SIAM J. COMPUT. (© 1994 Society for Industrial and Applicd Mathematics
Vol. 23. No. 2, pp. 227-246. April 1994 001

A LINEAR-TIME ALGORITHM FOR THE HOMOTOPIC ROUTING PROBLEM
IN GRID GRAPHS*

MICHAEL KAUFMANN' anD KURT MEHLHORN?

Abstract. The paper considers the problem of finding edge-disjoint paths between pairs of vertices in a finite
grid graph. The homotopy class for each path to be routed is prespecified. A very fast algorithm that guarantees to
find a solution for any solvable homotopic routing problem is given.

Key words. algorithms, homotopic routing, edge-disjoint paths, VLSI-theory

AMS subject classifications. 68Q25, 68U05

1. Introduction. We give a linear time algorithm for the homotopic routing problem in
grid graphs.
Problem: Homotopic Routing Problem in Grid Graphs (HRP)
Input: A grid graph R and nets qy, .. ., gx.
Output: Pairwise edge-disjoint grid paths py, ..., p; such that p; is homotopic to
gi, 1 <i <k, or an indication that no such paths exist. O

The planar rectangular grid consists of vertices {(x, y);x, y € Z} and edges
{((x, V), &, YN x =X+ y—y]= 1} . A grid graph R = (V, E) is a finite subgraph of
the planar rectangular grid. We call a bounded face F of R trivial if it has exactly four vertices
on its boundary and nontrivial otherwise. We muse M to denote the set of nontrivial bounded
faces together with the unbounded face F,, and O to denote the union of the interiors of the
faces in M. A nontrivial face is also called a hole.

A path p is a continuous function p : [0,1] = R?> — O. A path p is called a net if
{p(0), p(1)} € ¥V N3O where 30 is the boundary of O. Two paths p and g are homotopic,
denoted p ~ gq, if there is a continuous function F : [0,1] x [0,1] - R? — O such
that F(0,x) = p(x) and F(1,x) = g(x) forall x,0 < x < 1, and F(¢,0) = p(0) and
F(t,1) = p(1) forallt,0 < ¢t < 1. A path p is called a grid path if p(x) belongs to R for
all x. ’

Figure 1 gives an example of an HRP. For the algorithmic treatment, we assume that the
nets qy, ..., g are grid paths and use n to denote the number of vertices of R plus the total
number of edges in the paths g;. The integer n is called the size of the HRP. We use N to
denote the set {q;, ..., qi} of nets.

THEOREM 1. Let P = (R, N) be an even bounded HRP of size n.

(a) P is solvable if and only if fcap(X) > O for every cut X.

(b) In time O(n) one can decide whether P has a solution and also construct a solution if
it does. O

Part (a) of this theorem was shown in [KM2] and later extended by [Sh]. The paper
[KM2] also presents an O(n?) algorithm. In the present paper we give a new algorithm with
linear running time.

A cut C is a simple path in R? — O — V with its endpoints in 0. The capacity cap(C)
of a cut C is the number of intersections with edges of R. If C is a cut and p is a path
then cross(p, C) is the number of intersections with edges p and C and mincross(p, C) =

*Received by the editors February 13, 1989; accepted for publication (in revised form) June 10, 1992. This work
was supported by the DFG, Sonderforschungsbereich 124, Teilprojekt B2. VLSI Entwurf und Parallelitit.

TInstitut fiir Informatik, Universitit Tiibingen, Sand 13, D-72076 Tiibingen, Germany.

$MPI fiir Informatik, Universitit des Saarlandes, Im Stadtwald 15, D-66123-Saarbriicken 11, Germany.

227

228 MICHAEL KAUFMANN AND KURT MEHLHORN

min{cross (g, D); ¢ ~ p, D ~ C}. Finally, the density dens(C) of cut C is defined by

dens (C) = Z mincross(p, C)
peN

and the free capacity fcap (C) is given by
fcap(C) = cap(C) — dens(C).

A cut C is saturated if fcap(C) = 0 and oversaturated if fcap(C) < 0. An HRP is even if
fcap(C) is even for every cut C.

23 24 22 25 25 47 26 27 6 8

Y O I A O A I

[,
zoL— 3 177—5 .lo
o N 234'_7_ A Ja
15¢- 39 S 1
39 ? 0 Cu 12 26 : _Jz
s " O O
) 10+—9

7 16 9

17 6 3
15 1

W3 2 n ®% 3 w2

FiG. 1.

Let v be a vertex in R. We denote the degree of v by deg(v) and the number of nets
having v as endpoint by ter(v). An HRP is bounded, if deg(v) + ter(v) < 4 for all vertices v,
and weakly bounded if deg(v) = 4 implies ter(v) = 0.

There are many previous papers on finding edge-disjoint paths in grid graphs and general
planar graphs, e.g., [PL], [F], [MP], [NSS], [KM1], [KM2], [BM], [K], [Sh]. The present
paper extends the work in [KM2]. We refer the reader to [KM2] for a discussion of the
relationship between VLSI-design and homotopic routing problems.

This paper is organized as follows. In §2 we describe the algorithm and in §3 we prove its
correctness. The algorithm is similar in spirit to the algorithm in [KM2], but differs in many
details. In particular, its correctness does not follow from [KM2]. In §4 we then describe the
linear time implementation of the algorithm. Weinelt [W] has implemented the algorithm;
Fig. 1 has been produced by his program.

2. The algorithm. In this section we describe an algorithm for the homotopic routing
problem in grid graphs. Recall that we are given a grid graph R and nets py, ..., p; and that
our goal is to shift the nets py, ..., px into pairwise edge-disjoint grid paths. Our algorithm
works iteratively. In each iteration we consider an edge e of R and decide whether to use it
for some net and if so for which one. If e is to be used for net p then we choose suitable nets
p' and p? with p ~ p'ep? and replace net p by the three nets p', e, and p®. The edge e is
then used to route the net e in the obvious way. Thus, each iteration discards one edge of R
and hence there are O(n) iterations. In §4 we show how to implement the algorithm such that
each iteration takes amortized time O(1).

For the algorithm we need some further concepts.

DEFINITION 1. For a path p the canonical representation can(p) is the shortest path
homotopic to p.

Note that can(p) is composed of straight-line segments.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 229

DEFINITION 2. (a) A path p is called a prefix of path q if there is a monotone function
t : [0, 1] = [0, 1] with t(0) = 0 such that p(x) = q(t(x)) for all x.

(b) The reversal p~' of path p is defined by p~' (x) = p(1 —x) for0 < x < 1.

(c) If p and q are paths, then p = q if either p ~ q or pl~q.

(d) For a path p, we define source(p) = p(0) and target(p) = p(1).

(e) For a point v, x(v) and y(v) denote the x- and y-coordinate of point v, respectively.

DEFINITION 3. Let p and q be nontrivial paths with the same source s and let s lie on the
boundary of a unique hole F. Then p is said to be right of q, if either

e can(p) = can(q) or

e can(p) is a proper prefix of can(q) and there is a hole to the right of can(q) at point
target(can(p)) or

e can(q) is a proper prefix of can(p) and there is a hole to the left of can(p) at point
target(can(q)) or

e can(p) and can(q) have no nontrivial common prefix and for every sufficiently small
circle K around s there is a counterclockwise scan of K intersecting first 3 F, then can(p),
then can(q), and finally again 0 F or

e can(p) and can(q) have a maximal common nontrivial prefix r, i.e., can(p) = rp',
can(q) = rq' and p' and q' have no nontrivial common prefix, and for every sufficiently
small circle K around target(r) there is a counterclockwise scan of K intersecting first r, then:
p', and finally q".

e _m_)@)
= an(p) can(p

FIG. 2. An illustration of the four cases in Definition 3.

Figure 2 illustrates the various cases of Definition 3. The relation /eft is defined analo-
gously. Both relations are clearly transitive.

DEFINITION 4. (a) A path p is x-monotone if x(target(p)) < x(source(p)) and for every
vertical line L the intersection p N L is a segment, i.e., x-monotone paths travel from right to
left.

(b) The monotone prefix pref(p) of a net p is the maximal x-monotone prefix of can(p).

(c) Let p and q be nets with a common source s and let s lie on the boundary of a unique
hole. Then p is quasi-right of q if either pref(q) is trivial or pref(p) and pref(q) are nontrivial
and pref(p) is right of pref(q).

Remark. The ordering right played an important role in the algorithm of [KM2]. In this
paper we use the ordering quasi-right instead. This is one of the sources for the improved
running time.

DEFINITION 5. A cut C is called vertical if it is a vertical straight-line segment.

The algorithm is given as Program 1. In this program, rop always denotes the largest y-
coordinate of any vertex of R, Top is the subgraph spanned by the vertices with y-coordinate
equal to top, and a segment is a connected component of Top. An endpoint of a segment
is called exposed if it is not the terminal of any net. The endpoints of a segment are also
called corners of the segment. Finally, Rim is the closed region above the horizontal line
y = top — 1. In the formulation of Program 1 we assumed that the lowest numbered case for
which the precondition is satisfied is executed, i.e., if e.g., case 4.3 is taken, then cases 1, 2,

230

3, 4.1, and 4.2 do not apply. In cases 4.2 and 5.1 the concept of rightmost decomposition is

MICHAEL KAUFMANN AND KURT MEHLHORN

used, which we now define.

DEFINITION 6. Let e = (b, @) with b the left neighbor of a be an edge in row Top and
let X be the vertical cut through e. Let C be the set of nets p with mincross(p, X) > 0.
For p e C an admissible decomposmon is a triple (p', e, p*) such that p ~ p'ep® and
mincross(p', X)+ mincross(%, X) = mincross(p, X) — 1. A triple (P e, p?) is called a
rightmost decomposition with respect to X if it is an admissible decomposition of anet p € C

and p? is quasi-right of g* for any admissible decomposition (q', e, 7).

(1
()
(3)
C))
(5)
(6)
)
@)
©)
(10)

(11)
(12)

(13)
14
(15)

(16)

a7
(18)

19)
(20)

1
(22)
(23)
(24)
(25)
(26)

while
do

case 1:

case 2:

case 3:

case 4:

case 5:

od

R#D

3 cut X intersecting an edge e in Top with cap(X) = 1(xoperation 1x)
let X be such acut, lete be the intersected edge, and let p be the unique
net with mmcross(p,X) =
let p ~ p'ep? w1th mmcross(p X)=0fori=1,2;
replace p by p' and p? and discard e;
J segment S consisting of a single vertex b(*operation 2x)
let (b, c) be the vertical edge mcident to b and let p be the unique net
incident to b; let p = (b, c) p'; replace p by p' and discard (b, ¢);
3 non-trivial segment S with its right comer b not exposed
(xoperation 3x)
let p and g be the two nets incident to b with p quasi-right of g and
lete = (b, a) be the horlzontal edge incident to b;
let p =~ ep'; replace p by p' and discard e;
3 non-trivial segment S with its right corner b exposed and its left
corner not exposed;
case 4.1: 3 net p with can(p) C S(xoperation 4.1x)
delete net p and discard all edges in can(p)
case 4.2: the vertical cut X through the horizontal edge e =
(b, a) is saturated (xoperation 4.2x)
let (p', e, p?) be the rightmost decomposmon of any
net which crosses X; replace p by p' and discard all
) edges in can(epz)
case 4.3: let p = (a, b) p' be a net incident to the left neighbor
a of b;
replace p by p' and discard edge (a,b)
(xoperation 4.3x)
3 nontrivial segment S with both corners exposed
case 5.1: 3 saturated vertical cut through an edge of S (xopera-
tion 5.1x%)
let X be the shortest saturated vertical cut through an
edge e= (bi a) of S; here b is the right neighbor of a;
let (p!, e, p*) be the admissible decomposition of a net
with respect to X such that either can (p') € Rim or
the decomposmon is 2ghtmost
replace p by p' and p* and discard e
case 5.2: let a and b be the left and right comer of
S(*operation 5.2*);
add nets p and g with p(A) = q(A) =Aa+ (1 —A)b
for0<i<l1

PROGRAM 1.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 231

3. Proof of correctness. This section is divided into two subsections. In the first sub-
section we collect some useful facts about cuts and in the second subsection we argue the
correctness of the routing algorithm.

3.1. Some facts about cuts.

DEFINITION 7. A cut C : [0, 1] = R~ O —V is called straight if the function C is linear
and it is called almost-straight if it is either straight or if the line segment connecting C(0)
and C(1) is contained in the boundary of a nontrivial face, the functions C|[0, %] and C I[%, 1]
are linear, there is no vertex of R contained in the interior of the triangle C(0)C (%)C (1), and
no edge of R is intersected more than once by C. A cut C is called Manhattan if it consists
of horizontal and vertical straight-line segments. For a cut C, Manhattan(C) is a Manhattan
cut intersecting the same edges as C.

DEFINITION 8. A tuple (pi, ..., pr) is called straight-line decomposition of p if
can(p) = pi1--- px and each p; is a maximal straight-line segment contained in can(p).
Each p; is called a straight-line piece of p.

LEMMA 1. (a) Let P be weakly bounded. Then the cut condition holds if it holds for all
almost-straight cuts.

(b) Let P be bounded. Then fcap(C) > O for every cut C that is almost-straight but not
straight. Also, the cut condition holds if it holds for straight cuts.

(c) Let p be a net and C a cut. Then cross(p, C) = mincross(p, C) mod 2.

(d) Let (p1, . .-, px) be the straight-line decomposition of p and let C be a straight cut.
Then mincross(p, C) = Y*_, cross(p;, C).

(e) Let P be a bounded problem satisfying the cut condition and let C be a saturated
Manhattan path in P. Then consecutive turns of C are in alternate directions.

(f) Let P be bounded. If there is an oversaturated straight cut in P, then there is either
an oversaturated horizontal or vertical cut in P or an oversaturated straight cut intersecting
only edges incident to vertices of degree 4.

Proof. (a) This is the content of §3 of [Sh].

(b) Let C be almost-straight but not straight. Then the line segment connecting C(0)
and C(1) passes through exactly cap(C) — 2 vertices, all of which have degree 3. Hence
dens(C) < cap(C) — 2. The second part now follows from part (a).

(c) This is Lemma 7 of [KM2].

(d) Since p ~ can(p) = pip2--- px, we have mincross(p, C) < > cross(pi,).
Let us assume mincross(p, C) < Y, cross(p;, C). Then there are (x;, A1), (x2, A7) such that
X; 3 X2, A\ # Az, and can(p)|[x1, x2] ~ C|[A1, A2]. Since can(p) is a shortest path homotopic
to p and since C is a straight-line segment, we conclude that can(p)(x) and can(p)(x2) must
lie on the same segment p;. So p; is a subpath of C and hence C passes through a vertex of
R, a contradiction.

(e) This is Lemma 12a, Claim 1 of [KM2].

(f) This is Lemma 12b of [KM2]. Note that this lemma state in the terminology of that
paper that there is either an oversaturated 0-bend or an oversaturated 1-bend cut connecting
two concave corners. The latter gives rise to a straight cut intersecting only edges incident to
vertices of degree 4. O

3.2. Correctness of the algorithm. All of the actions in our algorithm fall under the
following paradigm. For a certain edge e and a certain net p we choose p' and p? such that
p =~ plep?, replace p by p' and p? and discard e; operations 4.1, 4.2, and 5.2 can be viewed
as repeated application of this basic action. It is convenient to view the basic step as to consist
of two substeps.

232 MICHAEL KAUFMANN AND KURT MEHLHORN

substep A: replace p by the three nets p', e, and p’.

substep B: remove edge e and net e.

The further outline of the correctness proof is as follows. We first deal with substep B
in Lemma 2, then show in Lemma 3 that substep A generates even problems satisfying the
degree constraints postulated in the premise of Lemma 3, and finally show in Lemmas 4 to
10 that operations 1 to 5.2 preserve the cut condition. In the proofs of these lemmas we will
frequently use part (a) of Theorem 1, i.e., the present paper does not give an alternative proof
of part (a).

LEMMA 2. Let P = (R, N') be an even routing problem satisfying the cut condition, and
let e be an edge in the boundary of O as well as a net in N. Assume further that ter(v)+
deg(v) < 4 for all vertices except the endpoints of e and ter(v) + deg(v) < 6 for the two
endpoints of e. Then removing edge e and net e yields an even, bounded problem satisfying
the cut condition.

Proof. Let us use P’ to denote the modified problem. P’ is certainly bounded. If there
is a cut of capacity one through e, then P’ is also even and satisfies the cut condition. So let
us assume that there is a trivial face F incidentto e in'/P. Let " = R—e, N' =N —e
and let Y’ be any straight cut in R’. If Y’ is also a cut in P, then dens’(Y’) = dens(Y’) and
cap'(Y’) = cap(Y’) where dens’ and cap’ are computed with respect to P’. If, on the other
hand, Y’ ends in F then we can extend Y’ to a cut in P with cap(Y) = cap'(¥Y’) + 1 and
dens(Y) = dens’(Y’) + 1. Thus fcap'(Y’) = fcap(¥) > 0. 0

LEMMA 3. Substep A generates even problems satisfying the degree constraints postulated
in the premise of Lemma 2.

Proof. The claim about the degree contraints is obvious. For the evenness let C be any
cut and let p ~ p'ep®. Then

mincross(p, C) = mincross(p'ep?, C)
= cross(p'ep?, C) mod 2 by Lemma 1(c)
= [cross(p', C) + cross(e, C) + cross(p?, C)] mod 2
= [mincross(p', C) + mincross(e, C) + mincross(p?, C)] mod 2

by Lemma 1(c). Thus evenness is preserved. 0

LEMMA 4. Operations 1 and 2 preserve the cut condition.

Proof. Obvious.]

LEMMA 5. Operation 3 preserves the cut condition.

Proof. In operation 3 there are nets p and g incident to the right corner b of a segment with
p quasi-right of g. We replace p by e and p', where e = (b, a), a is the left neighbor of b, and
p ~ ep'. Assume, for the sake of a contradiction, that there is an oversaturated almost-straight
cut C in the modified problem. The cut C must go through edge e since otherwise its density is
not affected by the action. Also mincross(e, C) = 1 and mincross(p', C) =mincross(p, C)+
1. Thus the density of C is increased by at most 2 and hence C must be saturated in the original
problem. Thus C must be straight by Lemma 1(b) and mincross(p', C) =mincross(p, C)+1.
Since the original problem has a solution in which then necessarily net g uses edge e, we
conclude mincross(g', C) = mincross(g, C) — 1 where ¢ ~ eq'. Let (pi,..., py) and
(g1, ---,qx) be the straight-line decompositions of p and g, respectively. Then p; does
not intersect C since pj - - - px is a shortest path homotopic to p, mincross(p,C) =),
cross(p;, C) by Lemma 1(d), and mincross(p', C) = mincross(p, C) + 1, and g intersects
C for analogous reasons.

Case A. | x(target(C))] < |x(source(C))] : Then p; is not right of g; and hence p is
not quasi-right of g.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 233

Case B. |x(target(C))] > |x(source(C))] : Consider the cut D indicated in Fig. 3.
Then D is saturated, since mincross(p, D) = mincross(p, C) + 1 and mincross(q, D) =
mincross(q, C)— 1. Also, Manhattan (D) makes two consecutive turns into the same direction,
a contradiction to Lemma 1(e). 0

b

Nt

FiG. 3.

LEMMA 6. Operation 4.1 preserves the cut condition. This is even true if the right corner.
of S is not exposed.

Proof. In operation 4.1 there is a net p with can(p) € S. Then mincross(p, C) =
cross(can(p), C) for every straight cut C. Hence, deleting the net p and discarding all edges
in can(p) preserves the cut condition. g

LEMMA 7. Operation 4.2 preserves the cut condition.

Proof. In operation 4.2 the right corner of S is exposed and the left corner of S is not
exposed. Furthermore, there is no net p with can(p) € S and hence the horizontal cut ¥,
which cuts off the segment S, is saturated. Note that there are exactly cap(Y) terminals above
segment Y and that each terminal contributes one to the density of Y. Let b be the right corner
of S, let e = (b, a) be the horizontal edge incident to b, and let X be the vertical cut through
e. In operation 4.2 the cut X is saturated. Let (p', e, p?) be the rightmost decomposition of
any net with.respect to X.

CLAIM 1. can(p?) C S.

Proof. Let € = (c, b) be the vertical edge incident to . Consider any solution to the
original problem. Then there must be a net, say g, which uses the edges ¢’ and e, i.e., the
solution path can be written ¢'e’eq?. Furthermore, since there are exactly cap(Y) terminals
in S, contributing one each to the density, we conclude that mincross(g?, Y) = 0. Thus
can(g?) C S. Next observe that p? is quasi-right of g2, since (p', e, p?) is a rightmost
decomposition with respect to X, and hence can(p?) C S. 0

Let P’ be the problem obtained by replacing p by p' and ep?. It suffices to show
that P’ satisfies the cut condition, since the deletion of net ep® and all edges in can(ep?) is
covered by Lemma 6. So assume that there is an oversaturated straight cut C in P’. By
Lemma 1(f) we may assume that C is either vertical or horizontal or a straight cut inter-
secting only edges incident to vertices of degree 4. Since cross(ep?, C) < 1, p' ~ ep?p™!
and hence mincross(p!, C) < cross(can(p), C) + cross(ep?, C) < mincross(p, C) + 1, we
conclude fcap(C) = 0, fcap’(c) = —2, mincross(ep?, C) = 1, and mincross(p', C) =
mincross(p, C) + 1. From mincross(epz, C) = 1 we conclude that C must intersect an edge
of segment S and hence must be vertical.

Since mincross(p, X) > 0, we can write can(p) = r'r? where x(source(r?)) = x(b),
cross(r?, X) = 1, and the vertical segment s' connecting source(r?) to b is contained

234 MICHAEL KAUFMANN AND KURT MEHLHORN

in R. Then p' ~ r's' and hence mincross(p', C) < cross(r's',C) = cross(r!,C) =
cross(can(p), C) — 1 = mincross(p, C) — 1. Thus fcap’(C) = fcap(C) for any vertical cut,
a contradiction. 0

LEMMA 8. Operation 4.3 preserves the cut condition.

Proof. The precondition is almost as in operation 4.2; however, the vertical cut X through
e = (b, a) is not saturated. Let p be a net which has a as a terminal. Let p =~ (a, b)p! and
replace p by (a, b) and p'.

Assume that there is an oversaturated straight cut C with respect to the modified problem
P’: note that P’ is bounded. Then C must intersect the edge (a, b), since otherwise its
density is not affected by the action, and fcap(C) = 0. Next observe that P’ is bounded
and hence by Lemma 1(f) we may assume that C is vertical, i.e., C = X. This contradicts
fcap(C) = 0. 1]

LEMMA 9. Operation 5.1 preserves the cut condition.

Proof. Let X be the shortest saturated vertical cut intersecting an edge in S, lete = (b,a)
be the edge in S intersected by X with b being the right neighbor of @, and let p = p'ep? bea
net crossing X such that either can(p') € Rim or (p', e, p?) is the rightmost decomposition
with respect to X. We replace p by p!, e, and p*.

The following claim will be useful.

CLAIM 2. In P there is no saturated nonvertical cut through edge e.

Proof. Assume that there is such a Manhattan cut C ’. By Lemma I(e) we may assume
that C’ turns in alternate directions. Assume also that the first segment C of C’ is maximal in
length. We now distinguish cases. Assume first that C” has only 1 bend or C; intersects less
that cap(X) — 1 edges.

We move the vertical part of C’ intersecting e so as to make the cut C’ shorter. Then one
of the following situations must arise (see Fig. 4). Either we split the cut at some point into
several cuts or we move the vertical part beyond the end of segment S. In the first case one of
the parts is a saturated vertical cut intersecting S and being shorter than X in the second case
an oversaturated cut is obtained since the corners of S are exposed. In both cases, we have a
contradiction. We conclude that C, intersects cap(X) — 1 edges and C’ has more than 1 bend;
i.e., the situation is as shown in Fig. 5.

g . b « b

r >] - <&

or

FIG. 4. Illustrating the first case in the proof of Claim 2.

We now move the first horizontal part of C’ down by one unit, and in this way split C’
into several cuts, which are all saturated in P. Hence one of them is oversaturated in P’. But
the topmost cut (= X) is saturated in P’ and the free capacities of all other cuts do not change,
since they do not interfere with cut X. g

We now return to the discussion of operation 5.1. Assume that there is an oversaturated
cut C with respect to the modified problem P’. Since mincross(p, X) > 0, we can write

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 235

can(p) = r! fr? where x(source(f)) = x(b), x(target(f)) = x(a), and the straight-line
segments s’ connecting source(f) to b and s? connecting a to target(f) are contained in R.
Then p ~ s'r!, p?2 ~ r2s?, and f ~ s'es?. Also, mincross(p', C)+ mincross(e O+
mincross (p2 C) < cross(rls!, C) + cross(e, C) + cross(s?r?,C) = cross(r! f r2, C) +
cross(s'es?, C) — cross(f, C) < mincross(p, C) + 2. We conclude that cross(s les?2,C) =
2, fcap(C) = 0 and fcap’(C) = —2. Hence C is straight by Lemma 1(b).

Case A. C intersects e: Claim 2 and the fact that fcap(C) = 0 and C is straight imply
that C is vertical. Thus C = X, a contradiction.

Cl

FiG. 5.

Case B. C does not intersect e. Then C must intersect s' and s and hence C and X
intersect in a single point.

Case Bl. can(p') € Rim. Then C must intersect can(p') because otherwise
mincross(p'e, C)+ mincross(p?, C) =mincross(p?, C) <cross (e~!(can(p'))~! can(p), C)
< cross(can(p), C), and hence fcap'(C) = fcap(C). Let C' ~ C be a Manhattan cut with
cap(C’) = cap(C). Assume first that C’ is a straight horizontal cut. Then C'=Y,where Y
is defined as in Lemma 7, and hence fcap(C’) > 2, a contradiction. We conclude that C’
contains at least one vertical segment. Since can(p') € Rim, C intersects can(p'), s', and
s2, C is straight, and since the corners of all segments in Top are exposed, we may assume
without loss of generality (w.1.0.g.) that C’ starts with a vertical segment and turns right. Thus
if we move that vertical segment by one unit to the left, the capacity of the cut cannot increase.
Also, since the corners of all segments are exposed when case 5 applies, the density of the
cut cannot decrease and hence the cut stays saturated in P (or even becomes oversaturated in
P’). As we move the vertical part further to the left either one of the following three situations
must arise (see Fig. 6). Either, we obtain an oversaturated cut in P or a nonvertical saturated
cut through e or the cut is split into several cuts at least one of which is saturated in P and
oversaturated in P’. In all three cases we have a contradiction; this is obvious in the first case,
follows from Claim 2 in the second case, and follows in the third case form the observation
that none of the resulting cuts can simultaneously intersect s', s2, and can(p").

Case B2. (p', e, p?) is the rightmost decomposition with respect to X. Consider the cuts
Z, and Z, shown in Fig. 7. Let Z be a shortest path homotopic to Z;. Z is a polygonal path
that bends at the corners of some holes. We split Z] at these corners and obtain straight cuts
Zir - Z’”\ (see Fig. 8). In a similar way we obtam Zzl, . Zék from Z,.

CLAIM 3. fcap(X) + fcap(C) > Z , feap(Z},) + Z fcap(Zzl
Proof. 1t is clear that cap(X) + cap(C) > ZLI cap(Z); + Z,=1 cap(Z5;). It therefore

236 MICHAEL KAUFMANN AND KURT MEHLHORN

a b ab ab

or or

F1G. 7. X and C produce Z| and Z,.

suffices to show that cross(s, X) + cross(s, C) < Y ¥ cross(s, Z|,) + Sk cross(s, Zj,)
where s is any straight-line piece of a net g € N. Divide the plane by the lines supporting X
and C into four regions as shown in Fig. 9. Then all pieces s contribute the same amount to
both sides except those having one endpoint in region D and one endpoint in region F. Such
segments contribute 2 to the left hand side and O to the right hand side.

FiG. 8.

We now show that there is no such segment. Assume otherwise. Let g be a net such that
cap(q) = g’sq” contains an elementary piece s, which has its source in F and its target in
D. Let s = s's”s" where x(source(s”)) = x(b) and x (target(s”)) = x(a); let /, and /, be
the paths parallel to X and connecting source(s”) with b and a with target(s”), respectively.
Then ¢ =~ g¢’'s’lel,s"'q”, mincross(q’, X) = mincross(g’s’/;, X) and mincross(g”, X) =
mincross(l,s”q”, X), i.e., (q's'l}, e, I,s"q") is a decomposition of ¢ with respect to X. Also,

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 237

FIG. 9. The four regions D, E, F, and G.

ls"q"” is quasi-right of p,, since the first elementary piece of p, ends in G, a
contradiction. a

Claim 3 implies that either one of the cuts Zj,,1 < i < kj, or Z;,,2 < i < ky, is
oversaturated, a contradiction to the assumption that P satisfies the cut condition, or that all
of them are saturated. In the latter case, Z|,, a nonvertical straight cut through e, is saturated,
a contradiction to Claim 2. The discussion of case B is now completed and Lemma 9 is
shown. 0

LEMMA 10. Operation 5.2 preserves the cut condition.

Proof. When operation 5.2 is applied, both corners of S are exposed and there is no
saturated vertical cut through any edge of S. Let a and b be the two corners of S. We add
the nets p and g with p(A) = g(A) =ar + (1 —A)b for0 < A < 1. Let P’ be the modified
problem and assume that there is an oversaturated cut C in P’. Then C must intersect S and
C was saturated in P. Since P’ is bounded, we may assume that C is vertical by Lemma 1(f),
a contradiction. g

4. A linear time implementation. In this section we describe a linear time implementa-
tion of our algorithm. In the first part of the section we introduce the required data structures
and in the second part we realize the algorithm using these data structures. The first part
consists of two interleaved sections: the description of the abstract and the description of the
concrete data structure. In the abstract data part we use objects like sequences and sets and
operations on these objects and in the concrete part we show how to realize these operations.
The concrete part is interleaved with the abstract part.

4.1. The data structure. We first discuss the representation of the routing region. We
assume that the vertices and the vertical cuts are numbered 1, 2, 3, The numbering of
the cuts is such that for each x-coordinate the cuts with the x-coordinate are numbered by
consecutive numbers from top to bottom. We identify vertices and cuts with their number.
We specify the routing region by storing the neighbors for each vertex.

Concrete. We have four arrays /,r,u,d. For 1 < v < |V, I[v] is the (number of the)
left neighbor of v; similarly for r, u, and d. We also have two arrays X and Y that give the
coordinates of every vertex. 0

Let v be any vertex. Then L(1, v)(L(2, v), respectively) is the closest vertex with the
same y-coordinate as v to the left of v, which can be reached from v by a straight-line grid path
and which is incident to a vertical boundary edge from below and from above, respectively.
R(i,v),U(i, v), and D(i,v),i = 1,2 are defined analogously with left replaced by right,
above, and below, respectively.

Concrete. We have another four arrays L, R, U, and D. The array L can be initialized in
linear time by scanning each row of the routing region from left to right. Similarly, for R, U,
and D. 0

238 MICHAEL KAUFMANN AND KURT MEHLHORN

We turn to the representation of nets next.

DEFINITION 9. (a) Let p be a net. Then rightmost p is a shortest grid path homotopic
to p, which is right of any other shortest grid path homotopic to p. leftmost(p) is defined
analogously.

(b) Let p be a net. The monotone decomposition of p is (py, ..., px) where can(p) =
p1- - Pk, and p; is either a maximal vertical segment or a maximal subpath not containing a
vertical segment.

(c) The representative of p is rep(p) = p| --- p, where (p1, ..., p) is the monotone
decomposition of p and

Di if p; is vertical,
p; = { rightmost (p;) if x (target(pi)) < x(source(p;)),
leftmost(p;) if x (target(p;)) > x(source(p;)).
(d) The bend sequence b;(p) of p is the sequence vy, . . ., v of vertices such that
(1) vy and v are the terminals of p;
(2) vy, ..., vik_) are consecutive bends of rep(p);

(3) if vo & Rim N 3 Fex, then v, is the first bend of rep(p) and if vo € Rim N 0 Fexy,
then v, is the first bend not contained in Rim. Similarly, if v, & Rim N 0 Fey, then
V,_1 is the last bend of rep(p) and if v, € Rim N 8 Fex,, then v,_ is the last bend not
contained in Rim.

Remark. In the bend sequence of a path we suppress the bends contained in Rim, since
these bends appear and disappear as we process the top row. It would therefore be very costly
to treat them like the other bends. Figure 10 shows the representative of a net and its bend
sequence.

In the input, a net is given as a grid path. The representative of a path can be computed in
time proportional to its length by walking along the path and looking for shortcuts using the
arrays L,R,U, and D.

This can be seen as follows. In a first walk along the path, a shortest path homotopic to
the net is computed (the task is here to remove U-turns which are not forced by a hole).

Yo

v

v2

V1

v3

FiG. 10.

In a second walk along the path, the path is decomposed into montone pieces and the
pieces are shifted appropriately. All of this takes linear time in the length of the path.

The bend sequence can be computed from the representative by inspecting the initial and
final segments of it. Altogether, all representatives and bend sequences can be computed in
linear time.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 239

A crossing is an intersection between a representative and a vertical cut. Every crossing
belongs to two sequences as we describe next.

Let pbe anet, let vy, . . ., v, be the bend sequence of pand letcy, ..., ¢, be the crossings
of rep(p) with vertical cuts in the order in which they occur on rep(p). For 0 < i < k, define
the c-sequence of (v;, v;+1) as the subsequence of crossings that occur between v; and v; ;.

Let C be any vertical cut. The r-sequence of C is any ordering cy, . . ., ¢, of the crossings
with C satisfying the following three properties: Let e = (b, a), with a the left neighbor of b
be the topmost edge intersected by C, and let (p}, e, p?) be an admissible decomposition of
net p; corresponding to crossing ¢;, 1 <i < m. Then

(1) (rim property) There is an integer k(C) > 0 such that i < k(C) implies can (p,.') -
Rim;

(2) (ordering property) If k(C) < i < j, then p? is quasi-right of p};

(3) (consistency property) If D is a vertical cut in the column to the leftof C, k(C) < i < j
and p; and p; also cross D, then k(D) < i’ < j’ where ¢; is the next crossing of p; and D
and c; is the next crossing of p; and D.

Remark. Initially, we will have £(C) = O, for all C. Then (2) states that the r-sequence
of C reflects the ordering quasi-right and (3) states that the orderings for adjacent cuts are
consistent with one another. We are not able to maintain (2) and (3) with £(C) = 0 for all C.
One of the difficulties is case 4.3. In the situation of Fig. 11 the new crossing of p with X
would have to be inserted somewhere into the r-sequence of X.

a , b

|

q
7 7
) 7

X

FiG. 11.

We will instead add it to the front of the sequence and increase k(.X) by one. In this way
(1), (2), and (3) are maintained with small cost. However, the ordering quasi-right in cases 3,
4.2, and 5.1 is now harder to compute. In case 3 we solve this problem by basing the decision
on cuts that do not intersect the Rim and hence have £(C) = 0; in case 4.2 we use the fact that
can(ep?) < Top for the rightmost decomposition (p', e, p?), and in case 5.1 we can always
take the first element of the r-sequence. The details are given below.

Wecallcy, . .., ckc) the rim-part and ¢k (c)y+1, - - - , ¢m the non-rim-part of the r-sequence
of C.

Concrete. A bend sequence is realized as a doubly linked list (see Fig. 12). The elements
of the list are vertices and representatives of c-sequences. Each c-sequence is a doubly
linked list of crossings; a crossing is represented by a record to be described below. The
representative of a c-sequence points to the first and the last item of the c-sequence. An r-
sequence is represented as a singly linked list. There is an array rheads[] of list headers for
the r-sequences. rhead[/] points to the first element of the r-sequence for cut i. We describe
below how this data structure is initialized.

240 MICHAEL KAUFMANN AND KURT MEHLHORN

There are several functions that can be applied to crossings and c-sequences. Fora crossing
¢, Findrep(c) returns the representative of the c-sequence to which ¢ belongs, Findcut(c)
returns the number of the cut whose r-sequence contains ¢, Above(c, d) yields true for two
crossings ¢, d belonging to the same r-sequence if ¢ is in front of 4 in the sequence, Split(c)
splits the c-sequence containing the crossing c after ¢ and returns the representatives of the
two resulting sequences, Addleft(r, c¢) and Addright(r, c) add the crossing c to the c-sequence
with representative r, Delete(c) deletes the crossing ¢ from the c-sequence containing it,
and Access&Split(r, x) splits the c-sequence with representative r after the crossing with
x-coordinate x and returns the representatives of the resulting c-sequences.

v; «—> C-sequence-rep Vi4+1

------- a doubly linked
list of crossings
rheads

the r-sequence of some cut

FiG. 12.

Concrete. We realize a crossing as a record consisting of the following fields: Two
pointers csuc and cpred for the c-sequence; a pointer rsuc for the r-sequence; an integer
cutnumber, which is the number of the cut containing the crossing; an integer rank; and
various other fields, which are used to realize the other operations. We postulate that the rank
field increases along any r-sequence and hence Above takes time O(1). Findcut also takes
time O(1) by virtue of the cutnumber field. The operations Findrep, Split, Addleft, Addright,
Delete, and Access&Split comprise the data type splittable list. It is shown in [Schw] that
splittable lists can be implemented such that all operations have amortized cost O(1). The
implementation combines the level-linked trees of [HMRT] with the split-find data structures
of [GT], [IA].

We are now ready to describe the initialization of the data structure. We number the cuts
from left to right and for each x-coordinate from top to bottom. The c-sequences are easily
computed in linear time. The r-sequences are computed as follows. We scan the layout region
from left to right. When we reach a certain column, the r-sequences for all cuts to the left of
the column are already computed, and ranks are assigned to all crossings in these r-sequences.
We now show how to compute the r-sequences for all cuts immediately to the right of the
column in time proportional to the length of the column (see Fig. 13).

Consider any cut C to the right of the current column. We first divide the set of crossings
with C into three parts: the U-, D- and L-parts; the U-part and D-part consist of all crossings
with nets that either terminate in the current column on a module that touches the current
column from the right and lies above C or below C, respectively, or that have the next crossing
with a cut above C or below C, respectively; and the L-part consists of all other crossings.
The r-sequence of C can then be obtained by concatenating an appropriate ordering of the
U-part with an appropriate ordering of the L-part with an appropriate ordering of the D-part.

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 241

Z

current column

FiG. 13.

We show how to order the L-parts. We first construct a list L consisting of the topmost
vertex of the current column, followed by the r-sequence of the first cut to the left of the
column, followed by the terminals on the first module touching the current column from the
left, followed by the r-sequence of the second cut, . . ., and then number the elements of this
list in increasing order. We then go through the L-parts of all cuts C and generate for each
crossing ¢ with C, say with rep(p), a pair consisting of

o the number of the cut C

e the rank in L of the crossing or terminal adjacent to ¢ in rep(p).

We sort these pairs by bucket sort in time proportional to the length of the column. This
gives us the desired ordering of the L-parts, the U- and D-parts can be ordered in a similar
way. The ranks are now assigned by numbering the crossings in each g-sequence in increasing
order. Altogether we have now shown how to compute the r-sequences of all cuts in linear
time.

We finally store for each cut its free capacity (array freecap[]). We also have an array
satcut[1...] of pointers. The element satcut[i] points to a doubly linked list of all saturated
vertical cuts of length i intersecting row zop. Each saturated cut points to its position on the
satcut lists (array satpos[...]). We also keep the nonempty entries of the array sarcut in a
linked list (see Fig. 14). This finishes the description of the data structure.

M

satcut
|
L]

e €0 E—0€—1—

¥

Fic. 14.

4.2. The algorithm. We work through the routing region from top to bottom. Suppose
that we are just beginning to process row fop. Let us also assume that we have the data structure
described in §1 available.

Step 1 (Cuts of capacity one). A cut of capacity one is necessarily saturated and hence
the cuts of capacity one intersecting row top are all contained in the list satcut[1]. Let C be
any cut in satcut[1], let (a, b) be the edge in row top intersected by C, and let c be the crossing

242 MICHAEL KAUFMANN AND KURT MEHLHORN

on the r-list of C. Let c be on the c-sequence of bends # and v. Note that we can find v and
v in time O(1) using operation Findrep. We split (operation Split) the c-sequence of # and v
at the crossing ¢ and introduce a and b as new terminals (see Fig. 15).

At this point we have created two nets, say p; and p,, with terminals in row fop. If either
u or v was a terminal of its net then the bend sequences of p; and p, are correctly computed
by the splitting process. If neither # or v was a terminal, then we have to update the bend
sequences of p; and p, as follows. Follow the bend sequence until a vertex, say w, which
is not in Rim is encountered, delete the vertices before w and concatenate the appropriate
c-sequences. If / vertices were deleted then / + 1 c-sequences have to be concatenated. We
concatenate these sequences by adding (operation Add) the items on the second, third, ...,
sequence to the first sequence one by one. Note that a crossing can be added at most once to a
c-sequence because it belongs to a c-sequence incident to a terminal after the addition. Hence
the total cost of additions is linear.

v

FiG. 15.

Step 2 (No cuts of capacity one). All cuts of capacity one are processed. We scan row top
from left to right and construct four sets of segments. The set RS, LS, and F'S, contains all
segments where the right corner is not exposed, the right corner is exposed but the left corner
is not exposed, and both corners are exposed, respectively. The set T'S contains all segments
consisting of a single vertex.

We now discuss cases 2 to 5 of the routing algorithm.

Case 2 applies whenever T'S # @. Let S € T S be a segment, let b be the single vertex in
S, let p be the net incident to b, and let a be the lower neighbor of 4. We replace b by a on
the bend sequence of p and delete the edge e = (b, a). This takes constant time.

Case 3 applies whenever 7S = @ and RS # 0. Let S be any segment in RS, let b be the
right corner of S, let a be the left neighbor of 4, and let p and g be the two nets with terminal
b. Let v; and w; be the vertices following b on the bend sequences of p and g, respectively.

Case A. At least one of the nets p and g leaves the column of b to the left. This can be
checked in time O(1) by inspecting the first crossing of p and g. We may assume w.l.0.g. that
p leaves the column of b to the left. If g does not then p is quasi-right of g. So let us suppose
that g also leaves the column of b to the left. If v; and w; are different or v; and w; are equal
and at least one is a terminal or at least one of the nets makes a left turn at v, then it is easy
to decide whether p is quasi-right of g using the coordinates of v; and w;. So let us assume
that v; and w; are equal and both nets make a right turn at v;. In this case both nets enter
the bend point v; from above. Let ¢ and d be the crossings following v; on p and g, respec-
tively, and let C be the cut containing ¢ and d. Then C does not intersect row top and hence p is

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 243

quasi-right of g if c is above d in the r-sequence of C. In either case we have shown that the
test whether p is quasi-right of g takes time O(1).

Let w.l.o.g. p be quasi-right of g. We replace b by a on the bend sequence of p and
delete (operation Delete) the first crossing from the first c-sequence of p. We also replace b
by its lower neighbor on the bend sequence of g. Finally, we mark (array mark) the cut, say
X, through the edge (a, b) as processed, add it to the set of marked cuts, delete X from its
satcut-list, if it is on one, and insert it into the satcut-list of one smaller index. All of this takes
time O(1).

Remark. The mark on cut X indicates that X does not start in row fop anymore. The
mark bit will be used in case 5. The set of marked cuts is used to unmark the marked cuts
again when row fop is completely processed.

If p terminates in b, then we remove S from RS and add it to LS or FS whatever is
appropriate (a segment is stored as a pair of vertices and hence this is an O(1) decision). If p
does not terminate in b, then S stays in RS.

Case B. p and g leave the column of b to the right. Let ¢ and d be the first crossings of
p and g and let C and D be the cuts crossed. If C # D, then it is easy to decide whether p is
quasi-right of g. We may assume w.l.0.g. that p is quasi-right of ¢ in this case. If C = D, then
p is quasi-right of g and ¢ is quasi-right of p. We may assume w.l.0.g. that either ¢ belongs
to the rim-part of the »-sequence of C or that both ¢ and d belong to the non-rim-part and d
is above c.

We replace b by a on the bend sequence of p, add the crossing of p and X, where X is
the vertical cut through edge (a, b), as first element of the rim-part of the r-sequence of X if ¢
belongs to the rim-part of C and as first element of the non-rim-part otherwise (this preserves
the ordering property and the consistency property) and add the crossing to the appropriate
c-sequence. We also decrease the free capacity of X by two. If X becomes saturated then we
add X to the appropriate satcut-list and mark X. The appropriate satcut-list is determined by
linear search in time proportional to the length of X. Since every cut becomes saturated at
most once, the total cost of adding saturated cuts to satcut-lists is linear.

Case 4 applies whenever TS = RS =@ and LS # (. Let S be any segment in LS. The
right corner of S is exposed and the left is not.

Case 4.1: There is anet p withcan(p) € S. Let p be the one with leftmost right terminal.

We can find p as follows. We search through the segment starting in the left corner of
S. For every vertex v encountered we inspect the bend sequence of the net incident to v
and determine in time O(1) whether v qualifies as vertex . Thus ¢ can be found in time
proportional to its distance from the left corner of S.

We route as shown in Fig. 16. All cuts between s and ¢ are marked and moved to the
satcut-list of one smaller index, if saturated. Also, all crossings of net p are removed. Also
the terminal is changed for each net incident to vertices between s and ¢, segment S is removed
from LS, segment S’ is added to L S, and segment S” is added to FS.

BERilinisE

FIG. 16. Both corners of S” are exposed and the right corner of S’ is exposed.

Note that the cost of this action is proportional to the length of S’ plus the number of edges
deleted from the routing region. Since case 4.1 does not again apply to segment ', rather $’
is completed by cases 4.2 and 4.3, the total time spent in case 4.1 is linear.

244 MICHAEL KAUFMANN AND KURT MEHLHORN

Cases 4.2 and 4.3: There is no net contained in S. Let b be the right corner of S, let a be
the left neighbor of 5 and let X be the vertical cut through (a, b).

Case 4.2: X is saturated. Let p be the quasi-rightmost net across X. We have shown in
§3 that p has a terminal s in segment S. We can find p as follows: We start in the right corner
of S and walk to the left. For each terminal encountered in the walk we check whether the
associated net crosses X by examining its bend sequence. This takes time O(1) per terminal.
The first net encountered which crosses X is the desired net p. We route p along the top row
(see Fig. 17), route all nets between S and the right corner of S down by one unit, update the
data structure as in case 4.1, and put " on LS.

Fic. 17.

Note that case 4.2 or 4.3 applies again to S’. The time required is proportional to the
number of edges deleted from the routing region.

Case 4.3: X is not saturated. Let p be the net with terminal a. We route p form a to b
and then down by one unit (see Fig. 18).

s

P

SI

FiG. 18.

If p did not go across X before the action (inspect the first crossing of the net p), then
we add a crossing as first element of the rim-part of the r-sequence of X (this preserves the
ordering and the consistency property), decrease the free capacity of X by two, and add X to
a satcut-list if X became saturated. All of this takes time O(1) if X did not become saturated
and time O(1+ length of X) otherwise. Thus the total time spent in case 4.3 is linear. Also
case 4.2 or 4.3 applies again to segment S’.

Case 5 applies whenever 7S = LS = RS =@ and FS # 0.

We keep a pointer P to the satcut-lists with the following semantics. If the pointer points
to list satcut[{] then all cuts in satcut[j], j < i, and all cuts preceding the item pointed to in
satcut[i/] are marked.

We advance P until it points to an unmarked cut. This takes time O(1) per move of P.
Note that all cuts added to the satcut-lists during the execution of cases 2, 3, and 4 are marked
and hence P never has to be reset. Also the total length of the satcut-list is at most the number
of edges in rows top and top — 1 and hence the total time spent on advancing P is linear.

Case 5.1: Let X be the saturated cut found, and let (a, b) be the edge in row top intersected
by X. Clearly, X is a shortest vertical cut intersecting an edge of the segment containing edge
(a, b). Let ¢ be the first crossing on the r-list of C. Let ¢ be on the c-sequence of u and v. Note
that we can find # and v in time O(1) using Findrep. Figure 19 shows how the representatives
of the nets p' and p? look like. The bend sequences of p' and p* can be found as follows.

Let y be the y-coordinate of vertices « and v. Then the bends of p' and p? are readily
determined by inspecting the L- and R-values of all vertices w which lie below a in rows
top, top — 1,..., y. This takes time O(1 + top — y); since the sum of the lengths of the

LINEAR-TIME ALGORITHM FOR HOMOTOPIC ROUTING 245

representatives of p' and p? exceeds the length of the representative of p by 2(top —),
we can account for the cost by the length increase; note that the total length of the canonical
representatives is always bounded by the size of the routing region.

At this point we have computed the bend sequences of p! and p?. We then split the
c-sequence of u and v at the appropriate places using the operation Access&Split. This takes
amortized time O(1) for each Access&Split and hence the cost is easily accounted for.

3

Z

rep(p’)

7

7

Y,

rep(p")

N —

r--—-------—-—---—-—09‘

V7777778771 replp)

FiG. 19.

Finally, we observe that the ordering and consistency property is preserved.
Case 5.2 (no saturated cut found): Let S be any segment in F'S. We route as shown in

Fig. 20.

NEREEN .

FiG. 20.

All cuts between s and ¢ have their free capacity reduced by two and are added to a
satcut-list if necessary. This completes the description of the various cases of the routing
algorithm.

Suppose now that we processed row top completely. We unmark all cuts using the set of
marked nets in time proportional to their number, decrease top by one, go through 7op and
adjust bend-sequences as described in case 1, and are ready for processing the new row top.

This completes the proof of the main theorem.

REFERENCES

[BM] M. BECKER AND K. MEHLHORN, Algorithms for routing in planar graphs, Acta Inform., 23 (1986), pp.
163-176.

[F] A. FRANK, Disjoint paths in a rectilinear grid, Combinatorica, 2 (1982), pp. 361-371.

[GT] H. N. GaBow AND R. E. TARIAN, A linear-time algorithm for a special case of disjoint set union, in Proc.
of the 15th SIGACT Symp., 1983, pp. 246-251.

[HMRT] K. HOFFMANN, K. MEHLHORN, P. ROSENSTIEHL, AND R. E. TARIAN, Sorting Jordan sequences in linear time
using level-linked search trees, Inform. and Control, 68 (1986), pp. 170-184.

246

[1A]
(K]

[KM1]

[KM2]
[MP]

[NSS]
(Sh]

[Schw}
W1

MICHAEL KAUFMANN AND KURT MEHLHORN

H. IMAL AND T. ASANO, Dynamic orthogonal segment intersection search, J. Algorithms, 8 (1987), pp. 1-18.

M. KAUFMANN, A linear-time algorithm for routing in a convex grid, IEEE Trans. Computer-Aided Design,
(1990), pp. 180-184.

M. KAUFMANN AND K. MEHLHORN, Routing through a generalized switchbox, Journal Algorithms, 7 (1986),
pp- 510-531.

, On local routing of two-terminal nets, J. Combin. Theory Ser. B., (to appear).

K. MEHLHORN AND F. P. PREPARATA, Routing through a rectangle, J. Assoc. Comput. Mach., 33 (1986), pp.
60-85.

T. NisHizexi, N. SAITo, AND K. SUzuKl, A linear-time routing algorithm for convex grids, IEEE Trans.
Computer-Aided Design, CAD-4 (1985), pp. 68-76.

A. SCHRUVER. Edge-disjoint homotopic paths in straight-line planar graphs. Universitit des Saarlandes,
preprint.

CH. SCHWARZ, Ein Suchproblem in dynamischen Folgen, Diplomarbeit, Universitit des Saarlandes, 1989.

B. WEINELT, Homotopische Knock-Knee-Verdrahtung: Eine Linearzeit-Implementierung, Diplomarbeit,
Universitit des Saarlandes, 1990.

