
On C o n t i n u o u s  H o m o t o p i c  
One Layer R o u t i n g  

Shaodi Gao*, Mark Jerrum**, Michael Kaufmann* 

Kurt  Mehlhorn*, Wolfgang Riilling*, Christoph Storb* 

* F B  10, U n i v e r s i t g t  des  S a a r l a n d e s ,  6600 S a a r b r i i c k e n ,  W e s t  G e r m a n y .  

** Dep.  of  C o m p .  Science,  U n i v e r s i t y  of E d i n b u r g h ,  E d i n b u r g h  E H 9  3JZ ,  S c o t l a n d .  

Abstract: We give a n  O(n  s - l o g  n) t i m e  a n d  

O ( n  s) s p a c e  a l g o r i t h m  for  t he  c o n t i n u o u s  ho-  

m o t o p i c  one  l a y e r  r o u t i n g  p r o b l e m .  T h e  m a i n  

c o n t r i b u t i o n  is a n  e x t e n s i o n  of  t h e  s w e e p  pa -  

r a d i g m  t o  a u n i v e r s a l  cover  space  of  t h e  p l a n e .  

1. Problem Definition 

An input of the cont inuous homotopic  one layer 
r o u t i n g  problem (CHRP) consists of a set W = 

{wl, ..., wt} of paths (also called wires) and a set O C_ 

R 2 of obstacles. A path  is a continuous curve. We 

assume that  wires do not intersect and that  they are 

disjoint from all obstacles. 

A solution to a CHRP is a set P = {Pl,...,pl} of 

paths which is obtained by a homotopic shift (pre- 

cise definition below) from W such that  U(p~) := 

{z;dist(z, pi) < 1/2} is a simply connected region 

of the plane, U(pi) N U(pj) = 0 for i # j and U(pi) N 

U(O) = 0 Vi. Here dist denotes the Euclidian dis- 

tance. An output  to a CHRP is either a solution or 

the indication that  no solution exists. Figure 1 gives 

an example of a CHRP. 

Let us now give precise definitions. 
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A path is a continuous function p : [0,1] --~ R 2. 

A set W = {wl, ..., w~} of paths is collisionfree if 

wi(t) # wj(s) for (i, t) # (j, s) and wi(t) ~ O for all 

i and t. So an input of a C H R P  consists of a set O 

of obstacles and a collisionfree set W of paths. 

We call two paths p and q homotop ic  (p ~ q) with 

respect to a set F C R 2 of holes in the plane if there 

is a continuous function h : [0, 1] x [0, 1] ~ R 2 such 

that  

(1) h(0, t) = p(t) and h(1, t) = q(t), for t,O < 

t < l  

(2) h(A,0) = p(0) = q(0) and h(A, 1) = p(1) = 

q(1) f o r 0 < A <  1 

(3) h ( A , t ) ~ F f o r 0 < . ~ <  1 , 0 < t <  1 

Let T = {w,(O),w,(1); 1 < i < l} be the set of end- 

points, also called terminals,  of the paths in W and 

let F = T U O. We call F the set of features. A set 

P = {Pt,. . . . ,Pl} of paths is a homotop ic  shif t  of 

W if 

i.) pi is homotopic to wi with respect to F,  1 < 

i < l  and 

ii.) P is collision-free. 

For a set S C R 2 let U(S) = U1/2(S) = {x G 

R2;dist(x,s)  < 1/2 for some s G S} be the open 

1/2 - neighborhood of S. For a pa th  p we frequently 

use p to denote the set {p(t); 0 < t < 1} of points of 

p. 
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So a solution to a CHRP given by O and W consists 

of a homotopic shift P of W such tha t  U(pi) is simply 

connected (simplicity condition), U(p~) n V(O) = 0 
and g(pi) n U(pi) = @ Vi and j, i # 3" (disjointness 

condition). We call P a A - solution if the above 

conditions hold for U1/2.~ instead of U1/2. 

A cut is either a straight-line segment connecting 

two features or a semi-infinite ray start ing in a fea- 

ture. In either case a cut must not cross any other 

feature. The capacity of a cut is its Euclidian length. 

For a cut C and a path  w let cr(C,w) denote the 

number  of points which C and w have in common, 

i.e., 

crCe, w) = [{t;0 < t < 1 andw(t) 6 C}l 

and let 

mincr(C, w) = min cr(C,p) 
p ~ t O  

be the minimal number of crossings of any homo- 

topic shift of w with C, cf. Figure 2. Note that  

crossings at the endpoints do not count. The den- 

s / t y  of a cut is given by 

dens(C) = miner(C,w). 
toEW 

We are now in a position to state our main theorem. 

For part  b.) and c.) of the theorem we assume tha t  

the input paths are polygonal paths. We denote the 

number of bends in wire wi by bi, the total number  

of bends by b = ~ b~, the number of features by m 

and the size of the input by n = m + b. 

Theorem 1: 
a.) A CHRP has a solution iff the cut condition 

holds, i.e., iff 

dens(C) + 1 < cap(C) 

for all cuts C. 

b.) The cut condition can be checked in t ime O(b. 

m + m 2 . log bm) = O(n 2. log n). 

c.) A solution (if there is one) can be constructed 

in t ime O(b. m 2. logbm) = O(n 3. logn) and 

space O(rnazlbl.rn 2) = O(n3). Moreover, this 

solution minimizes the total  path length. 

The first results on homotopic one-layer routing are 

due to Cole/Siegel [CS] and Leiserson/Maley [aM]. 

They proved a result analoguous to theorem 1 for the 

Loo-Norm, i.e., dist corresponds to the Manha t tan  

distance. Maley [M] extends the result to arbi t rary  

polygonal distance functions and as a limiting case 

also to the Euclidian metric. His running t ime for 

part  b.) is the same as ours and it is O(n 4. logn)  

and space O(n 4) for par t  c.). Moreover, he does 

not minimize the total  path  length. Our result was 

obtained independently of his (the papers [CS] and 

[LM] were the common basis) and the techniques 

used in parts  a.) and c.) differ widely; part  b.) is 

a simple generalization of [LM]. M aley [M] gives a 

very detailed proof for part  a.) based on notions of 

combinatorial  topology. His algorithm for par t  c.) 

is a slight generalization of [LM]. Our proof for par t  

a.) is elementary and intuitive but may not fulfill 

the highest s tandards of rigour. Our main emphasis  

is on par t  c.) and we introduce a novel algorithmic 

idea there: sweeping the universal cover space. 

Consider a fixed wire wl and let s = w~(0), t = wi(1). 

The universal c o v e r  spe~ce of the plane with origin 

s and with respect to the set F of holes is given by 

C = {(x,p); x 6 R 2 and p is the homotopy class of a 

path  from s to x}; 

cf. Figure 3, 4 and 5 for an illustration. 

The solution path  pi corresponding to wi is a short- 

est path from (s, e) to (t, [wi]) in C - Y where Y is 

the forbidden region for wire w~, cf. section 3 and 

Figure 5. We construct the solution path p~ for w~ 

by a sweep of the cover space. More precisely, we 

first construct the rubberband equivalent rbeo(w~), 
i.e., a shortest polygonal path  homotopic to w~. In 

Figure 1 the wi are already given by their rubber- 

band equivalents (RBE). RBE's  were introduced in 

[LM] and it was also shown how to construct them 

in [LM]. 

The path  rbeo(w#) is a path from (s, e) to (t, [w,]) in 

C. Our idea is now to sweep a line perpendicular to 
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rbeo(wi) from C s, e) to (t, [wi]) (at bends of rbeo(wi) 
the line turns into a semi-infinite ray), and to con- 

struct the solution path Pi as we move along, using 

the £unnel  method.  

In the funnel method ([W]) we maintain a partition 

of the sweep line, where two points x and y belong to 

the same interval if the shortest paths to x and y are 

combinatorially the same and we maintain the cur- 

rent intersection of the sweep line with the forbidden 

region, cf. Figure 5. 

The details of the algorithm can be found in section 

3; section 2 contains a short discussion of part a.), 

and section 4 mentions some extensions. 

It is natural to ask whether theorem 1 can be ex- 

tended to vertex-disjoint routings in planar graphs. 

A partial answer is provided by theorem 2. 

Let the problem s h o r t e s t  vertex-disjoint rout- 

ings on a planar graph (with homotoples) 

( S R P G H )  be given by 

a planar graph embedding G, vertex pairs (sl, Q), ..., 

(sk, t}), a 'sketch' of the routings from 8i to ti and 

a bound b (integer). 

Question: Do vertex-disjoint paths si --~ ti,  ..., sk 

t} exist with the described homotopies of total length 

< b? 

Theorem 2: SRPGH is NP - complete. 

2. Routabil i ty and the Cut Condition 

We briefly discuss the necessity and sufficiency of 

the cut condition. Let P = {Pl, ...,Pt} be a solution 

to the CHRP and let C be any cut connecting two 

features, say f and g. Let C ° = C - U(f) - U(g). 
It suffices to show that  the length of C o N U(pi) is 

at least mincr(C,w{). Let , , 8 '  e {f ,g}  U U j ( C  r"l 

pi),  8 # s'. If v ( s )  n v ( s ' )  = ¢ for any such pair 

then we are done. So let us consider a pair 8,8' 

with U(s) fq U(s') ¢ 0. Note first that  s, s '  e pi for 

some i. This follows from the disjointness condition. 

Observe next that  the subpath p connecting s and 

s ~ must be homotopic to the straight-line segment 

ss ~ because of the simplicity condition. Thus we can 

remove the intersections s and 81 (or one of them 

if the other is a terminal) by a homotopic shift, cf. 

Figure 6. Continuing in this way we obtain a path 

P~ "~" Pi such that  CnV(p~) C CnV(pi)  and any two 

intersections of p' with C have distance at least one. 

Thus the length of Conu(pi) is at least rnincr(C, wi) 
and the necessity of the cut condition is established. 

For the proof of sufficiency and the algorithms we 

need some additional definitions. Let p be a path 

and let C be a cut. A path Px is an initial segment  

of p if there is a continuous function o~: [0, 1] ~ [0, 1] 

such that  a(t)  _< t and pl(t) = p(a(t)) for all t. A 

crossing of p and C is an initial segment Pl of p 

w i thp l (1 )  E C. Let p a n d q  be paths wi thp(1)  = 

q(0). Then the concatenation p o q is defined by 

(po q)(t) = p(2.  t) for 0 < t < 1/2 and (po q)(t) = 

q ( 2 . t - X )  for 1/2<t< 1. 

Let C be a cut and let p and q be paths with p(0) = 

q(0) and p(1), q(1) E C. We call p and q C-equivalent 

if p is homotopic to q o q(1)p(1). 

Let C be a cut and pl a crossing of p and C. Then 

the C-equivalence class of pl is called the type of 

the crossing Pl. 

Let C be a cut incident to a feature f ,  let W = 

{Wl,...,wl} be a given set of paths and let h = 

E, mi~cr(C, w,). 
We can shift W into a collision-free set P = {p 1,..., pt} 

with h = ~ i  cr(C, pi) a s  follows. L e t p i  = W i  ini- 

tially. If mincr(C,w~) = cr(C, pi) for all i then we 

are done. Otherwise there must be some pj such that  

two of the crossings of p./with C can be removed by 

the operation shown in Figure 6. Proceeding in this 

fashion we obtain the desired set P of paths. 

Let sa, ..., Sh be the crossings of the paths in P with 

the cut C in the order of increasing distances from 

f ,  i.e., dist(f, sj(1)) < dist(f, sj+x(1)) for 1 < j < 

h -  1. Then (type(sl), ..., type(sh)) is called the s/g- 
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n a t u r e  of C with respect to f .  

Note that  the set P defined above is not uniquely 

determined by W; nethertheless, the signature of C 

is well-defined. Note also that  if mincr(C, wi) > 0 

then some of the s I will be intersections of Pi and 

C. We call the types of these sj the types of the 

required crossings of wi and C. Again, these types 

are independent of the particular set P into which 

W was shifted. 

Let A be a positive real. A path p is a A- represen-  

ta t i ve  of a path  w if 

- p is homotopic to w and if 

- for all features f and cuts C incident to f :  

if Pl is a crossing of p and C and type(p1) = 

ti, where (tl ,  t2,...) is the signature of C with 

respect to f ,  then dist( f ,  pl(1)) > A. i. 

A path p is the A-realization of w if it is the A- 

representative of shortest length. We denote the A- 

realization by rbe~(w). 

Remar k :  

An alternative definition of A-realization is as fol- 

lows. Let w be a pa th  and let s =  w(0). Then the 

forbidden r eg ion  for the A-realization of w is given 

by 
Y'~ = {(y,p) e C; there is a feature f ,  a cut C in- 

cident to f with signature ( t t , t2 , . . . ) , type(q)  = tl 

is the type of a required crossing of C and w and 

dist( f ,  y) < A. i}. 

Then the A-realization of w is the shortest path  from 

(s, e) to (t, [w]) in C - Y'~, cf. Figure 5c. 

L e m m a  1: If the cut condition holds then the paths 

rbel(wl), 1 < i < l, exist and form a solution to the 

CHRP. 

P r o o f  (sketch): Replace each wire wi by a rubber- 

band of width A and replace each feature by a disk 

of diameter A. Start  with A = 0 and let A grow. 

A rubberband runs straight except if it is forced to 

run otherwise. In other words any bend of a pa th  

rbe~(wi) is forced. Suppose now that  we cannot en- 

large A all the way to A = 1. Then two rubberbands 

of opposite curvature must collide and hence the cut 

condition does not hold, cf. Figure 7. 

q .e .d .  

3. Algorithms 

Throughout  this section we will assume that  our 

CHRP has a solution. Note tha t  the cut condition 

can be checked in t ime O(n 2.log n) by par t  b.) which 

is well below the target  t ime for part  c.). 

The algorithm for part  c.) is outlined in program 1. 

1 Preprocessing (* t ime O(b. rn. log bin) *) 

2 for  e a c h w E W  d o  

(* the loop body takes 

t ime O(bw . m 2 • log bin)*) 

2.1 for  each f E F d o  

construct  the forbidden 

region ~ ' (f)  induced by f 

od;  

2.2 construct  3 t" = U fey  Y'(f) 

2.3 construct rbel(w) 

od;  

Program 1 

Let w e W ,  s = w(0) , t  = w(1). Let C be the cover 

space with respect to origin s and the set F of holes: 

Let f = 51 be the forbidden region as defined in 

the remark preceding l emma 1. The solution pa th  

rbel = rbel(w) is the shortest  path  from (s,e) to 

(t, [w]) in C - F. We construct  rbel by application 

of the funnel method. The funnel method was intro- 

duced by Tompa IT] in the following situation, cf. 

Figure 8. 

Given points s and t in the plane with the same 

y-coordinate and a set of obstacles, which are semi- 

infinite open vertical rays, construct a shortest pa th  

from s to t. In the absence of obstacles the shortest 

path would be the horizontal line segment st. 
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Tompa proposed to sweep a vertical line (=  a line 

perpendicular to the segment ~ )  from s to t and to 

record for each intermediate position of the sweep 

line the current funnel; i.e., a part i t ion of the sweep 

line into maximal  intervals such tha t  two points x 

and y belong to the same block iff the shortest paths 

from s to x and from s to y are combinatorially 

equivalent, i.e., bend at the same obstacles, cf. Fig- 

ure 8. 

The funnel changes whenever an obstacle is hit by 

the sweep line. It  is either augmented by one addi- 

tionai interval (time O(1)) or it is reduced by one 

or more intervals (time O(number  of discarded in- 

tervals)). Thus the running t ime of his method is 

proportional  to the number  of obstacles. 

We extend the funnel method to our more general 

situation. There are two main difficulties: 

i.) The obstacles have more complex shape, cf. 

Figure 5. 

ii.) We do not sweep the plane but a more complex 

topological space. 

Define the rubberband equivalent rbeo of the pa th  

w to be the shortest  path  homotopic to w. (More 

precisely, rbeo is a shortest path  in the closure of the 

set of paths homotopic to w. Note tha t  rbeo goes 

through features and hence is not 'really'  homotopic 

to w.) It  is a polygonal pa th  whose vertices are 

features. The rubberband equivalents of all wires 

can be constructed in t ime O(n 2- log n), cf. [LM]. 

This consti tutes the preprocessing phase. 

For steps 2.1, 2.2 and 2.3 we use a s w e e p  o f  t h e  

cove r  s p a c e  which we now define. A connected 

subset L C C is a straight-line (ray) if its projec- 

tionproj(L) on the first coordinate is. A line £ is 

perpendicular to rbeo at footpoint (x,p) E rbeo N 
if x lies in the interior of one of the straight-line seg- 

ments consti tut ing rbeo and if the projections are 

perpendicular.  A ray • is perpendicular to rbeo at 

footpoint (x,p)  if (x, p) is a vertex of rbeo, (x, p) is 

the s tar t  point of ray L and if L is contained in the 

cone defined by the two rays start ing at (z,p) and 

being perpendicular to the line segments of rbeo in- 

cident to x,p); cf. Figure 9. 

The sweep is now given by the continuous motion 

of the footpoint of a line (ray) perpendicular to rbeo 
from (s, c) to (t, [w]), more precisely, if the footpoint 

is on one of the straight-line segments then the foot- 

point moves continuously and if the footpoint  is a 

vertex then the ray turns continuously. Thus the 

sweep alternates between straight-line and angular 

motion. 

Next we will explain the three steps 2.1, 2.2 and 2.3 

in more detail. 

Step 2.1: For a feature f let 

j r ( f )  = {(y, q); there is a cut C incident to f ,  C has 

signature (tl,t2,...), ti = type(q), ti is the 

type of a required crossing of w With C and 

dlst(y, f )  < i} 
be the forbidden region for rbel induced by feature 

f .  We show how to construct  jr(f) in t ime O(bw • 
m .  log bin) for each feature f .  

A s e c t o r  of rbeo with respect to f is a maximal sub- 

path  of rbeo which is monotonic with respect to f 

and completely visible from f ,  i.e., rays start ing in 

f intersect the subpath  only once and do not pass 

through a feature before they intersect the subpath.  

The sectors of rbeo correspond in a natural  way to 

angular sectors with t ip f ,  cf. Figure 5 and 10. 

Within each angular sector the boundary of j r ( f )  

is a circular arc of constant radius. 

Next we show how to compute  the sectors and cir- 

cular arcs mentioned above. We first determine for 

each feature f the sorted order of the other features 

around f and then define 2 • rn - 2 rays for each f ,  

one for each feature g and one for each interval be- 

tween two features. Next we compute  for each wire 

w and feature f the intersections between the rays 

start ing in f and rbeo(w) by plane sweep and sort 

the intersections for each ray and each rbeo(w). At 

this point we have determined the rank of the in- 

tersection on the ray for each intersection of a ray 
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and a rubberband,  cf. Figure 11. This const i tutes  a 

global preprocessing step for step 2.1 and takes t ime 

O(b. m 2 • log bm). 

From now on we consider again a fixed w and f .  

The sectors of rbeo = rbeo(w) with respect to  f are 

now easily computed .  We move along rbeo and stop 

at each vertex and at each intersection with a ray 

s tar t ing in f .  At each stop one decides in t ime 0 (1 )  

whether  the current  sector ends. Also, the radius 

of the  circular arc is given by the rank of any inter- 

section within the sector. The entire process takes 

t ime O(b~. m) and yields the circular arcs bounding  

Y'(f). For each circular arc we know the radius and 

the sector of  rbeo which it constrains.  

Let us call a circular arc visible at a certain posit ion 

of the sweep if the  sweep line intersects the  arc, cf. 

Figure 12. The  positions where an arc a is visible 

form an interval which we will to  compu te  in the fol- 

lowing. Also note tha t  if an arc is visible at  all then 

one of its endpoints  is visible. 

Let r be the s tar t ing ray of the sector of  arc a and let 

(x, p) be the intersection of  r with rbeo; the symmet -  

ric procedure is applied to  the te rmina t ing  ray. We 

position ourselves in point  (x,P) and move towards  

t if 

- dist(x, f )  > i and the angle between the ori- 

ented line segment x f  and the rbeo is _> { or  

if 

- dist(x, f )  < i and the angle is < { 

and towards s otherwise; this is a rudimentary  form 

of the cover space sweep. Let us assume tha t  we 

move towards  t and tha t  the second case occurs;  the  

o ther  cases are similar. 

During our  walk along rbeo we maintain the intersec- 

t ion of the sweep line with the ray or arc. We stop 

whenever the sweep line passes th rough  a feature or  

when it passes th rough  the  endpoint  of the arc. In 

the former  case we check whether  the feature is be- 

tween the sweep line and the ray or arc and if so we 

stop the sweep because from now on the ray or arc 

will not  be visible f rom the footpoint  of the sweep 

line. In the la t ter  case we replace the ray by the arc 

at the s tar t ing  point  of  the arc and stop the sweep 

at the endpoin t  of the arc, cf. Figure 12. The  t ime 

used for this process is propor t ional  to  the number  of 

features passed. This assumes tha t  we sort the  fea- 

tures with respect to rbeo in t ime O(bw. m.log bwm) 

beforehand. The crucial observat ion is now tha t  for 

any fixed intersection of  a ray r and rbeo we will pass 

th rough  any feature at  most  once and hence the t ime 

spent for each of the b~ • m intersections is O(m) or 

O(bw • m 2) in total.  

We have now computed  for each arc its visibility in- 

terval and step 2.1 is completed.  

S tep  2.2: The Forbidden Region ~" 

Step 2.1 provides us with at most  bw • m 2 arcs and 

their intervals of visibility. The goal of  step 2.2 is 

to find for each position of  the sweep line the most  

constra ining visible arc, i.e., the intersection of the  

boundary  of  5 r with the sweep line. In general there  

will be two intersections, one constra ining rbel from 

the left, the  o ther  f rom the right. 

We solve this problem by a sweep along rbeo from 

(s, e) to (t, [w]). The sweep line da tas t ruc tu re  DS 

contains the intersections of the sweep line with some 

of the current ly  visible ares. We mainta in  the follow- 

ing 

Invariant: 

If  a current ly  visible arc is not  conta ined in D S  then 

it will never be the most  constra ining arc at  a later  

position of the sweep line. 

The invariant implies tha t  the  most  constra ining arcs 

are always contained in DS. Note  also tha t  DS con- 

tains at most  O(m 2) arcs. 

We stop the  sweep at four kinds of  events 

i.) a s tar t ing point of a visibility interval 

ii.) a te rmina t ing  point of a visibility interval 

which is current ly  in DS 

iii.) a change of motion,  f rom straight-line to  an- 

gular or vice-versa 

iv.) an intersection of two arcs in DS. 
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In order to find these events we maintain two queues. 

The queue QA contains all events of kind i.), ii.) and 

iii.) and is easily precomputed in time O(bw • m 2 • 

logbm) using the output  of step 2.1. The queue QB 

contains all positions which lie on the current seg- 

ment of the sweep (i.e., either on the same straight- 

line or the same angular segment as the current foot- 

point) at which an intersection of two arcs adjacent 

in D S  is met by the sweep line. 

We now describe the actions performed at the four 

kinds of events. The actions for events of kind i.) 

o r  ii.) are obvious. For kind i.) we insert an arc 

into DS and update QB (one deletion and two in- 

sertions); for kind ii.) we delete an arc from DS and 

update QB (two deletions and one insertion). Thus 

an action of type i.) or ii.) takes time O(log m) and 

there are O(bw • m 2) of them. 

For events of kind iii.) we scan through DS,  com- 

pute for each adjacent pair of arcs their intersection 

and check whether this intersection is met during 

the next segment of the sweep. If so, the appropri- 

ate position of the sweep line is added to QB. This 

takes time O(log m) per pair, there are O(m 2) pairs 

and there are O(b~) events of kind iii.). 

For events of kind iv.) the sweep line meets the in- 

tersection of two arcs, say a and b, where a is the 

more constraining arc immediately after the inter- 

section. We delete the arc b from DS und update 

QB. This takes time O(log m) per event; also, there 

are only O(b~.  m 2) events of kind iv.) since each 

such event eliminates an arc. 

L e m m a  2 (Looser Lemma): 

The action needed for an event of kind iv.) main- 

talns the invariant. 

P r o o f  (sketch): Let b be the arc deleted in an event 

of kind iv.), let f be the center of the arc and let S be 

the corresponding sector. Let r be the terminating 

ray of the sector and let H be the closed half-plane 

bounded by the line supporting r and not containing 

S, cf. Figure 13. The arc a intersects b and is more 

constraining than b immediately after the intersec- 

tion. Since the sector S does neither contain any 

feature between f and b nor between ff and rbeo we 

conclude that the center g of arc a lies in H. If the 

visibility interval of a does not end before the visibil- 

ity interval of b then we are done. Assume otherwise. 

The visibility interval of a can end for two possible 

reasons. Either we sweep across a feature between 

rbeo and a or the arc a ends. In the former case the 

visibility interval of b would also end and hence only 

the latter case can apply. Let A be the endpoint of 

a. The arc a ends in A for either of two reasons. 

Either a monotonous sector Of rbeo ends at the ray 

g~4 or there is a feature h on the line segment g"A. 

Again the former case cannot arise because the vis- 

ibility interval of b has not ended yet. In the latter 

case consider the constraint generated by h. 

L a m i n a  3 (Strength Lemma): 

Let g and h be features, let r be a ray starting in 

9 and let h lie between g and x = r n rbeo on r. 

Assume also that there is no other feature on the line 

segment hx. Let i be the radius of the arc generated 

by g immediately to the left of h and let j be the 

radius of the arc generated by h in the direction r, 

cf. Figure 14. Then j + diat(h, g) > i. 

P r o o f  (sketch): Consider ray r '  immediately to the 

left of r. Then rbeo is the i-th path crossing r '  if 

we count intersections starting in g. Only dist(g, h) 

of these paths can cross the ray between g and h or 

end at h by the cut condition. Hence rbeo is at least 

the (i - dist(g, h))-th path when counting starts in 

h. This proves j > i - dist(g, h ). 

q.e.d.  

The constraint generated by h is at least as strong 

on the ray gh as the constraint generated by g. Also, 

h E H. Consider a ray immediately to the right of 

gh. On this ray either the constraint generated by h 

or the one generated by g is stronger. In the former 

case we continue the argument with h instead of g 

and in the latter case we continue the argument with 

g. 

q.e.d.  
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Step 2.3: The construction of rbel 

As an output  of step 2.2 we get two sorted lists 

containing the most constraining arcs bounding the 

wire to be routed from both sides. We compute  the 

shortest path through the corresponding routing re- 

gion by a combination of the funnel method and the 

sweep algorithm used in step 2.2. Like in IT] the 

sweep line is organized as a double ended queue of 

tangents to the constraining arcs seperating the in- 

tervals on the sweep line. We update  this queue each 

time we reach the next arc in the two lists. The fact 

that  we can give an unambiguous course for each 

wire rests on the 

Lemma 4 (Monotonicity Lemma):  

The path  rbel intersects the sweep line exactly once 

for each position of the sweep line. 

Proof  (sketch): Note first that  rbeo intersects the 

sweep line exactly once for each position of the sweep 

(recall that  we are in cover space). Thus, rbel inter- 

sects at least once since rbe, and rbeo are homotopic. 

So we still have to show tha t  there is no more than 

one intersection. 

Assume otherwise and consider ag~n  the process of 

growing up rbex from rbeo to rbe 1 and let A be max- 

imal such that  rbex intersects no sweep line twice. 

Then the sweep line is tangent to two arcs of rbex 

that  have different curvature, cf. Figure 15. So the 

cut between the features who caused these arcs is 

oversaturated and A cannot be enlarged to A = 1. 

q .e .d .  

4. Extensions 

The algorithm can also deal with the following two 

generalizations. 

i.) Obstacles are line segments instead of points. 

ii.) The nets are multi- terminal nets. In this case 

each wire wi is a tree, the leaves being the ter- 

minals. The trees wi are pairwise disjoint, cf. 

figure 16. The output  trees must be homotopic 

to the input trees and must satisfy the simplic- 

ity and the disjointness condition. Our algo- 

r i thm solves this problem, but, of course, it can 

no longer construct  a minimum length solution. 

5. Conclusion 

This paper  gives another  illustration of the versa- 

tility of the sweep line paradigm. In particular, we 

show tha t  it can be applied to more complex spaces 

than Euclidean spaces. 
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7. Figures 

Figure 1: A CHRP and its solution. Obstacles and 

wire endpoints are shown as dots. U(p2) is indicated 

by a dashed line. 
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Figure 2: A cut C is shown as a dashed line. The 

path w has one necessary crossing with the cut, so 

or(C, w) = 3 and miner(C,  w) = 1. 
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F i g u r e  7: A collision of two rubberbands of op- 

posite curvature gives rise to a cut whose density 

exceeds its capacity. 

Figure 3: The bot tom part shows the plane with a 

single obstacle o and two paths p and q with termi- 

nals s and t. The top part shows the universal cover 

space and the two paths in the cover space. 

Figure 6: Removal of the two crossings s and s r. 

/1 
# 

# 

F i g u r e  9: Lines (solid) and rays (dashed) perpen- 

dicular to rbeo. 
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Figure 4: The bo t tom part  shows the plane with 

three obstacles, a path  and a position of the sweep- 

line. The top part  shows the situation in the cover 

space. The points (x, pl) and (x,pl op2 op3) have 

the same projection into the plane. 
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Figure 5: Part  a.) shows a path w, two obstacles f 

and g and two paths ql and q2 from s to f .  Par t  b.) 

shows the relevant part  of the cover space. Observe 

the points (f,  ql) and (f,  q2) in the cover space. Par t  

c.) shows the forbidden region .7. The forbidden 

region is the union of the three sectors, one with 

center (f ,  ql), radius 2 and rays ~ and fig, one with 

center (g,p), radius 1 and rays ~ and ~ ,  and one 

with center (f, q2), radius 1 and rays .~  and f t .  

Par t  d.) shows a position of the sweep-line. The 

RBE rbeo is shown as a dashed line. The sweep- 

line intersects the boundary of the sector with center 

(f, q2). The parti t ion of the sweep-line consists of 

two intervals I1 and /2 .  For x E I1, the last segment 

on the path  is a tangent  to the obstacle with center 

(g, p) and for x C -/2 the last segment is a tangent to 

the obstacle with center (f, q2). 
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Figure 8: The funnel method ([T]). The current 

partition of the sweep-line consists of 4 intervals. 
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F i g u r e  10: The sectors of an rbe 0 with respect to a 

feature f .  
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Figure 11: Two rays incident to a feature f and 

the ranks of intersections between the rays and rub- 

berbands. 

Figure 16: A multiterminal net problem and a so- 

lution for it. 

• Z e .  

Figure 12: The arc BD becomes visible when the 

sweep-line has footpoint A and direction A-B and 

stays visible until the footpoint is C. The intersec- 

tion between the ray r and rbeo is (x,p). The ray 

stays visible when we sweep through h, the arc bee- 

comes invisible when we sweep through g. 
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Figure 13 
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Figure 15 
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