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We consider a special case of the hidden line elimination problem. The scene consists of n isooriented rectangles in R> and
an observer at z = + co. We give an algorithm that computes the visible parts of the edges on a random access machine in time
O(n log n + k log(n*/k)), where k is the number of line segments in the output, and uses O(# log n) space.
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1. Introduction

We consider the following problem: Given n
isooriented rectangles in R> i.e., rectangles which
are parallel to the xy-plane and whose edges are
parallel to the x- and y-axis, compute and report
all parts of the edges, that are visible to an ob-
server at z = + oo (see Fig. 1).

The hidden line elimination problem is of con-
siderable interest. The running time of most hid-
den line elimination algorithms depends on the
complexity of the projected scene, i.e., on the
number of intersections between the edges pro-
jected into the xy-plane. Of course, in general,
many of these intersections are invisible to the
observer. The first output-sensitive algorithm for
the hidden line elimination problem of isooriented
rectangles was described by Giiting and Ottmann
[6]. They achieved running time O((n +
k)(log n)?), where k is the number of the visible
parts of the edges. Preparata et al. [10] have im-
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proved the running time to O(n(log n)* +
k log n). They also mentioned, that one can reach
running time O((n + k)log n log log n) using dy-
namic fractional cascading [8]. Bern [3] presented
an algorithm with running time O(n log n log
log n+ k log n). He recently [4] improved the
running time of his algorithm to O((n + k)log n).
Another O((n + k)log n) algorithm was given by
Atallah, Goodrich and Overmars [1].

The algorithm described in this paper is almost
identical to Bern’s improved algorithm, although
the analysis is slightly sharper at one point. It was
found independently from his work. It runs on a
random ‘access machine in time O(n log n+
k log(n?/k)) and uses O(n log n) space. Note

Fig. 1. A scene of rectangles.
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that for small and great k the running time is
optimal. It was first presented at a DFG-col-
loquium in Paderborn in June 1989.

As many researchers before, we use plane sweep
to solve the problem. First we sweep a plane
parallel to the xz-plane along the y-axis and com-
pute the visible parts of the edges, being parallel
to the x-axis. Afterwards we sweep a plane paral-
lel to the yz-plane along the x-axis to compute the
visible parts being parallel to the y-axis. We main-
tain the intersection of the sweep-plane with the
scene in a static segment tree. Whenever a rectan-
gle starts (ends), an appropriate segment is in-
serted into (deleted from) the segment tree and its
visible parts are computed.

Using standard results about segment trees, the
approach outlined so far yields a running time of
O((n + k)(log n)?). We introduce two techniques
to improve upon this.

(1) We augment the segment tree with ad-
ditional information which allows us to identify
visible parts in time O(log(n’/k)) per part. The
additional information records for each node of
the tree the highest and lowest visible part stored
in its subtree. This type of augmented segment
tree was already used in [3]; our running time
analysis is slightly sharper than his.

(2) We show how to solve a two-dimensional
hidden line problem for a set of ¢ horizontal line
segments in the xy-plane in linear time O(gq). This
assumes that the endpoints of the line segments
have distinct integer coordinates in {1,...,2q}
and that the line segments are given in order of
decreasing z-coordinate. We use this algorithm to
solve the hidden line problem for the node lists of
all nodes of the segment tree in total time
O(n log n). This technique is also used in [4].

This paper is organized as follows. In Section 2
we define the augmented segment tree, give a
sketch of the main program and present the proce-
dure that computes the visible parts of an edge. In
Section 3 we show the correctness and analyze the
running time of this first version of the algorithm.
Section 4 gives the modification of the data struc-
ture, explains the preprocessing phase and shows
how the algorithm uses the modified data struc-
ture. Finally, Section 5 contains the analysis of the
final algorithm.
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2. The basic algorithm

As mentioned in Section 1 of the paper, we
perform space sweep twice; first, a plane parallel
to the xz-plane is swept from y = —c0 to y = + 0
to compute the visible parts of the edges parallel
to the x-axis, which we call from now on horizon-
tal. Later a similar space sweep along the x-axis
computes the visible parts of the vertical edges,
namely those being parallel to the y-axis. We only
consider the first sweep.

For simplicity let all rectangles have pairwise
disjoint coordinates and let all z-coordinates be
positive.

At any position of the sweep plane, its intersec-
tion with the scene of rectangles is a set H of
horizontal segments. Initially (at position y =
—o0) H is empty. Whenever the sweep plane
reaches a rectangle R = (x,, X;, Yy, V1, Zo) (this
happens at y =y,), the segment s = (x,, X1, Z,) is
added to H and its visible parts are computed. It
is present in H until the sweep plane reaches the
position y =y,. There again its visible parts are
computed and it is removed from H. The y-coor-
dinates of the rectangles are called the transition
points of the algorithm. Thus we have to maintain
a set H of horizontal line segments under the
following operations:

(a) Insert a new segment s into H.

(b) Delete a segment s from H.

(c) Given a segment s, compute the parts, visi-
ble from z = + 0.

Note, that the third operation is a two-dimen-
sional visibility problem.

An appropriate and popular data structure for
this kind of problem is a static segment tree. We
use a special version of this data structure.

Let X be the set of all occurring x-coordinates
of the given rectangles. Note, that X is known in
advance, namely X is the set of the x-coordinates
of all rectangles in S.

A segment tree for H is a leaf oriented bal-
anced binary search tree 7 with |X| internal
nodes, which are labeled in symmetric order with
the elements of X. With every node of T a half
open interval, called range, is associated that is
defined in the following way

range(root) = (— o0, + 0],
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<— high(v)

range(v)

Fig. 2. The segments stored in NL(v).

range(leftchild(v)) = range(v) N (— o0, x],
range(rightchild(v)) = range(v) N (x, + o],
where x is the label of v.

Moreover, in every node v we maintain a set
NL(v), the node list of v, with
NL(v) = {s€ H |range(v) C s and

range(parent(v)) S5 }.

We use the notation “range(v) C s” for range(v)
C (x4, X;] where s = (xq, X;, ). Similarly we will
use “range(v) Ns” for “range(v) N (x4, X;]”.

The range of every node v covers an interval on
the x-axis. The union of all nodes v with s€
NL(v) corresponds to the projection of the seg-
ment s onto the x-axis. The ranges of these nodes
are pairwise disjoint (see Fig. 2).

In each node we store two additional values,
named low(v) and high(v), with
low(v)

max_(v), v is leaf,
= { max(max,( v), min(low(u), low(w))),
v has children u and w,

and

max,(v), v is leaf,
high(v) = { max(max,( v), high(u), high(w)),

v has children u and w,
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where max,(v) = max{z|s € NL(v), s=(xq, X,
z)}.

The low value (high value) in a node v gives us the
z-coordinate of the lowest (highest) visible seg-
ment in the scene consisting of all segments stored
in the subtree rooted at v. W.l.o.g. we assume, that
all z-coordinates are positive; then at the begin-
ning of the sweep, all node lists are empty and the
high and low values are initialized with 0.

Let us assume for the moment (in Section 4 we
will show how to do better), that the node lists
NL(v) are organized as balanced binary trees,
ordered according to the z-coordinate of the seg-
ments. Then the low and high values can be com-
puted in constant time per node.

The following characteristics of the segment
tree are well known (cf. [2,7,etc.]).

(S1) A segment s is stored in at most O(log n)
node lists.

(S2) All parents of nodes v with s € NL(v) lie
on only two paths of the tree.

Now we sketch the sweep algorithm. Let Y be
the set of the y-coordinates of all rectangles in the
scene.

0 Main Program

1 build and initialize the segment tree

2 for all y € Y in increasing order do

3 if y =y, for some rectangle R = (x4, X1, Yo,

Y15 20)
4 then
5 COMPUTE_VISIBLE _ PARTS(s, root)

/* 5=1(Xg, X, Zg)
6 INSERT(s, root)
7 UPDATE_HIGH_AND_LOW(s, root)
8

else
9 DELETE(s, root)
10 UPDATE_HIGH_AND_LOW(s, root)

11 COMPUTE_VISIBLE _PARTS(s, root)
12 fi
13 od

The operations “INSERT(s, root)” and
“DELETE(s, root)” are standard operations on
segment trees. We need not consider them in
detail.

The same holds for “UPDATE_HIGH_
AND _LOWC (s, v)” for a node v. This procedure
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updates all high and low values that have to
change after an insertion or deletion. This is done
exactly according to the definitions of low and
high.

So we now concentrate on the procedure
“COMPUTE_VISIBLE_PARTS”. It takes two
arguments s and v, where s=(xg, X;, Zy) iS a
part of a segment and v is a node with (x,, x;] S
range(v) and computes all visible parts of s. Let
z(s) denote the z-coordinate of a segment s.

0 Procedure
COMPUTE _VISIBLE _PARTS(s, v)
1 if z(s) > high(v)
2 then
3  “report s as visible”
4 else
5 if z(s) > low(v)
6  then
7 for all children u of v with range(u)
Ns+4
8 do
9 COMPUTE_VISIBLE _
PARTS(range(u) N's, u)
10 od
11 fi
12 fi

3. Correctness and time bounds

Lemma 1 (correctness). 4 call of “COMPUTE_
VISIBLE _PARTS(s, root)” for a segment s & L
computes and reports exactly the visible parts of s.

Proof. Let V' be the set of nodes v, where no
further call of the procedure is performed, i.e.,
where the recursion stops. It follows, that
U (range(v) N's) = (xo, x1]
veV
where s = (x4, X;, 2).

In such a node v € V either range(v) Ns is
reported or nothing is done.

Claim 1. If range(v) N s is reported, then range(v)
N s is totally visible.

Proof. Let range(v) N s be reported. Then z(s) >
low(w) for all ancestors w of v, since the condi-
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tion in line 5 must be true for all ancestors of v,
and hence z(s) > max,(w) for all ancestors w of
v, since low(w) > max,(w) for all nodes w
according to the definition of low.

That means, range(v) N's is not covered by a
segment stored in an ancestor node of v and, since
z(s) > high(v), there is no segment in the subtree
rooted at v with higher z-coordinate than s.

Claim 2. If range(v) N s is not reported, it is not
visible.

Proof. If range(v) N s is not reported, then
z(s) <low(v).

This implies immediately, that range(v) N s is tot-
ally covered by segments stored in the subtree
rooted at v.

These two claims prove the lemma. O

Lemma 2. Computing the visible parts of the seg-
ment s takes time O(log n + k, log(n/k,)), where
k is the number of visible parts of s.

Proof (see Fig. 3). Whenever the procedure
“COMPUTE_VISIBLE _PARTS(s, v)” visits a
node and performs a recursive call, we have
low(w) < z(s) < high(w) for all ancestors w of v.
Also range(v) Ns# @ for all such nodes v. If
range(v) C s, then low(w) < z(s) < high(w) for all
ancestors w of v implies that range(v) N s is par-
tially but not totally visible. If range(v) ¢ s, then v
lies on the search path to one of the endpoints of
segment s. Thus all parents of visited nodes lie on

Fig. 3. Nodes visited by
COMPUTE _VISIBLE _ PARTS(s, root).
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the paths to at most 2 + k, leaves of the segment
tree. Let us call the subtree induced by the
set of nodes, visited by a call “COMPUTE_
VISIBLE _PARTS(s, v)” the visited tree T,. Let
| T, | be the number of nodes in 7,; then

max{ |7, | | T, is a visited tree with 2 + k leaves}
logn
< Y min{2', 2+ k,} (i)
i=1
=(2+k,)logn—(2+k,) log(2+k,)
+(2+k,) (i1)

n
= O((2 + ks) log(2—+—7(—))
h
= O(log n+k; logk—)

(i) This follows from the fact that |7, | is
maximal, if the number of nodes in every of the
log n levels is maximal. But this number cannot
exceed 2 + k, or 2/, if i is the depth of the level.

(ii) For the first log(2 + k) levels, 2’ gives the
bound. These levels build a balanced binary tree
with O(k,) nodes. The rest of the tree has obvi-
ously O(k, log(n/k,)) nodes. O

Lemma 3. (a) If the node lists are maintained as
balanced binary trees, the total time spent for
calls of procedures “INSERT(s, v)” and DE-
LETE(s, v)” is O(n(log n)?).

(b) The total cost of calls of “UPDATE_
HIGH_AND_LOWC(s, v)” is O(n log n).

(¢) The total cost of calls of “COMPUTE_
VISIBLE _PARTS(v, s)” is O(n log n +
k log(n*/k)), where k is the sum of visibility-to-in-
visibility changes of all segments.

Proof. (a) The characteristics (S1) and (S2) of a
segment tree allow a single operation to be done
in time O(log n - g(v)), where g(v) is the time
needed to insert (delete) a segment into (from) the
node list of the given node v.

(b) Follows immediately from (S1), (S2) and
the definition of high(v) and low(v).

(¢) The total time needed is

O|nlogn+ ) k log£—

i=1 S/

INFORMATION PROCESSING LETTERS

20 July 1990

This sum is maximal, if k; =k/n for all i. This
proves part (c). O

Since each segment is stored in O(log n) node
lists and in each node we only spend a constant
amount of space, the algorithm needs O(n log n)
space.

4. The final algorithm

In the previous section we showed how to
solve the hidden line elimination problem for
isooriented rectangles in time O(n(log n)? +
k log(n?/k)).

The first term results from the computation of
the current maximal z-coordinates when inserting
(deleting) the rectangle edges into (from) the seg-
ment tree (for each insertion or deletion there
have to be performed O(log n) operations on bal-
anced trees).

In this section we show, how the fact that all
rectangles (and thus all segments) are known in
advance, can be exploited to precompute for every
node v in the segment tree the sequence M(v) of
maximal z-coordinates corresponding to the se-
quence of operations executed on the node list
NL(v) in time O(n log n).

More precisely the ith element of M(v) gives
the maximal z-coordinate valid for the ith oper-
ation on NL(v).

For each rectangle edge s ever stored in a node
list NL(v), there is exactly one position y; of the
sweep line when s enters NL(v) and one position
v, when s leaves NL(v). Let n, be the number of
segments ever stored in NL(v). Then the node list
NL(v) is changed 2n, times. If we number the
operations on node list NL(v) from 1 to 2n,, then
we can define the life-span of a segment in NL(v)
as the interval [f, ¢,], where s is inserted into
NL(v) at ¢, and deleted from NL(v) at ¢,. Sup-
pose now that we have to determine the maximal
z-coordinate of a segment stored in NL(v) at ¢.
This is tantamount to computing the maximal
z-coordinate of segment s with ¢ € life-span(s).

We next show how to precompute the answers
to all queries on NL(v) in linear time O(n,).

More precisely, to compute the sequence M(v)
of maximal z-coordinates for a node list NL(v)
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we have to solve a two-dimensional visibility prob-
lem of the following kind.

Input. A sequence S of n, line segments in the
two-dimensional #z-plane with z-coordinates from
T=1{1,...,2n,}. S is ordered according to de-
creasing z-coordinate.

Output. An array of segments M[1..2n,], where
for t=1,...,2n,, M|[¢]is the segment s € S with
maximal z-coordinate among all segments s’ € S,
s'=(t;, t,, z) and t; <t < 1.

Suppose now that the array M(v) is available
for all nodes v of the segment tree. Then we can
do without the node lists NL(v) in the plane
sweep algorithm of the previous section. We only
have to maintain for each node v a pointer into
the array M(v). The pointer is advanced whenever
a segment has to be inserted into or deleted from
NL(v); furthermore, it always points to the seg-
ment of maximal z-coordinate in NL(v).

This implies that the hidden line algorithm runs
in time O(n log n + k log(n?/k)).

To compute M, we process the segments in S
one by one in order of decreasing z-coordinate.
Let S'C S be the set of segments processed so
far. We maintain a partition C of T into intervals
with the following semantics: {¢} € C iff there is

3

\FIND(t,)
4

FIND(t;)
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no segment s € S’ with ¢ € life-span(s). The un-
ion find structure of Gabow and Tarjan [5] is used
to maintain the partition C. This data structure
allows to process a sequence of n, of the following
operations in time O(n,) on a random access
machine (see [5] for details).

FIND(¢), t € T, returns the right endpoint of
the interval containing .

UNION(¢), ¢t € T, unites the interval contain-
ing ¢ with its right neighbour interval.

From the definition of C it is clear that a new
segment s= (1, t,, z) €S’ is visible for all 1€
[#,, 2,] with {¢} € C. Therefore the following al-
gorithm computes M for a node v. Figure 4 shows
the processing of the third segment.

0 Procedure COMPUTE _M(v)
1 forall r€Tdo
2  M][t]=nil
3 add the singleton {¢} to C
4 od
5 for all s€ S in decreasing z-order do
6 1 =FIND(¢,)
7  t,=FIND(¢,)
8  while 1] # ¢ do
9 if M[t¢]/]=nil then M[t]]=5s fi
10 UNION(¢))
11 t, == FIND(#;)
12 od
13 od

The running time of this algorithm is clearly
O(|T |+ |S|+ # of union operations). Since the
number of union operations is at most 7, |S| <
|T| and |T | =2n,, the running time is linear.

It remains to discuss how we determine the
node lists for each node v and set up the M-prob-
lem defined above for each node v. This is done as
follows.

(0) Sort the x-, y- and z-coordinates each in
increasing order.

(1) Rename all occurring coordinates in each
direction from 1 to 2n.

(2) Sweep the sweep plane from y= —oo to

y = oo in the following way:
1) S<¢
(2.2) for all y €Y in increasing order do
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(2.3) for all v, range(v) Cs and range
(parent(v)) G s where s=[y;, )i,
z] do

24)  SeSU{@, z 5 [ 1)

(3) Sort the elements of S using bucket sort
lexicographically according to the pair (v, z) as
sort key. This computes for each node v the list
L(v) of all segments in order of decreasing z-co-
ordinate. Let n,= | L(v)].

(4) Build for each tupel (v, z, s, [y, 1] two
pairs (v, ),) and (v, y;) and sort all pairs lexico-
graphically. This sorts for each node v the seg-
ments in L(v) according to insertion and deletion
time.

(5) Substitute for each node v the occuring
y-coordinates by numbers from 1 to 2n, in in-
creasing order and change the life span of each
edge according to this new universe.

5. The time bounds

Lemma 4. The preprocessing takes time O(n log

n).

Proof.

Step (0): Obviously O(n log n).

Step (1): Obviously O(n).

Step (2): Because of (S1) and (S2), finding the
nodes v with s € NL(v) needs O(log n) time per
segment s. Since s is a set and not specially
organized, it takes time O(n log n) altogether.

Step (3) Since there are only O(n log n) en-
tries, step (3) takes time O(#n log n).

Step (4): Obviously O(n log n).

Step (5): Obviously O(n log n).

In the solution of the two-dimensional visibility
problem we execute for each node O(n,) union
and find operations. That takes time O(n,). The
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sum over all nodes of the segment tree gives us the
time bound of O(n log n) for the computation of
the M-lists. O

Theorem. The final algorithm needs time O(n log n
+ k log(n?/k)) where k is the complexity of the
visible scene and O(n log n) space.

Proof. The operations “INSERT(s, v)” and
“DELETE(s, v)” need time O(1) per node and
O(log n) for the whole call “INSERT(s, root)” or
“DELETE(s, root)”. Then Lemmas 1-4 give the
time bound. The space bound is obvious. 0O
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