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Maintaining Dynamic Sequences under Equality Tests 
in Polyiogarithmic Time I 

K. Mehlhorn ,  2 R. Sundar, 3 and C. Uhr ig  2 

Abstract. We present a randomized and a deterministic data structure for maintaining a dynamic family of 
sequences under equality tests of pairs of sequences and creations of new sequences by joining or splitting 
existing sequences. Both data structures support equality tests in O ( 1 ) time. The randomized version supports 
new sequence creations in O(log 2 n) expected time where n is the length of the sequence created. The 
deterministic solution supports sequence creations in O (log n (log m log* m +log n)) time for the mth operation. 
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1. I n t r o d u c t i o n .  We present  a data structure for mainta ining dynamica l ly  a family  3 r 

o f  sequences  over  a universe  U. Let  s l ,  s2 be sequences,  aj c U for j ---- 1 . . . . .  n, and let 

i be an integer, then the data structure supports the fo l lowing  operat ions on an initially 

empty  family  o f  sequences:  

�9 M a k e s e q u e n c e ( s ,  a l ) :  Creates the sequence Sl --- a].  

�9 Equa l ( s1 ,  s2): Returns true if  sj --  s2. 
�9 C o n c a t e n a t e ( s j ,  s2, s3): Creates  the sequence s3 = sl,32 without  destroying .31 and s2. 

�9 Spl i t (s] ,  s2, s3, i): Creates  the two new sequences  s2 --  a] �9 �9 "ai and .33 ---- a i + j . . ,  a,~ 

without  destroying s] ---- a] . . . a , , .  

We present  two solutions: one randomized  and one determinist ic .  The  determinist ic  

solution is essential ly a derandomiza t ion  of  the randomized  solution. Table 1 lists the 

t ime bounds for the ruth operat ion in a sequence o f  operations.  The  incremental  space 

cost  is given in Table 2. We use n to denote  the total length of  all sequences  involved  in 

the ruth operation. 
We use the standard R A M  model  o f  computat ion.  In particular, we assume that the 

Word size w is at least log max(n ,  m),  that ari thmetic on words o f  length w takes constant  

t ime, and that a random bitstring o f  length w can be chosen in constant  time. The  problem 

of  mainta ining dynamic  sequences  with equali ty test arises mainly  in the implementa t ion  

o f  high-level  p rogramming  languages like SETL,  where  sequences  are supported as a 

pr imit ive data type and equali ty tests are al lowed.  

The best previous determinis t ic  solut ion is due to Sundar  and Tarjan [ST]. They 

achieve constant  t ime for the equali ty test and amort ized  t ime O ( ~  + log m) for 
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Table 1. Time bounds. 

Operation Randomized Deterministic 

Equal 1 1 
Makesequence 1 log m 
Concatenate O(log 2 n) O(log n(log m log* m + log n)) 
Split O(log2 n) O(logn(logmlog*m+logn)) 

an update operation. The amortized space required per update is O (v/if). Our solution is 
exponentially better. Pugh [P] and Pugh and Teitelbaum [PT] gave a randomized solution 
for the special case of repetition-free sequences (i.e., ai 5s ai+l for all i, 1 < i < n). It 
has logarithmic expected running time per operation. 

We now give a brief account of our randomized solution. We compute for each 
sequence s a unique signature sig(s) in [0 m3]. This signature is used to perform equality 
tests. The signature of a sequence s = ala2 ..  "an with ai 5 s ai+l for all i, 1 < i < n, 
is computed as follows (the extension to general sequences is described in Section 3): 
First, s is broken into blocks (subsequences) of length at least 2 and expected length 
at most logn. Secondly, each block, say b = ai . . .  aj , . is  replaced by a single integer 
which is computed in a Homer-like scheme by means of a pairing function p, i.e., b is 
replaced by p(ai ,  p(ai+l . . . . .  p (a j -1 ,  a j ) ) . . . ) .  Afterward, the same rules are applied 
to the shrunken sequence until the sequence has length 1. The depth of nesting in this 
recursion is O(log n). Randomization is used to break a sequence into blocks. For each 
element of the sequence a random real number is chosen and blocks begin at local 
minima. In this way blocks (except maybe the first) have length at least 2. Also the 
expected length of the longest block is O (log n) (since the probability that a sequence 
of k random real numbers is increasing or decreasing is 2 /k ! ) .  The update algorithms 
only need to manipulate a constant number of blocks in each level of the recursion and 
hence spend time O(log n) in each level. The O (log 2 n) time bound results. 

In our deterministic solution we replace the randomized strategy for breaking a se- 
quence into blocks by a deterministic one which we exhibit in Section 2. It is based 
on an algorithm for three-coloring rooted trees (we consider a sequence to be a rooted 
tree) by Goldberg et al. [GPS], which is a generalization of the so-called deterministic 

coin-tossing technique of Cole and Vishkin [CV]. We generate blocks of length at most 
4 and decide for each index i whether ai starts a new block by looking only at O (log* m) 
neighbors of ai. The update algorithms have a recursion depth of O (log n). On each 
level they have to manipulate a balanced tree of depth O (log n) spending O (log n) time. 
Furthermore, they have to handle O(log* m) blocks spending O(log m) time for each. 

This paper is structured as follows. In Section 2 we give randomized and deterministic 
rules for decomposing a sequence into blocks, in Section 3 we define a hierarchical 

Table 2. Incremental space cost. 

Randomized Deterministic 

O(log 2 n) O(log n(log n + log* m)) 
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representation of  sequences based on the block decomposition, and in Section 4 we 
show how to realize the various operations. 

2. The  Block Decomposi t ion .  We first give the randomized block decomposition. Let 
U be a universe and s = al . .  �9 an with ai E U and ai ~ ai+l for all i, 1 < i < n - I. 
Each element a 6 U is assigned a random priority prio(a)  ~ [0, 1 ]. We represent these 
priorities with sufficiently large finite precision that guarantees that all priorities are 
distinct. In Section 4 we show that the expected number of bits in the representation of  
a priority is small and that this will not affect the complexity of  the operations. 

An element ai of s is a local minimum of  s if it has a successor in s and its priority is 
a local minimum in the sequence prio(al  ) �9 �9 pr io (a , )  of priorities corresponding to s. 

R A N D O M I Z E D  MARKING RULE. Every local minimum is marked. 

Then at every marked position (and at position 1) a block starts. It ends just  before 
the next marked position (the last block ends at position n). 

We next give a deterministic construction to divide a sequence into suitable blocks. 
As mentioned above, the underlying algorithm is essentially a sequential version of the 
so-called three-coloring technique f o r  rooted trees of Goldberg et al. [GPS] (which in 
turn is a generalization of  the deterministic coin-tossing technique of Cole and Vishkin 
[CV]) and can be considered as a constructive proof  of  the following lemma. 

LEMMA 1. Forevery  integer N there is a funct ion f :  [ - I . . N  - l] l~ ~ {0, 1} 
such that f o r  every sequence al . .  "an ~ [0..N - l]* with ai ~ ai+l f o r  all i with 

l < i < n the sequence di . . .  dn ~ {0, 1}* defined by di : =  f(t~i-log* N-6 . . . . .  a i + 4 ) ,  

where hj = aj f o r  a l l  j with 1 < j < n and {tj = - !  otherwise, satisfies: 

I. di q-di+l <_ l f o r  l < i < n, 

2. di + di+l -k- di+2 + di+3 >_ I f o r  all i, i < i < n -  3, 

i.e., among two adjacent di 's there is at most  one I, and among f o u r  adjacent di ' S there 

is at least one 1. 

The sequence d l  " ' "  dn is used to decompose the sequence au �9 . .a , ,  into blocks ac- 
cording to the following rule: Start a new block at index i --  i and at every index i with 
di = 1. It is clear that no block has length exceeding 4 and that all but the first and last 
block have length at least 2. 

In the following subsection we review the three-coloring technique. Lemmas 2 and 
3 are due to Goldberg et al. [GPS] but Lemma 4 is new. In Section 2.2 we explain the 
decomposition rule and show how one can derive Lemma 1 from the coloring algorithm. 

2.1. The Three-coloring Algorithm. Let s = a j -. �9 a,, with ai E [ 0 . . N  - I ] and ai 5 k 
ai+l. We consider s as a linked list (which is a special form of rooted tree). A k-coloring 
of a list is an assignment C: {aj . . . . .  a,, } -+ {0 . . . . .  k - 1 }. A valid coloring is a coloring 
such that no two adjacent elements have the same color. 
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Informally it is done as follows. We first compute a valid [-log N]-color ing.  Afterward 
we replace the elements in the list by their colors, consider the set of  colors to be the 
new universe, and iterate the coloring procedure. After O(log* N) iteration steps we get 
a valid six-coloring which we then reduce by a different procedure to a three-coloring 
(of course it is easy to compute a valid two-coloring for a list in time O ( n ) ,  but for 
our purpose the decisions have to be made "locally," that means the color of  an element 
must not depend on more than a small neighborhood of  the element). The details are as 
follows: 

Identify each ai (and its color) with its binary representation (which has [-log N] 
bits). The bits are numbered from zero and the j t h  bit of the representation of a color 
of element ai is denoted by Cg ( j ) .  The following procedure has as input the sequence 
s = a~ �9 �9 �9 an and computes a six-coloring for s. In each iteration every element ai is 
assigned a new color by concatenating the number of the bit, where the old color of  ct i 
differs from the old color of ai -  1 and the value of this bit. We use C~ to denote the color 
of ai and N c  denotes the number of used colors. 

1. P rocedu re  Six-Colors(a1 �9 . .  an: sequence); 
2. beg in  
3. N c + - - N ;  
4. foral i  i 6 { 1 . . . .  n } do  

5. Ci ~-- ai ; 
6. od; 
7. whi l e  Nc > 6 do 
8. C~ +-  C1 (0); 
9. foral l  i 6 {2 . . . . .  n} do 

10. j i  +-- m i n { j l C i ( j )  :fi C i - I ( j ) } ;  
1 I. bi +-- Ci ( j i ) ;  
12. C~ +-- 2j i  + bi; 
13. od; 
14. N c  ~-- max{C/li ~ { 1 . . . .  n}} + 1; 
15. od; 
16. end,  

LEMMA 2. The procedure Six-Colors  produces  a valid s ix-coloring o f  a list al �9 �9 "an 

w h e r e a i  ~ {0 . . . .  N - l } f o r a l l i ,  1 < i < n, i n t ime  O(n log*  N) .  

PROOF. First we show that the procedure computes a valid coloring. Note that C is 
valid at the beginning, since ai 7 & ai+l for all i, 1 < i < n - 1. Now suppose C is valid 
when we enter the while-loop (line 7). Consider two adjacent elements ai and ai+l for 
some i, 1 < i < n. In line 12 ai+l chooses some index j l  such that C i + l ( j l )  --/: C i (J l )  
and ai chooses some index j2 such that Ci(j2) 5 ~ C i - l ( j 2 ) .  The new color of ai+j is 
2j l  + Ci+l ( j l )  and the new color o fa i  is 2j2 + Ci (j2) (note that in line 12 we concatenate 
the number of the least significant bit, where the old color differs from the old color of 
ai - i  and the value of  this bit). If j l  r j2 the new colors are different and we are done. 
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Otherwise jl = j2 but C i (j i)  # Ci+l (j i)  by the definition of  jj and again the new colors 
are different. Thus at the end of  the loop the new coloring is also valid. 

Now we give an upper bound on the number of  iterations. Let L = Flog N]  and Lk 
denote the number of  bits in the longest representation of  a color after k iterations of  the 
while-loop. We show that Lk < I-log k L] + 2, if I-log k L] > 2. 

Fork  = 1 we have Lj < r logL] + 1. 
Now suppose Lk-i  < 2flog k-I L] + 2, rlog k L] > 2 and therefore [log k-I L] > 4. 

Then 

(1) Lk < [ logLk_l]  + 1 

(2) < rlog(21og k-l L)] + 1 

(3) < rlog k L ] + 2 .  

Here (1) follows from the fact that in line 10 ji  < ILk- l ]  and (2) holds by the 
induction hypothesis. After log*N + 1 iterations we have [log k L] = 1 and hence 
Lk = 3. Then there are three possible values for the index j and two possible values 
of  the bit bi. Therefore, another iteration produces a valid six-coloring and, since each 
iteration takes time O(n) ,  the time bound follows. [] 

We can easily compute a valid three-coloring by the following procedure, which 
replaces each color Ci E {3, 4, 5} of  an element ai by the smallest color in {0, 1,2} not 
being assigned to one of  its neighbors. 

1. Procedure  Three-Colors(aj .  �9 �9 a,,: sequence); 
2. begin 
3. Six-Colors(aj �9 �9 �9 a,,); 
4. C0 +- oo; 
5. C,,+l <--- oo; 
6. for c = 3 to 5 do 
7. forall i 6 {! . . . . .  n} do 
8. if Cg = c then 
9. Ci +-- min{{0, 1,2} - {Ci - l ,  Ci+l }}; 

10. fi; 
11. od; 
12. od; 
13. end; 

LEMMA 3. Theprocedure Three-Colorsproduces a validthree-coloring o fa  listal �9 �9 �9 a,, 

where ai E {0 . . . . .  N - 1 }.for all i, ! < i < n in time O(n log* N). 

PROOF. In line 3 the procedure computes a valid six-coloring. Then each of  the three 
iterations of  the for-statement (line 6) removes one color and preserves the validity of  
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the coloring, since every list element whose color is replaced gets a new color different 
from the (unchanged) colors of  its two neighbors. Therefore, the three-coloring at the 
end of  the third iteration is still valid. The running time of  lines 7-1 1 is obviously O ( n )  

and the time bound follows. [] 

2.2. The Decomposi t ion  Rule. For any sequence a l . . . a n  we define the sequence 
dj . - .  d ,  in the following way. We first compute a valid three-coloring by the proce- 
dure Three-Colors presented above and then set d i  = 1 iff the color of  ai (which is now 
considered to be an integer in {0, 1,2}) is a local maximum in the sequence of  colors 
and di ---- 0 otherwise. 

For technical reasons, we define the elements ai with i < 1 or i > n to be empty 

elements that have no influence on the computation (in Lemma 1 these elements are 
written as - 1). 

LEMMA 4. Given a sequence  a l . . . a , , ,  the values dl"" dn  defined above have the 

fo l lowing  properties: 

1. d i  + d i + l  <_ l f o r  all i, 1 < i < n. 

2. d i  + d i + l  -}- d i + 2  q-  d i + 3  >_ l f o r  all i, 1 < i < n - - 3 .  
3. The value o f  di only depends on the subsequence ai-log* N-6 " �9 "ai+4. 

PROOF. Property 1 follows from the fact that in a valid coloring any two colors of  
consecutive elements are different and thus there are no neighboring local maxima. 

For property 2 note that any sequence of four consecutive elements either contains 
the color 2 which is always a local maximum or it contains the subsequence 010 where 
I is a local maximum. 

We prove property 3 in several steps. First, we prove by induction on the number of  
iterations of the while-statement in the procedure Six-Colors that for each ai the color 
of the valid six-coloring computed only depends on the subsequence ai-log* N-2 ' " " a i .  

More precisely, we argue that the color of ai after the kth iteration depends on the 
subsequence a i - k  �9 �9 " a i .  (Remember that k < log* N + 2 (see Lemma 2).) However, this 
is easy to see. Before the first iteration, the color of ai is given by ai directly and does 
not depend on another element. Now suppose that for each i, l < i < n, the color of ai 

after the (k - l) th iteration depends on the subsequence ai-k+l " .ai .  During the next 
iteration each element ai with 1 < i < n is assigned a new color by concatenating the 
binary string representation of  the lowest index of  the bit where the old color (its binary 
representation) differs from the old color of a i - I ,  and the value of  this bit. Therefore, the 
new color of  ai only depends on its old color Ci and the old color C i -  I of element ai -  I. 

Since Ci depended on ai-k+l �9 " �9 ai and Ci- j  on ai-k �9 �9 a i - j ,  the new color depends on 
ai-k " �9 �9 ai, and the induction step is completed. 

Next we argue that for each ai the color computed by the procedure Three-Colors only 
depends on the subsequence ai-log* N-5 " ' " a i + 3 .  This again can be seen by induction on 
the number of  iterations of the procedure. Before the first iteration, each color Ci depends 
on the subsequence a i - l o g *  N--2  " " " a i  ( a s  shown above). In each iteration the new color 
of  an element depends on the old colors of its two neighbors. Since there are only three 
iterations, the color of  ai in the six-coloring depends on the six-coloring of  the elements 
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ai-3  �9 �9 �9 ai+3 and therefore on the elements ai-log* N-5 �9 " ' ai+3. To complete the proof for 
property 3 note that the value of di is set in dependence on the colors Ci_  ~, C~, and Ci+~ 

and therefore of  the subsequence ai_log. N-6 �9 �9 "ai+4. [] 

PROOF OF LEMMA 1. Now note that by the definition of  the di's the existence of  the 
functions as demanded in Lemma 1 is proven. [] 

DETERMINISTIC MARKING RULE. Every position i with di = 1 is marked. 

As mentioned before, we now decompose the sequence into blocks by starting a new 
block at position 1 and at every marked position. 

3. A Hierarchical Representation of Sequences. As mentioned in the Introduction 
we implement efficient equality tests by assigning unique signatures to sequences. In 
this section we explain how this is done and how sequences are represented. A signature 
is a small integer. More precisely, after m operations there is no signature exceeding m 3. 
Since we maintain a hierarchy of  sequences, i.e., signatures are also assigned to blocks 
and subsequences of shrunken sequences, we need more than m signatures. 

_/,, with ai 7 & ai+l for all i, Each sequence s can be uniquely written as @ . . .u, ,  

l < i < n, and all li being positive integers, where @ denotes a subsequence of li 

repetitions of  the element ai. Informally, a signature is assigned to a sequence s = 
i, . .  a[;' in the following way. Each element ai c U gets a signature (this will be a I �9 

done by the function si-g(s)). In order to eliminate repetitions, to each power a I' (for 
1 < i < n) a signature is assigned. Afterward we compute a block decomposition of  the 
sequence s i g ( @  ) �9 �9 s i g ( @ )  according to the methods introduced in Section 2. Note that 
all neighboring elements in this sequence are different. Then for each block a signature 
is computed by repeated application of  a pairing function, i.e., pairs of  signatures are 
encoded by a new signature. The resulting sequence is denoted by shr ink (s ) .  Afterward 
the whole procedure is applied on shr ink ( s ) ,  the sequence of block encodings (instead 
of  the original sequence), and this is repeated until the original sequence is reduced to a 
single integer, its signature. We now give the details. 

Let S be the cun'ent set of  signatures, S = [0..max_sig]. Each element in S encodes 
either an element of  U or a pair in S x S or a power in S • N>2, i.e., S is the disjoint 
union St: USe U SR and there are injections u: Su --', U ,  p: Sp  - ~  {(a, b); a, b 6 S and 
a ~: b} and r: SR --~ {(a, i); a ~ S and i 6 N, i > 2}. The inverse functions u, p, and r 
are maintained as dictionaries (in the randomized case based on dynamic perfect hashing 
and in the deterministic case based on balanced binary trees). In the randomized scheme 
every element s 6 S that encodes a power also has a random real priority pr io ( s )  ~ [0, l ] 
associated with it. For each such s we only store a finite approximation o f p r i o ( s ) ;  the 
approximations are long enough to be pairwise distinct. They are chosen in a piecemeal 
fashion, i.e., whenever two priorities need to be compared and are found to be equal they 
are extended by a random word. Lemma 9 shows that only approximations of  logarithmic 
length are needed on average. 

We now give a constructive definition of the signature s ig(s )  of a sequence s = 
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all~ l, with ai ~ ai+l for all i, 1 < i < n and n > 1. The funct ions shrink(s)  and 
� 9  a n 

sig(s)  which are used in this defini t ion are defined afterward. 
The function sig is defined recursively. In all cases marked by ( . ) ,  maxsig  is incre- 

mented  and the corresponding funct ion (r in the definit ion of  sig, and u and p in the 
definit ion of  sig) is extended�9 

| s--~(a 1 ) if  

/ r  -~ ( (a l ,  l l ) )  if 
sig(s)  = | m a x s i g  + I if  (*) 

| s ig(shrink(s)  ) if  

Next we define the function shrink(s) �9 Let n > 1, then the funct ion e lpow(s)  (elimi- 
nate powers) is defined by 

elpow(s  ) = sig(atl' ) . . .  sig(a~' ), 

n =  l a n d l l  = 1, 
n = 1, Ii > 1, and (at ,  I t)  E range(r) ,  
n = 1, Ii > 1, and ( a j , l i )  r range(r) ,  
n > l .  

i.e., every power is replaced by its signature (which is defined above). We denote elpow(s)  
�9 l i  by gl " ' �9  gn where gi = stg(a i ) for all i ,  1 < i < n. Note that gi ~ gi+l for all i ,  

1 < i < n. Therefore, we can apply the block decomposi t ion introduced in Section 2. 
Now let bj �9 . .  bk denote the block decomposi t ion of e l p o w ( s ) ,  i.e., each bi for all i, 
1 < i < k, is a block�9 Then  we define shrink(s)  by 

m 

shr ink(s)  = sig(bl ) - . . sig(bk).  
m 

Now note that if sig is defined for all sequences s = aj �9 �9 �9 an with ai ~ ai+l for all 
i, 1 < i < n (i.e., s contains  no powers), then sig is completely defined. 

"al if n =  l a n d a l  E S ,  
u - I ( a l )  i f  n----- 1, at E U, 

and al ~ range(u) ,  
m a x s i g + l  if  n-----l,  a l E U ,  

and al ~ range(u) ,  (*) 
p-l((s--~g(aj), s ig(a2)) )  if  n ----- 2 and 

(s ig(al) ,  sig(a2)) ~ range(p) ,  
maxsig  + 1 if n - :  2 and (s ig(al) ,  sig(a2)) 

r range(p) ,  (*) 
sig(a~, sig(a2 . . . . .  sig(a,,_i,  a , ) - . . ) )  if n > 2. 

In order to show the correctness of  the operation Equal(s l ,  S2) we have to prove 

m 

sig(s)  = 

LEMMA 5. Let st ,  s2 ~ .T. Then sl = s2 r162 s ig(s i)  = sig(sz).  

PROOF. It is easy to see that each s 6 S encodes a unique sequence in U* by s imply 
runn ing  the encoding process backward.  [] 

We next  explain how sequences are stored. As above, let s ----- al~ ' . . .  a[;', l e t e lpow(s )  = 

s i g ( d l ' ) . . ,  sig(a~;'), let b t . . .  bk be the sequence of  blocks of elpow(s) ,  and finally let 
shrink (s) = sig (bl) . . . sig (bk). 
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Then we represent a sequence s by a list of  sequences g = ( r0 . . .  r2t) where r0 -- s 
and for all i, 1 _< 'i _< t, "t'2i_ I = elpow('c2i_2) and "t '2i  = shrink(r2i_2). Note that 
t = O(log n) in both schemes, since blocks (except maybe the first and the last) have 
length at least 2 in both schemes. 

In order to support the operations we store each rj as a balanced binary tree Tj in 
such a way that the symmetric traversal of  Tj yields rj. Each node v contains: 

�9 An element a of  rj. 
�9 The size of the subtree rooted at v. 
�9 The length of the block corresponding to a in rj_ i. 
�9 The sum of the lengths of the blocks corresponding to the elements stored in the 

subtree rooted at v. 
�9 The mark of the element a if j is odd. 

Section 4 explains how this information is used. Each g is maintained as a linked 
list of  the roots of  the trees Tj. ,T" is maintained as a linked list of the heads of  these 
lists. In the randomized solution the dictionaries are implemented by dynamic perfect 
hashing (see [DKM+]) and in the deterministic solution they are maintained as balanced 
binary trees. The operations are performed persistently such that none of  the sequences 
is destroyed (see [DSST] for the details). 

4. The Operat ions.  The operations Equal and Makesequence are identical in both 
cases (randomized and deterministic). 

Let sl, s2 be sequences. Then Equal(Sl, s2) can he implemented by returning true if 
sig(sl) = sig(s2) and false otherwise. This obviously needs time O (l). 

For a c U, Makesequence(s, a) creates a single node binary tree representing s = 
sig(a). Therefore it retrieves sig (a) by evaluating u (a) if a c range(u); otherwise, a new 
signature is assigned and u is extended. 

This requires O( logm)  time in the deterministic and O( I )  time in the randomized 
case. 

The operations Concatenate and Split are more difficult to realize, but the basic idea 
is simple. When we concatenate sl and s2 all but the O(1) last blocks of  st and all but 
some few first blocks (O(log* m) for the deterministic and O(1) for the randomized 
case) of s2 will also be blocks of sis 2 since the fact whether an element starts a new 
block depends only on a small neighborhood of  the element (of size O(log* m) in the 
deterministic and O (l) in the randomized case). 

4.1. The Randomized Update Operations. We first discuss the operation Concatenate. 
The input is the hierarchical representations of  sequences sl and s2 and we need to 
compute the hierarchical representation of  s3 = sj s2. The following lemma paves the 
way. It states that if we join the suitable trees of  the hierarchical representations of  st 
and s2 to perform the concatenation, then for each tree only a small neighborhood of  the 
concatenation position differs from the correct tree for the hierarchical representation of 
s3 (a corresponding statement holds for the reverse operation split). Therefore, for each 
tree of  g3 only a small middle part has to be recomputed. 
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L E M M A  6. L e t  sl  = a l  " �9 "al,  s2 = a/+l �9 �9 �9 a,,, a n d  s3 = s l s2  be  s e q u e n c e s  a n d  le t  

j > 0 be  an  integer.  L e t  s h r i n k J ( s 3 )  = c f . . . c r ,  i.e., c j . . .  c~ is the  resu l t  o f  a p p l y i n g  

the  s h r i n k  o p e r a t i o n  j t imes ,  a n d  le t  i be  s u c h  t ha t  ci e n c o d e s  the  s u b s e q u e n c e  o f  s3 

c o n t a i n i n g  at. Then:  

1. cl  " " c i - 5  is a p r e f i x  o f  shr inkJ  ( s l )  a n d  Ishr inkJ  ( s l ) l  < i + 5. 

2 .  C i + 4 . . .  C r is a su f f i x  o f  s h r i n k J ( s 2 )  a n d  Ishr inkJ(s2)[  < r - i + 7. 

PROOF. We use induct ion on j .  

For  j = 0 there is nothing to prove since s h r i n k ~  = si for all i, l < i < 3. So 

assume that the claim holds for some j > 0. We establish the claim for j + 1. 
t . t t We denote  s h r i n k  j+l  (s3) by c t . .  Cr,, where  c i, encodes  the subsequence o f  s3 con- 

taining a / a n d  e l p o w ( s h r i n k  j (s3)) by gl �9 " "gk, where  gz encodes  the subsequence  of  s3 

containing at. By the induct ion hypothesis  we have s h r i n k  j ( s j )  = c l . . . c i - s e l . . ' e p  

and s h r i n k J ( s 2 )  = f l " "  f q C i + 4 " ' ' C r  with p,  q _< 10. Then the subsequence  encoded  

by gl  �9 �9 �9 g z - 6  is a proper  prefix of  that encoded  by c l . . .  ci 5 and the subsequence  of  

gz+5 �9 �9 " gk is a proper  suffix o f  that encoded  by ci+ 4 �9 �9 �9 C r. Since the marks are influenced 

by at most  one predecessor  and one successor  (by the definition of  " local  min imum") ,  

the marks o f  the sequences  gl �9 �9 - g~-7 and gz+5 �9 �9 �9 gk are identical to those of  the cor- 

responding e lements  in e l p o w ( s h r i n k J ( s l ) )  and e l p o w ( s h r i n k  j (s2)). Since every block 

has size at least 2 it fo l lows that the subsequence  c~,_ 4 �9 �9 �9 c~,+3 encodes  the subsequence 

of  e l p o w ( s h r i n k  j (s3)) conta ining gz-7 " �9 �9 gz+6- Thus c] . . .  c~,_ 5 exclusively  depends  on 

cl �9 �9 " c i -5  and therefore is a prefix of  s h r i n U  +1 ( s l )  and c~,+4 �9 -- c '  r, exclusively  depends  

on  ci+4. �9 - cr and therefore is a suffix of  s h r i n k  j+l  (sz) .  

Let  e l p o w ( s h r i n k J ( s ~ ) )  be denoted by g l . . . g z _ 6 g ~ m . . . g ~ ,  and s h r i n k J + l ( s l )  

�9 ' ' encodes  a sequence ' ' ' ' Note  that the sequence C i , _ 4 . . . C  i, by c I �9 c i ,_5e I �9 �9 �9 ep,. 
r ! g z -  x �9 " �9 g z - 6  " " " g ~  and the sequence e'  l - �9 - e p ,  encodes  a sequence g ~-  x �9 �9 �9 g z -6  g l "" �9 g ',. 

where  y < p + 1. gz-x �9 �9 "gz-7 is encoded  by at most  four  e lements  (then c~,_ 4 - -- c~, I = 
t - 

e'j . . .  e'4). gz_6g~l . . . g y  is encoded  by at most  F(Y + 1)/2]  = [ (p  + 2 ) / 2 ]  elements�9 Since 

p < 10, p '  _< 4 + 6  = 10. A similar  argument  shows that q '  _< 10 and we are done. [] 

L e m m a  6 tells us that all but a small  middle  part of  s h r i n k  j ( s3 )  can b e  copied 

f rom s h r i n k  j ( s l )  or s h r i n k  j (s2). The proof  of  L e m m a  6 also gives the recipe for com-  

puting the missing part f rom s h r i n k J ( s l ) ,  s h r i n k J ( s 2 ) ,  and e l p o w ( s h r i n k  j - l ( s 3 ) ) :  Let 

e l p o w ( s h r i n k  j I (s3)) = gl "" �9 gk and let gz be the e lement  encoding  the subsequence o f  

s3 conta ining a/. The marks of  the e lements  gt �9 �9 �9 gz-7 and gz+6 ' " �9 gk are identical to 

the corresponding marks in e l p o w ( s h r i n k  ) - I  ( s l ) )  and e l p o w ( s h r i n k  j - I  (s2)). We com- 

pute new marks for the e lements  g~-6 �9 �9 �9 gz+5. Af terward  we can compute  s h r i n k  j (s3) by 

comput ing  the middle  part c i_  4 �9 �9 �9 Ci+ 3 and copying  the other  parts f rom s h r i n k  j ( s j )  and 

s h r i n k J ( s 2 ) .  The split operat ions on the corresponding trees can easily be per formed 

in O ( l o g n )  each: we know the length of  those subsequences  o f  s h r i n k J - I ( s l )  and 

s h r i n k  j - I  (s2), for  which we want  to copy the encoding subsequences  o f  s h r i n k J ( s l )  

and s h r i n U  (s2). Note that in every  node v in the trees T, hri,,kJl.,, ) and T, hri,,k~2 ) the length 
o f  the block corresponding to v (resp. to its e lement)  as well  as the sum of  the lengths of  

the blocks  corresponding to the nodes in the subtree rooted at v are stored. Therefore,  it 
suffices to visit  a single path to split the tree. 
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Now the computation of the hierarchical representation s-3 of s 3 is easy to understand. 
Generally, all operations are performed persistently. This is essentially done by copying 
all nodes that are to be changed and then changing these copies. The details of  this 
technique can be seen in [DSST]. 

In the following, Sl = al �9 . .  al, s2 = al+l �9 �9 �9 a,,, let s be any sequence, elpow(s)  = 

gJ �9 �9 "gk, and Z~ is the balanced binary tree for s. 

P rocedure  RanConcatenate(s l ,  s2, s3: sequence); 

1. Compute Ts~ by joining ~,  and T,2. 
2. Compute Tetpow~s~) by joining Tetpow~s,) and Tetp,,w~,~2) (in the case that 

al = at+l recompute the corresponding element of  elpow(s3)). 
3. Let s ---- s3, let z be such that gz encodes the subsequence of s3 containing 

a / and  let s-3 be an empty list. 
4. w h i l e  Isl > 1 d o  

(a) Append s and elpow(s)  at the end of the list #3. 
(b) Choose (or retrieve) the priorities of  the subsequence gz_~'5 . .  . gz+4 

of g(s)  and compute the marks of  gz-6"" "gz+4 in Te#,ow~O 

accordingly. 
(c) Assign shrink(s)  to s, where shrink(s)  is computed as indicated 

above. 
(d) Compute T~. If  Is[ > 1, then compute Tetpow(s) and update z. 

5. Append s at the end of s-3. 

The complexity of  the operation RanConcatenate  is given by 

LEMMA 7. A RanConcatenate  operation requires expected time 0 (log 2 n) and expected 

space O(iog 2 n). 

PROOF. Lines 1 and 2 require time O(logn) .  Lines 4(c) and 4(d) can also be done in 
O (log n) by use of  the informations stored in the nodes of the trees (see Section 3). Let L 
be the number of  bits of  precision needed to represent a random priority so that all of  the 
random priorities will be distinct and let [ = [ L / w ]  be the maximal number Of memory 
words needed to represent a priority. Then line 4(b) needs tim e O ([). In line 4(c) we have 
to recompute the signatures of  O ( i)  blocks. Let l be'the maximal length of a block in s~. 
Then line 4(c) needs time O (l) to retrieve or create the signatures. Note that priorities are 
only assigned to those signatures being elements of  a sequence g(s)  (see line 4(b)). Line 
4(d) again needs time O (log n). Thus we spend time O(log n + l + D per level of  the 
hierarchy. Since there are O (10g n) recursion steps we need time O (log n (log n + l + f)). 

Now we want to compute the expected size of  the largest block. 

LEMMA 8. E[1] < 21ogn + 2. 

PROOF. Let 1' be the length of the longest subsequence of increasing priorities in a 
sequence s. Since every block of s is a sequence of elements of  increasing priorities 
followed by a sequence of elements of  decreasing priorities,it follows that E[l] < 2Eli ' ] .  



194 K. Mehlhorn, R. Sundar, and C. Uhrig 

We estimate E[l']. Suppose that s = al - �9 -ak and let j and t be positive integers. 

and so 

Hence, 

Pr[[prio(aj) < prio(aj+l) < . . .  < prio(aj+,_~)] = 1/t! 

P r [ 3 j  : prio(aj) < prio(aj+l) < . . .  < prio(aj+t_l)] < k / t !  

k 

E[l'] <_ [logk] + Z k / t !  
t=[logk]+l 

< [ l o g k ] + l  

and 

E[l] < 2[ logk]  + 2 < 2[.log Isl] + 2. [] 

Note that the expected number of  signatures (and therefore the incremental space 
cost) produced by a Concatenate operation is log 2 n. Furthermore, since n is bounded 
b y  2 m , the expected value of  maxsig is at most m 3 . 

Next we compute the expected number of bits for the priorities. Let m be the number 
of sequences in the family and let Prio be the set of  priorities. Note that on each level of  
Concatenate at most 10 priorities are chosen (line 6). Since there are log n levels and n 
is bounded by 2 m there are at most 10m 2 priorities assigned. 

LEMMA 9. E[L] <_ 40[ logm]  + 11. 

PROOF. Let agr be a shorthand for "Some two priorities prio 1 and prio2, where priol , prio2 
Prio, agree in the first k bits." Then 

Pr[agr] < IPriol2 /2  k+l, 

and hence 

E[L] < 2[.log ]Priol] + 
k=2 I-log IPriol] + 1 

Since IPriol < 10m 2 it follows that 

IPriol2/2 k+l < 2[.log IPrior] + 1. 

E[L] < 401ogm + 11. [] 

Thus the expected number of  bits needed to represent priorities is small enough to 
be represented in O(1) words of  memory (f is a constant) and the complexity of the 
operations is not affected by more than a constant. It follows that each recursion step 
takes expected time O(log n) and the lemma is proven. [] 
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Now we turn to the split operation. Let sl = a l . .  "an, s2 = a l . . .  ai, and $3 = 

a i+l . . . an .  Lemma 6 also suggests how to compute shrinkJ(s2) and shrinkJ(s3) if 
shrink j (Sl), elpow(shrink j-1 (s2)), and elpow(shrink j-1 (s3)) are given: Let shrink j (Sl) 
be denoted by C l . . . c k  where cz encodes the subsequence of sl containing at, let 
elpow(shrink j - l  (s2)) be denoted by g l ' " g p  and let elpow(shrinkJ-l(s3)) be denoted 
by h t "" �9 h q. Then choose priorities for the elements gp_ 12"" " gp and h l �9 �9 �9 h 12; compute 
the marks for gp_ 1 3  " " �9 gp and h l �9 . .  h 13. Lemma 6 guarantees that now all the informa- 
tion required to compute shrinkJ(sl) is available, ci . . .Cz-5 is a prefix of  shrinkJ(s2), 
cz+4" �9 .ck is a suffix of  shrink j (s3), and the missing parts can easily be computed. 

In the following s and s '  denote sequences, e lpow(s)  = gl �9 "" gp, and elpow(s ' )  = 
hi . . .  hq. 

Procedu re  RanSplit(sl, s2, $3: sequence; i: integer); 

1. Compute T~ 2 , T~ 3, Telpow(s2), and Telpow(s3 ) . 
2. Let s = s2, s '  = s3, and let #2 and s-3 be empty lists. 
3. wh i l e  Isl > 1 do  

(a) Choose the priorities of  the sequence gp-12""gp  if necessary; 
compute the marks of  gp-13""gp  in Tetpow~s) according to the 
randomized marking rule. 

(b) Append s and elpow(s) at the end of  the list s-2. 
(c) Let s = shrink(s), where shrink(s) is computed as indicated above. 
(d) Compute Ts; if Isl > 1 compute TelpowC~). 

4. whi l e  Is'l > 1 do  
(a) Choose the priorities of  the sequence h l . .  �9 h 12 if necessary; com- 

pute the marks of h I �9 "" h 13 in Telpow~s') according to the randomized 
marking rule. 

(b) Append s '  and elpow(s') at the end of  the list #3. 
(c) Let s '  = shrink(s'), where shrink(s') is computed as explained 

above. 

(d) Compute Ts,; if Is'l > 1 compute Tetpow~s'). 
5. Append s at the end of  #2 and s '  at the end of s~. 

The complexity of  the Split operation is given by 

LEMMA 10. A RanSplit operation requires expected time O (log2 n ) and expected space 
O (log 2 n). 

The proof is analogous to that of  Lemma 7. 

4.2. The Deterministic Update Operations. The deterministic operations are essen- 
tially implemented in the same way as the randomized operations. As pointed out above, 
the main difference is the computation of  the block decomposition. The analogous lemma 
to Lemma 6 is the following: 
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LEMMA 1 1. Let  s~ = a~ . . . a t ,  $2 = at+~ : " a n ,  and s 3 = SIS2 be sequences and let 

j > 0 be an integer. Let  shrink j (s3) = Cl �9 " c r  and let i be such that ci encodes the 

subsequence o f  s3 containing at. Then: 

!. c~ . . . c i_  8 is a prefix o f  shrinkJ (sl) and IshrinkJ (sl)l < i + 7. 

2. Ci+log* m3+lo"" cr is a suffix o f  shrink j (s2) and Ishrink j (s2)l < r - i + log* m 3 q- 11. 

The proof  is completely analogous to that of  Lemma 6. The computation of  shrink(s3) 

is done as follows: we denote elpow(shr ink  j - l  (s3)) by gl �9 �9 "gk and gz is the element 
encoding the s ubsequence of  s3 containing at. The  marks of  the elements g l �9 - �9 gz-13 and 
gz+z log* r n 3 + 1 7  " ' "  gk are identical to the corresponding marks in e l p o w ( s h r i n U -  l (s l))  and 

e lpow(shrink  j - I  (s2)). To compute new marks for the elements gz-lZ' ' 'gz+Zlog* m3+16 

we run the algorithm Three-Colors on the subsequence gz_log*m3_18"..gz+21og*m3+20 
since at most these elements have influence on the missing marks. Afterward we can 
compute shrink j (s3) by computing the middle part c i -7 .  ""  C / + l o g *  m3+ 10 and copying the 

other parts from shrink j (sl) and shrink j (s2). Now it is easy to formulate the procedure 
DetConcatenate.  

In the following let sj = al .- - at, s2 = at+l " �9 �9 a , ,  let s be any sequence, e lpow(s)  = 

gl "" �9 gk and Z~ is the balanced binary tree for s. 

P r o c e d u r e  DetConcatenate(sl ,  s2, s3 : sequence); 

1. Compute T~ by joining T~, and T~ 2. 
2. Compute TeJpow~s3) by joining T~tpow~,) and Tetpow~s2) (in the case that 

at = al+l recompute the corresponding element of  elpow(s3)).  

3. Let s = s3, let z be such that gz encodes the subsequence containing 
at, and let s-3 be an empty list. 

4. whi l e  Isl > 1 do  
(a) Append s and e l p o w ( s )  at the end of  the list #3. 
(b) Run Three-Colors(gz_log, m3_18..,  gz+21og*m3+20) and change the 

marks of  gz-12 �9 �9 �9 gz+2 log* m3+16 accordingly. 
(c) Assign s h r i n k ( s )  to s, where s h r i n k ( s )  is computed as indicated 

above. 
(d) Compute Ts. If Is l > 1, then compute Teipo~s~ and update z. 

5. Append s at the end of  s-3. 

The complexity of  the operation DetConcatenate  is given by 

LEMMA 12. A DetConcatenate  operation requires time 0 (log n (log m log* m + log n)) 
and space O ( l o g n ( l o g n  + log* m)). 

PROOF. First note that on every level of  the hierarchical representation we create at 
most O(log* m) new signatures and copy O(log n) nodes by performing persistent tree 
operations. Thereby, the space bound follows as well as the fact maxsig < m 3, since 
log n is bounded by m. 
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Furthermore, lines 1 and 2 require time O(log n). Computing the new marks (line 
4(b)) needs time O((log* m) 2) (we perform log* m 3 iterations on a sequence of length 
about 2 log* m3; see Lemma 3). Note that we only have to redecompose a subsequence 
of length O(log* m) in line 4(b). For the remaining parts of the sequence we use the 
information (and the subtrees) of the hierarchical representations of s~ and s2. Thus, 
when computing shr ink(s)  (line 4(c)) we need time O (log m log* m) to retrieve or create 
the signatures (time O (log m) per dictionary lookup). The building of the trees in line 
4(d) is done by split and join operations and needs time O(log n). Thus we spend time 
O (log m log* m + log n) per level of the hierarchy. Since there are O (log n) recursion 
steps the lemma follows. [] 

In the following s and s' denote sequences, e lpow(s )  = gl �9 " �9 gp, and elpow(s ' )  = 

hi . . . hq .  

Procedure DetSplit(sj, s2, s3: sequence; i: integer); 

1. Compute T~, T~, Telp,,w(s2) and Telpowc~O. 
2. Let s = s2, s'  = s3, and let ,(2, s~ be empty lists. 
3. whi l e  Isl > I do  

(a) Run Three-Colors(gp_log.m~_26. . .gp)  and change the marks of 
gp-20 " " gv in Telp,,w(~ accordingly. 

(b) Append s and e lpow(s )  at the end of the list s-2. 
(c) Let s <-- shr ink(s ) ,  where shr ink(s)  is computed as indicated 

above. 
(d) Compute T~; if Isl > 1 compute Teo,o~'c~). 

4. whi l e  Is'l > 1 d o  
(a) Run Three-Colors(ht . . .h31og.m3+30) and change the marks of 

h i . - .  h31og.,,3+26 in Teo, owC~, ) accordingly. 
(b) Append s '  and e lpow(s ' )  at the end of the list ~(a. 
(c) Let  s' *-- shr ink(s ' ) ,  where shr ink(s ' )  is computed as indicated 

above. 
(d) Compute T,,; if Is'l > I compute Telpow(s'). 

5. Append s at the end of #2 and s '  at the end of ~ .  

The complexity of the DetSpl i t  operation is given by 

LEMMA 13. A DetSpl i t  operation requires time O ( l o g n ( l o g m l o g *  m + logn)) and 
space O(logn(logn + log* m)) 

The proof is analogous to that of Lemma 12. 
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