s 6 S encodes a unique sequence in U* by s imply
runn ing the encoding process backward. []

We next explain how sequences are stored. As above, let s ----- al~ ' . . . a[;', l e t e lpow(s) =

s i g (d l ') . . , sig(a~;'), let b t . . . bk be the sequence of blocks of elpow(s) , and finally let
shrink (s) = sig (bl) . . . sig (bk).

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 191

Then we represent a sequence s by a list of sequences g = (r0 . . . r2t) where r0 -- s
and for all i, 1 _< 'i _< t, "t'2i_ I = elpow('c2i_2) and "t '2i = shrink(r2i_2). Note that
t = O(log n) in both schemes, since blocks (except maybe the first and the last) have
length at least 2 in both schemes.

In order to support the operations we store each rj as a balanced binary tree Tj in
such a way that the symmetric traversal of Tj yields rj. Each node v contains:

�9 An element a of rj.
�9 The size of the subtree rooted at v.
�9 The length of the block corresponding to a in rj_ i.
�9 The sum of the lengths of the blocks corresponding to the elements stored in the

subtree rooted at v.
�9 The mark of the element a if j is odd.

Section 4 explains how this information is used. Each g is maintained as a linked
list of the roots of the trees Tj. ,T" is maintained as a linked list of the heads of these
lists. In the randomized solution the dictionaries are implemented by dynamic perfect
hashing (see [DKM+]) and in the deterministic solution they are maintained as balanced
binary trees. The operations are performed persistently such that none of the sequences
is destroyed (see [DSST] for the details).

4. The Operat ions. The operations Equal and Makesequence are identical in both
cases (randomized and deterministic).

Let sl, s2 be sequences. Then Equal(Sl, s2) can he implemented by returning true if
sig(sl) = sig(s2) and false otherwise. This obviously needs time O (l).

For a c U, Makesequence(s, a) creates a single node binary tree representing s =
sig(a). Therefore it retrieves sig (a) by evaluating u (a) if a c range(u); otherwise, a new
signature is assigned and u is extended.

This requires O(logm) time in the deterministic and O(I) time in the randomized
case.

The operations Concatenate and Split are more difficult to realize, but the basic idea
is simple. When we concatenate sl and s2 all but the O(1) last blocks of st and all but
some few first blocks (O(log* m) for the deterministic and O(1) for the randomized
case) of s2 will also be blocks of sis 2 since the fact whether an element starts a new
block depends only on a small neighborhood of the element (of size O(log* m) in the
deterministic and O (l) in the randomized case).

4.1. The Randomized Update Operations. We first discuss the operation Concatenate.
The input is the hierarchical representations of sequences sl and s2 and we need to
compute the hierarchical representation of s3 = sj s2. The following lemma paves the
way. It states that if we join the suitable trees of the hierarchical representations of st
and s2 to perform the concatenation, then for each tree only a small neighborhood of the
concatenation position differs from the correct tree for the hierarchical representation of
s3 (a corresponding statement holds for the reverse operation split). Therefore, for each
tree of g3 only a small middle part has to be recomputed.

192 K. Mehlhorn, R. Sundar, and C. Uhrig

L E M M A 6. L e t sl = a l " �9 "al, s2 = a/+l �9 �9 �9 a,,, a n d s3 = s l s2 be s e q u e n c e s a n d le t

j > 0 be an integer. L e t s h r i n k J (s 3) = c f . . . c r , i.e., c j . . . c~ is the resu l t o f a p p l y i n g

the s h r i n k o p e r a t i o n j t imes , a n d le t i be s u c h t ha t ci e n c o d e s the s u b s e q u e n c e o f s3

c o n t a i n i n g at. Then:

1. cl " " c i - 5 is a p r e f i x o f shr inkJ (s l) a n d Ishr inkJ (s l) l < i + 5.

2 . C i + 4 . . . C r is a su f f i x o f s h r i n k J (s 2) a n d Ishr inkJ(s2)[< r - i + 7.

PROOF. We use induct ion on j .

For j = 0 there is nothing to prove since s h r i n k ~ = si for all i, l < i < 3. So

assume that the claim holds for some j > 0. We establish the claim for j + 1.
t . t t We denote s h r i n k j+l (s3) by c t . . Cr,, where c i, encodes the subsequence o f s3 con-

taining a / a n d e l p o w (s h r i n k j (s3)) by gl �9 " "gk, where gz encodes the subsequence of s3

containing at. By the induct ion hypothesis we have s h r i n k j (s j) = c l . . . c i - s e l . . ' e p

and s h r i n k J (s 2) = f l " " f q C i + 4 " ' ' C r with p, q _< 10. Then the subsequence encoded

by gl �9 �9 �9 g z - 6 is a proper prefix of that encoded by c l . . . ci 5 and the subsequence of

gz+5 �9 �9 " gk is a proper suffix o f that encoded by ci+ 4 �9 �9 �9 C r. Since the marks are influenced

by at most one predecessor and one successor (by the definition of " local min imum") ,

the marks o f the sequences gl �9 �9 - g~-7 and gz+5 �9 �9 �9 gk are identical to those of the cor-

responding e lements in e l p o w (s h r i n k J (s l)) and e l p o w (s h r i n k j (s2)). Since every block

has size at least 2 it fo l lows that the subsequence c~,_ 4 �9 �9 �9 c~,+3 encodes the subsequence

of e l p o w (s h r i n k j (s3)) conta ining gz-7 " �9 �9 gz+6- Thus c] . . . c~,_ 5 exclusively depends on

cl �9 �9 " c i -5 and therefore is a prefix of s h r i n U +1 (s l) and c~,+4 �9 -- c ' r, exclusively depends

on ci+4. �9 - cr and therefore is a suffix of s h r i n k j+l (sz) .

Let e l p o w (s h r i n k J (s ~)) be denoted by g l . . . g z _ 6 g ~ m . . . g ~ , and s h r i n k J + l (s l)

�9 ' ' encodes a sequence ' ' ' ' Note that the sequence C i , _ 4 . . . C i, by c I �9 c i ,_5e I �9 �9 �9 ep,.
r ! g z - x �9 " �9 g z - 6 " " " g ~ and the sequence e' l - �9 - e p , encodes a sequence g ~- x �9 �9 �9 g z -6 g l "" �9 g ',.

where y < p + 1. gz-x �9 �9 "gz-7 is encoded by at most four e lements (then c~,_ 4 - -- c~, I =
t -

e'j . . . e'4). gz_6g~l . . . g y is encoded by at most F(Y + 1)/2] = [(p + 2) / 2] elements�9 Since

p < 10, p ' _< 4 + 6 = 10. A similar argument shows that q ' _< 10 and we are done. []

L e m m a 6 tells us that all but a small middle part of s h r i n k j (s3) can b e copied

f rom s h r i n k j (s l) or s h r i n k j (s2). The proof of L e m m a 6 also gives the recipe for com-

puting the missing part f rom s h r i n k J (s l) , s h r i n k J (s 2) , and e l p o w (s h r i n k j - l (s 3)) : Let

e l p o w (s h r i n k j I (s3)) = gl "" �9 gk and let gz be the e lement encoding the subsequence o f

s3 conta ining a/. The marks of the e lements gt �9 �9 �9 gz-7 and gz+6 ' " �9 gk are identical to

the corresponding marks in e l p o w (s h r i n k) - I (s l)) and e l p o w (s h r i n k j - I (s2)). We com-

pute new marks for the e lements g~-6 �9 �9 �9 gz+5. Af terward we can compute s h r i n k j (s3) by

comput ing the middle part c i_ 4 �9 �9 �9 Ci+ 3 and copying the other parts f rom s h r i n k j (s j) and

s h r i n k J (s 2) . The split operat ions on the corresponding trees can easily be per formed

in O (l o g n) each: we know the length of those subsequences o f s h r i n k J - I (s l) and

s h r i n k j - I (s2), for which we want to copy the encoding subsequences o f s h r i n k J (s l)

and s h r i n U (s2). Note that in every node v in the trees T, hri,,kJl.,,) and T, hri,,k~2) the length
o f the block corresponding to v (resp. to its e lement) as well as the sum of the lengths of

the blocks corresponding to the nodes in the subtree rooted at v are stored. Therefore, it
suffices to visit a single path to split the tree.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 193

Now the computation of the hierarchical representation s-3 of s 3 is easy to understand.
Generally, all operations are performed persistently. This is essentially done by copying
all nodes that are to be changed and then changing these copies. The details of this
technique can be seen in [DSST].

In the following, Sl = al �9 . . al, s2 = al+l �9 �9 �9 a,,, let s be any sequence, elpow(s) =

gJ �9 �9 "gk, and Z~ is the balanced binary tree for s.

P rocedure RanConcatenate(s l , s2, s3: sequence);

1. Compute Ts~ by joining ~, and T,2.
2. Compute Tetpow~s~) by joining Tetpow~s,) and Tetp,,w~,~2) (in the case that

al = at+l recompute the corresponding element of elpow(s3)).
3. Let s ---- s3, let z be such that gz encodes the subsequence of s3 containing

a / and let s-3 be an empty list.
4. w h i l e Isl > 1 d o

(a) Append s and elpow(s) at the end of the list #3.
(b) Choose (or retrieve) the priorities of the subsequence gz_~'5 . . . gz+4

of g(s) and compute the marks of gz-6"" "gz+4 in Te#,ow~O

accordingly.
(c) Assign shrink(s) to s, where shrink(s) is computed as indicated

above.
(d) Compute T~. If Is[> 1, then compute Tetpow(s) and update z.

5. Append s at the end of s-3.

The complexity of the operation RanConcatenate is given by

LEMMA 7. A RanConcatenate operation requires expected time 0 (log 2 n) and expected

space O(iog 2 n).

PROOF. Lines 1 and 2 require time O(logn) . Lines 4(c) and 4(d) can also be done in
O (log n) by use of the informations stored in the nodes of the trees (see Section 3). Let L
be the number of bits of precision needed to represent a random priority so that all of the
random priorities will be distinct and let [= [L / w] be the maximal number Of memory
words needed to represent a priority. Then line 4(b) needs tim e O ([). In line 4(c) we have
to recompute the signatures of O (i) blocks. Let l be'the maximal length of a block in s~.
Then line 4(c) needs time O (l) to retrieve or create the signatures. Note that priorities are
only assigned to those signatures being elements of a sequence g(s) (see line 4(b)). Line
4(d) again needs time O (log n). Thus we spend time O(log n + l + D per level of the
hierarchy. Since there are O (10g n) recursion steps we need time O (log n (log n + l + f)).

Now we want to compute the expected size of the largest block.

LEMMA 8. E[1] < 21ogn + 2.

PROOF. Let 1' be the length of the longest subsequence of increasing priorities in a
sequence s. Since every block of s is a sequence of elements of increasing priorities
followed by a sequence of elements of decreasing priorities,it follows that E[l] < 2Eli '] .

194 K. Mehlhorn, R. Sundar, and C. Uhrig

We estimate E[l']. Suppose that s = al - �9 -ak and let j and t be positive integers.

and so

Hence,

Pr[[prio(aj) < prio(aj+l) < . . . < prio(aj+,_~)] = 1/t!

P r [3 j : prio(aj) < prio(aj+l) < . . . < prio(aj+t_l)] < k / t !

k

E[l'] <_ [logk] + Z k / t !
t=[logk]+l

< [l o g k] + l

and

E[l] < 2[logk] + 2 < 2[.log Isl] + 2. []

Note that the expected number of signatures (and therefore the incremental space
cost) produced by a Concatenate operation is log 2 n. Furthermore, since n is bounded
b y 2 m , the expected value of maxsig is at most m 3 .

Next we compute the expected number of bits for the priorities. Let m be the number
of sequences in the family and let Prio be the set of priorities. Note that on each level of
Concatenate at most 10 priorities are chosen (line 6). Since there are log n levels and n
is bounded by 2 m there are at most 10m 2 priorities assigned.

LEMMA 9. E[L] <_ 40[logm] + 11.

PROOF. Let agr be a shorthand for "Some two priorities prio 1 and prio2, where priol , prio2
Prio, agree in the first k bits." Then

Pr[agr] < IPriol2 /2 k+l,

and hence

E[L] < 2[.log]Priol] +
k=2 I-log IPriol] + 1

Since IPriol < 10m 2 it follows that

IPriol2/2 k+l < 2[.log IPrior] + 1.

E[L] < 401ogm + 11. []

Thus the expected number of bits needed to represent priorities is small enough to
be represented in O(1) words of memory (f is a constant) and the complexity of the
operations is not affected by more than a constant. It follows that each recursion step
takes expected time O(log n) and the lemma is proven. []

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 195

Now we turn to the split operation. Let sl = a l . . "an, s2 = a l . . . ai, and $3 =

a i+l . . . an . Lemma 6 also suggests how to compute shrinkJ(s2) and shrinkJ(s3) if
shrink j (Sl), elpow(shrink j-1 (s2)), and elpow(shrink j-1 (s3)) are given: Let shrink j (Sl)
be denoted by C l . . . c k where cz encodes the subsequence of sl containing at, let
elpow(shrink j - l (s2)) be denoted by g l ' " g p and let elpow(shrinkJ-l(s3)) be denoted
by h t "" �9 h q. Then choose priorities for the elements gp_ 12"" " gp and h l �9 �9 �9 h 12; compute
the marks for gp_ 1 3 " " �9 gp and h l �9 . . h 13. Lemma 6 guarantees that now all the informa-
tion required to compute shrinkJ(sl) is available, ci . . .Cz-5 is a prefix of shrinkJ(s2),
cz+4" �9 .ck is a suffix of shrink j (s3), and the missing parts can easily be computed.

In the following s and s ' denote sequences, e lpow(s) = gl �9 "" gp, and elpow(s ') =
hi . . . hq.

Procedu re RanSplit(sl, s2, $3: sequence; i: integer);

1. Compute T~ 2 , T~ 3, Telpow(s2), and Telpow(s3) .
2. Let s = s2, s ' = s3, and let #2 and s-3 be empty lists.
3. wh i l e Isl > 1 do

(a) Choose the priorities of the sequence gp-12""gp if necessary;
compute the marks of gp-13""gp in Tetpow~s) according to the
randomized marking rule.

(b) Append s and elpow(s) at the end of the list s-2.
(c) Let s = shrink(s), where shrink(s) is computed as indicated above.
(d) Compute Ts; if Isl > 1 compute TelpowC~).

4. whi l e Is'l > 1 do
(a) Choose the priorities of the sequence h l . . �9 h 12 if necessary; com-

pute the marks of h I �9 "" h 13 in Telpow~s') according to the randomized
marking rule.

(b) Append s ' and elpow(s') at the end of the list #3.
(c) Let s ' = shrink(s'), where shrink(s') is computed as explained

above.

(d) Compute Ts,; if Is'l > 1 compute Tetpow~s').
5. Append s at the end of #2 and s ' at the end of s~.

The complexity of the Split operation is given by

LEMMA 10. A RanSplit operation requires expected time O (log2 n) and expected space
O (log 2 n).

The proof is analogous to that of Lemma 7.

4.2. The Deterministic Update Operations. The deterministic operations are essen-
tially implemented in the same way as the randomized operations. As pointed out above,
the main difference is the computation of the block decomposition. The analogous lemma
to Lemma 6 is the following:

196 K. Mehlhorn, R. Sundar. and C. Uhrig

LEMMA 1 1. Let s~ = a~ . . . a t , $2 = at+~ : " a n , and s 3 = SIS2 be sequences and let

j > 0 be an integer. Let shrink j (s3) = Cl �9 " c r and let i be such that ci encodes the

subsequence o f s3 containing at. Then:

!. c~ . . . c i_ 8 is a prefix o f shrinkJ (sl) and IshrinkJ (sl)l < i + 7.

2. Ci+log* m3+lo"" cr is a suffix o f shrink j (s2) and Ishrink j (s2)l < r - i + log* m 3 q- 11.

The proof is completely analogous to that of Lemma 6. The computation of shrink(s3)

is done as follows: we denote elpow(shr ink j - l (s3)) by gl �9 �9 "gk and gz is the element
encoding the s ubsequence of s3 containing at. The marks of the elements g l �9 - �9 gz-13 and
gz+z log* r n 3 + 1 7 " ' " gk are identical to the corresponding marks in e l p o w (s h r i n U - l (s l)) and

e lpow(shrink j - I (s2)). To compute new marks for the elements gz-lZ' ' 'gz+Zlog* m3+16

we run the algorithm Three-Colors on the subsequence gz_log*m3_18"..gz+21og*m3+20
since at most these elements have influence on the missing marks. Afterward we can
compute shrink j (s3) by computing the middle part c i -7 . "" C / + l o g * m3+ 10 and copying the

other parts from shrink j (sl) and shrink j (s2). Now it is easy to formulate the procedure
DetConcatenate.

In the following let sj = al .- - at, s2 = at+l " �9 �9 a , , let s be any sequence, e lpow(s) =

gl "" �9 gk and Z~ is the balanced binary tree for s.

P r o c e d u r e DetConcatenate(sl , s2, s3 : sequence);

1. Compute T~ by joining T~, and T~ 2.
2. Compute TeJpow~s3) by joining T~tpow~,) and Tetpow~s2) (in the case that

at = al+l recompute the corresponding element of elpow(s3)).

3. Let s = s3, let z be such that gz encodes the subsequence containing
at, and let s-3 be an empty list.

4. whi l e Isl > 1 do
(a) Append s and e l p o w (s) at the end of the list #3.
(b) Run Three-Colors(gz_log, m3_18.., gz+21og*m3+20) and change the

marks of gz-12 �9 �9 �9 gz+2 log* m3+16 accordingly.
(c) Assign s h r i n k (s) to s, where s h r i n k (s) is computed as indicated

above.
(d) Compute Ts. If Is l > 1, then compute Teipo~s~ and update z.

5. Append s at the end of s-3.

The complexity of the operation DetConcatenate is given by

LEMMA 12. A DetConcatenate operation requires time 0 (log n (log m log* m + log n))
and space O (l o g n (l o g n + log* m)).

PROOF. First note that on every level of the hierarchical representation we create at
most O(log* m) new signatures and copy O(log n) nodes by performing persistent tree
operations. Thereby, the space bound follows as well as the fact maxsig < m 3, since
log n is bounded by m.

Maintaining Dynamic Sequences under Equality Tests in Polylogarithmic Time 197

Furthermore, lines 1 and 2 require time O(log n). Computing the new marks (line
4(b)) needs time O((log* m) 2) (we perform log* m 3 iterations on a sequence of length
about 2 log* m3; see Lemma 3). Note that we only have to redecompose a subsequence
of length O(log* m) in line 4(b). For the remaining parts of the sequence we use the
information (and the subtrees) of the hierarchical representations of s~ and s2. Thus,
when computing shr ink(s) (line 4(c)) we need time O (log m log* m) to retrieve or create
the signatures (time O (log m) per dictionary lookup). The building of the trees in line
4(d) is done by split and join operations and needs time O(log n). Thus we spend time
O (log m log* m + log n) per level of the hierarchy. Since there are O (log n) recursion
steps the lemma follows. []

In the following s and s' denote sequences, e lpow(s) = gl �9 " �9 gp, and elpow(s ') =

hi . . . hq .

Procedure DetSplit(sj, s2, s3: sequence; i: integer);

1. Compute T~, T~, Telp,,w(s2) and Telpowc~O.
2. Let s = s2, s' = s3, and let ,(2, s~ be empty lists.
3. whi l e Isl > I do

(a) Run Three-Colors(gp_log.m~_26. . .gp) and change the marks of
gp-20 " " gv in Telp,,w(~ accordingly.

(b) Append s and e lpow(s) at the end of the list s-2.
(c) Let s <-- shr ink(s) , where shr ink(s) is computed as indicated

above.
(d) Compute T~; if Isl > 1 compute Teo,o~'c~).

4. whi l e Is'l > 1 d o
(a) Run Three-Colors(ht . . .h31og.m3+30) and change the marks of

h i . - . h31og.,,3+26 in Teo, owC~,) accordingly.
(b) Append s ' and e lpow(s ') at the end of the list ~(a.
(c) Let s' *-- shr ink(s ') , where shr ink(s ') is computed as indicated

above.
(d) Compute T,,; if Is'l > I compute Telpow(s').

5. Append s at the end of #2 and s ' at the end of ~ .

The complexity of the DetSpl i t operation is given by

LEMMA 13. A DetSpl i t operation requires time O (l o g n (l o g m l o g * m + logn)) and
space O(logn(logn + log* m))

The proof is analogous to that of Lemma 12.

levi

R e f e r e n c e s

R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking.
Inform. and Control. 70:32-53, 1986.

198 K. Mehlhorn, R. Sundar, and C. Uhrig

[DKM +]

IDSSTI

[GPS]

[P]

liT]

IST]

M. Dietzfelbinger, A. Karlin, K. Mehlhom, E Meyer auf der Heyde, H. Rohnert, and R. E. Tarjan.
Dynamic perfect hashing: Upper and lower bounds. Proc. 29th IEEE FOCS, pp. 524-53 I, 1988.
J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.
J. Comput. System Sci., 38:86-124, 1989.
A. V. Goldberg, S. A. Plotkin, and G. E. Shannon Parallel symmetry-breaking in sparse graphs.
SlAM J. Discrete Math., 1(4):434 4~6, 1988.
W. Pugh. Incremental computation and the incremental evaluation of functional programming.
Ph.D. Thesis, Cornell University, 1988.
W. Pugh and T. Teitelbaum. Incremental computation via function caching. Proc. 16th A CM POPL,
pp. 315-328, 1989.
R. Sundar and R. E. Tarjan. Unique binary search tree representation and equality-testing of sets
and sequences. Proc. 22nd ACM STOC, pp. 18-25, 1990.

