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AT%Dptimal Galols Field Multiplier for V1LS1
MARTIN FURER anp KEURT MEHLHORM

Absiract—Finite or Galois ficld arithmelic is ceniral in many encoding
amd decoding precedures for ervor detecting and errar correcling codes,
In this paper; Y151 designs for Galols fiekd meltipliers ane presenied. For
every prime p, these designs {for GF(p®) muliiplication in seandurd
represemindion) are asyvmplodically aplimal wills respect 1o area A and
time T. Im feci, the bower boumd ATE = Din® is matched Tor every
compuintion Hme T in the range [Rileg n), O0/n)]. Analegons resubis
hodd for variable primes p foa, The designs ane based on (ke DFT on a
struciere similar (0 Fermal rimgs. For p = 2 ke DFT uses 3ih imstead of
igh rosois of wnily.

Inder Terms—AT? aptimal, DFT, Fermal ring, finite fild muliiplier,
integer muliiplier, siamdard represenlation of Galok Nelds, ¥ILS1 design.

L. INTRODUCTHIN

For every prime geoand 7 = 1, thene s exactly one finite or Galois

fiekd GF{ p") with p" elements, For i = 1 the Grise Geld GF{ ) is
just &, = EpZ the field of integers modulo p. For n o> 1 the
standard representation of (Galas Gelds = that by the polynomials of
degree = i — | over £ mixdulo a polynomszal of degree m which is
irreducible over Z,. Equivalently the elements of the weclor space
CGFp™) over Z, are given by coordinates relstive 0 8 hasis of the
form {1, @, &?, -+, "'}, Naturally, there are other representa-
tions (=g, , by powers of a prumigive element) where maltiplication is
axzy, but then addition is hard [19].

Galois fiekd arithmetic is central fo mast error detceting and ermor
correcting codes [4], [8], [¥]. The most inporiast practical case i
p o= 2, Circuits and chips have been propesed o do Gabois Teld
arithmetic (c.g., [18]). These designs ame measonable for the case
CF(E%), but For o ool much greater than 4, the corresponding
generalizations of these designs gel gquite big, besause the asympiotic
complexity s far from being optimal. More efficient GF{27)
mudtipli=rs are possible for many exponents A (including n = 4) [&],
when the irreducible polynomial s allowed & be poaprimitive,

In this paper, we exhibit an AT -optimal Galows field multiplicr
based an the AT -optimal imeger mulipliers [11], [13] for the
synchromous model of VLSL (5], [17). Albough owr design is
asympeedically optimal, suboptimal varants of o are preferable for
smadl m, We will nil explore these variants in ise present paper bait
rather refer the reader o |1 1] where practical (but suboptimal) integes
mulliplin:n: are discussed. Their ideas carry over o Galois Fedd

Galpis fickd multiplication s dome @ wo seps, AL firss two
polynoamials (of degree m— 1) over Z, are muluphied, thes the
resubling polynomial is reduced modulo a fived irreducible polyno-
mial {of degree f). These tao sleps ane described in Sections [1 and
T, Multiplication of polynomials s dose by discrete Fourier
transform (DFT). Especially for g = 2, il 15 more involved for EPIII
than for Zx]. We conclude wih an extension to the case of varishle
[, and state saome open problems.
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Il MuLTiPLYING TwWo POLYROMIALS DOVER £p.

Let Adx), Bilx) € Z,lx] ke two polynomials of degree a1 — 1. We
want o compute Cix) = A(xB{x) by making use of the DFT.
Schanhage |15] suggested the following sirategy.

We treal the case p # 2 first. Let T € [log m, ~m] be an even
power of two and bet & be a malisple of T2 with p [ K and £T = 2n.
Wi will describe 8 design with execution time (T} and area
N/ TE). It is based on DFT of order T,

Lt

Tea-1

Alxd= 3, Adx)et

i=0
where the A,'s are (k — 1)-degree pelynomials in x,
Define
Te2-1
Atyy= % Adx)y' € Zlxll ¥l
im0

The polynomial B{¥) iz defined similarly. Let Oyp) =
A(yHB(y). Then Cix) = Clx") and the coefficients of £ are
polynomials of degree 24 — 2, Withoao! loss of information, they can
ke imterpresed &5 clements of

Zalx]x 4 1) =: R,

We compute O F) from Ay} and B(¥) by DFT, pointwise
multiplication and DFT " over the ring 8.

Schionbage and Strassen [16] have introdeced the DFT basad on
Fermat rings instcad of ficlds. We follow the presentation in [2]
replacing 2 by x.

Defimision; An element w of & commutative rfing with unity is a
principal Tth root of writy if

P |
i1 w=i, 3 «T=1, and 1) E i )
d=il

for l=gq=T.

Hence, principal rocts of unity in sings have the main properties of
primitive roots of unity i fuelds.

Propoasition: Let The a positive power of 2, w be a pasitive power
of x, and p be 2n odd prime. Then T and w have multiplicative
inverses and o 18 a principal Tth root of omity in &, ) ™ + 1)

" Proof: T has an iaverse even m & .bn:mp? T Modulo w77
+ 1, we have w” = (w3 = (1) = | implying o= = |,
Let T = 2% Then

r-1i r=1
Y wr=[l 0 +w)  foralq.
Amil =@

For |l = g < Tthereisani £ [0, ---
amdd 2% g/ T is odd, This implics

o #= 1} such thar T2 g,

4@ m =10 Tag,

amd
T=1
Y wh=0. "
Jmil

As a comsequence of the proposition, the T-podnt discrete Fourier
transform (with respect fo w) amd its inverse exist in ihe ring
Zylx)iw™ + 1)

We choose w7 = x¥ je, w = %7 The DFT requires
sddition of ring ebements and multiplication by powers of w. Sinoe &
= Zlex™ + 1), additions are simple and take time G{log o).
Also mulaplications by powers of w are almost cyclic shifis (mote that
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¥ m — 1} of the coxfficiems of the polynomials. From mow on we
procesd exactly as in [§1], i.e., we compate the DFT on a ~T = T
mesh of midules—each module holding an elemens of & (iniially a
coefficient of A or B)—with O(T) exchange steps of clements
between adjacent madules and CMlog T anthmetic steps. Esch
eachange siep tikes time T 1, and each arithmetlc step can be
diane in time O{T/log T). For the details we refer the reader 1o [11].
The peintwise multiplications are also in complete anakogy o [11].

We now murn io the more diffbculi case g = 2, using sgain an idea
of Schinhage [15].

Unforunstely, there is no inverse of the wsual 2'-poimt DFT.
becawse 7 = 2 has o imverse in Z,[x)fx™ + 1). Therefore, &
T:' = 3'I-F"Ii|“ DFT is 'El‘hpll.'l_'f'ﬂd. Hﬁ{:hﬁ' the ““Fermat W|r|‘|.:.mi3]""
#* + 1 is replaced by ¥ + x* 4 | with & a multiple of T/3,
Choosing w = ™' implies.

wf P ™ el =0 in EePrE x5+ 1),

W know kel DFT's work in febds, and we argue why they work
also in the ring

Ealx]ix’*+xt+ 1)

In Zzlx], the god of x™ — 1 arsd i3 derivative 3&x™ " is | for &
odd. Thersfore, x¥ — 1 and s divisor ¥ + ¥*¥ + 1 have no
multiple irreducible lEctors. By the Chinese Remainder Theorem
Zilx 1 + 2% + 1) is isomorphic to the direct product of the fiekds
Zolx ) pox), where the p;{x) are the irreducible factors of x4 x*
+ L. All we have w make sure is that the isomorphism maps o inio a
primative Fih root of unity in cach direet factor, But this is the case
P

w? T T | =) modulo all pox)
{2 15 a root of the Tih cyclotomic palysomial} implics
wh= 1 and @™ modulo all gdx).

Hence, the DFT amd il mverse work Nne and can be compubed fast
by the following algornithm (for T o power of 3, & the smallest odd
multiple of T#3 not less than 20/ T, w = x™'T and arithmetic modubo
2 &+ xt + 1),

DFT(w; g, <=, @r_a):
if T = | then DFT{w;: @) : = g clse
f:= T/%
wf:=0wmwi — 1do
b= a + Wy * @y
o= ':“'_.: | "T..'h":'"l + ﬂ,u!r"’ﬂh-"r
'lf_:l H t’“_.l + 'u'_.u-.ll:ﬂjl + |jl_l+:|.|.|;|":|.|.|;|1'
DFTiw; @, =, @r_1) i= (DFT{w*; by, - - -. b o), DFTw®; o
voe ) DFT Y dy, - -+, de 0.

The arichmetic modulo x*% + x¥ + | can be replaced by arithmetic
misdulo

s =t e xt+ 1Mt - 1)

with anly the final resulis reduced further. Then multiplication by
powers of w s just a cyclic shift.

We now progecd exacily as the case p 2 2 cmoept for ome
difference. The computstion of the DFT of order T on the vT x &T
mesh consists of three phases. (ef. (11, Appendix 2])

1} & DFT of order +T on all columns,
2F hecal multiplications by pewers af w,
Iy DFT of onder T om all rows.

Steps | and 3 are realized by computing the DFT on 2 linear array of
processors of leagth Q0T ) s tme O T ). MNote, howeaver, that T
wias a power of two in the case @ # 2 and B oa power of three ow,
We meed the following lemma with m = T,
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Lemma: Let s = 3% Then the mith order DFT of an m-wector can
be compuicd on & lincar array of m processing units in Q)
exchange steps and Olog o) arithmetic scps.

Progf: We refer w the recursive definition of the DFT givea
above; replace T by m. We stant with element &, storsd in the ith umir.
We can clearly transport in time Q0m) the clemenis dp, &, m
By 4 2myy W processing unis £ F + mS3, 0+ 2msS inoparalleld for i §,
0 = i< m/3 We then compute &, ¢, J, with 041} arithmetic steps
amd compbete the DFT by computing in parallel three DFT's of one
third the size. The time bound fllows, [ |

III. REpueTion MopuLo Al IRREDUCIELE POLYHOMIAL
The: sraightforward methed of reducing o 2o~ | degree polymo-
mial mdule an extremely simple polynomial like 2 = | casses (x)
wires to cross (m) others amd has thus an area (n®), We need o
perform much better for mone complicated polynomials.
Ia order 1o reduce

-1 5
Pixy= E dyxd modulo q[:}-E B,

Juip il

we bol

(glx)) "= E 4}

J= -

pixMglxn~'= % dax,

i=—m
and we compure the first & lerms

Cows €opn-nr """ s T2y arul ﬂl.q-h ne ',d}

of thess formal Laorent serica. We “round ™ plxMgix)) ' o

=1
sixy="% dx’
F=i
amd obdain the remainder
rlx)=pix) —glx)s{x)
which is & polynomial of degree n—1 congruent o pix) modulo
qix).

Actuzlly, ihe first m coefflclens e, =+, €onup oF (g1~ can
be preprocessed. And together with the cocfficients by, <+, b, of
qlx), they are built into the harcwane of the chip. In fact, we can do
even betier by storing direcdy their Fourier transforms, In any case,
we have shown the following.

Theorem I; For every fixed prirme p there is a class of ¥YLSI
designs doing Caleds Geld mubliplication, The design with parameters
n & Nand T € [log n, vr] does GF{ p*) multiplication in standard
nitation (moduala 8 buili-in imeducible polynomizl of degree o over
o) in time C{T) and has aren A with AT? = 3{a?),

This result is optimal, because the lower bound argument for
integer multplication [1], [3] exiends o Galois felds,

IV. ExTensions aND OFEN PROBLEMS

We have so fur investigared the complexity of GFTp™) multiplica-
tion for fixed & and variable 5. We oow deal with the case of variable
@ and @, i.e., we investigate the complexity of GF p%) multiplizrs as
a fonction af r and p. Mow assunee that elements of GFp") ane
given in stardard Form with their coefficients {elements of Z,) given
as bimary imegers,

Theorernt 2 Every class of GF{ ™) multipliers necds AT? = Qiln
bog 2120, and for every T € [log o + loglog p, +# fog 2] there are
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G-‘;'tp*] multipliers with area A, time £{T), and AT? = Mn log
g 8

The byaer boumd argument extends bo this case, because in sdditon
to the shifting of coefficients, shifts within the (hinary) coefficients
can easily be prodeced.

To obtain the upper bound, we wse A T -optimal integer mubiapli-
cation and 'tnwulnﬂmﬂn}'ingapmummm:lhimq'

irtatson of gt

The: similarity between the polynomial arithmetic and the imeger
arithmetic wsed in the VLSI design of Theorem 2 suggests that
acooally the same pieces of hardware could serve cither purpose.
Therefore, the same chip can be used for multiplication in any Galais
field GF(p*) with p* = 27, Then a prime o and an irreducible
polynomial gix) over £, are additional inputs. Divisions by g and
g Lx) have 1o be caleulated on the chip; hence, the range of T i & linle
bit restriceed (3], (100, [12], [14].

Theorem 3: Por every T € [{lag m)'*, fmr], there s a
WLSI desipn doing GF( ") multiplication in fime (T ) and arca
A = O(m* T} on a single chip for any p and & with p* = 2"

Clpen Problems:

I} What are the parallel and VL5 complexities (T and AT
msasares) for computing

a) inverses in G pT)?
b inverses in £.7
chothe god of negess?

21 Which Sl'.'A]:IMEL'H:au'DrIE ol our theorstical designs should he
avpides] in order to obtain the most efficlent peaciical chips daing
GilF( p™) multiplication for reasonsble velees of g and m?

Rermark: o € GF(p" " implies =1 = 1, and therefore
@™ -t = !, This yields ondy an AT? = Oin*log p)* algorithm
for La), while the lower bound i 000 log 212 Already 15} seems to
be difficulr, becauss inverses in &, are compoied by Euclid's
algorithm, for which no efficlent parallel version is known (see [7]).
But we cineed exclude that 1k might be easier than 1c).
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