
Faster Algorithms for Computing
Hong’s Bound on Absolute Positiveness

Kurt Mehlhorn and Saurabh Ray
Max Planck Institut f̈ur Informatik, Saarbr̈ucken, Germany

Abstract

We show how to compute Hong’s bound for the absolute positiveness of a polynomial in
d variables with maximum degreeδ in O(n logd n) time, wheren is the number of non-zero
coefficients. For the univariate case, we give a linear time algorithm. As a consequence, the time
bounds for the continued fraction algorithm for real root isolation improve by a factor ofδ.

1 Introduction

Let A be a polynomial ind variablesx1, . . . , xd with a maximum degree ofδ in any of the variables.
For anyρ = (ρ1, . . . , ρd) ∈ {0, . . . , δ}d, we denote the quantityxρ1

1 xρ2

2 . . . xρd

d by Xρ. Also, for any
ρ1, ρ2 ∈ {0, . . . , δ}d, we will write ρ1 ≻ ρ2 if ρ1 6= ρ2 andρ1

k ≥ ρ2
k for eachk ∈ {1, . . . , d}. Then,

A has the form

A =
n

∑

i=1

aiX
ρi

where eachai is a real number,ρ1, . . . , ρn are distinct elements of{0, . . . , δ}d andn is the number
of non-zero coefficients inA. We say that a monomialXρi

of A is dominant if there is no other
monomialXρj

in A such thatρj ≻ ρi.

Let B be a real number such that wheneverxi ≥ B, for eachi ∈ {1, . . . , d}, the polynomialA
and all its non-zero partial derivatives of every order have a positive value. Such a quantityB is called
a bound on the absolute positiveness ofA. Forρ1, ρ2 ∈ {0, . . . , δ}d, let us denote by||ρ1 − ρ2|| the
quantity

∑d
i=1 |ρ

1
i − ρ2

i | and let

H(A) = max
i

ai<0

min
j

aj>0, ρj≻ρi

(

|ai|

aj

)1/||ρj−ρi||

.

Hong [6] showed that if the coefficient of every dominant monomial inA is positive, then the quantity
(1 − 2−1/d)−1H(A) is a bound on the absolute positiveness ofA.

The expression forH(A) gives an obvious way to compute it inO(dn2) time, wheren is the
number of non-zero coefficients, assuming that it takesO(d) time to check for giveni andj whether
ρj ≻ ρi. This is currently the best algorithm known. We show thatH(A) can be computed on a
Real-RAM in O(n logd δ) time. It can also be approximated within a factor of four using rational
arithmetic in linear time. Ford = 1, we show thatH(A) can be computed inO(n) time.

Sharma [7] analyzed the bit-complexity of the continued fraction methods for root isolation. The
algorithms are recursive. In every node of the recursion tree, the current polynomial is transformed by

1

means of a Taylor shift and the Hong bound of the current polynomial is computed. Sharma remarks
that fast Taylor shifts (with quasi-linear running time) have no advantage over standard Taylor shifts
(with quadratic running time) as the computation of the Hong bound also takes quadratic time. This
provides the motivation for our work: fast Taylor shift and our linear time algorithm for computing the
Hong bound in the univariate case improve the running time of the continued fraction algorithm by a
factor ofn, wheren is the degree1 of the polynomial; this statement ignores logarithmic factors. For
a square-free polynomial of degreen with integer coefficients of bit-lengthL, the bit complexity of
Akritas’ continued fraction algorithm [2] becomes̃O(n7L3) and the bit-complexity of a formulation
by Akritas and Strzebónski [1, 3] becomes̃O(n6L2). The bit-complexity of Sharma’s variant [7, The-
orem 5.11]2 becomes̃O(n4L2). The latter bound matches the bound for the Akritas-Collins bisection
algorithm [4, 7].

We now review a few basic definitions and results from computational geometry that we will use
in the description of our algorithms.

2 Preliminaries and Notation

Let Q = {q1, . . . , qn} be a set ofn points in the plane so that for anyj > i, thex-coordinate ofqj is
strictly greater than thex-coordinate ofqi. We denote the convex hull ofQ by CH (Q). The boundary
of CH (Q) consists of two chains betweenq1 andqn (see Figure 1). Thelower hull of Q is the chain

p

τ(p, Q)

qn

Tangent point

q1

LH (Q)

Figure 1: Lower Hull and Lower Tangent

consisting of points lying on or (vertically) below the line passing throughq1 andqn. We denote the
lower hull of Q by LH (Q). For computational purposes, we will find it convenient to store lower
hulls as an array of vertices on it from left to right i.e. in the increasing order theirx-coordinates.

We say that a linel is a lower tangent of CH (Q) if l passes through at least one of the points of
Q and all points ofQ lie on or abovel. Among the points ofQ that lie onl, let q be the leftmost

1Observe that here we are usingn for the degree as in [7]. Elsewhere in this paper we useδ for the degree andn for the
number of non-zero coefficients

2Theorem 5.11 in [7] refers to algorithmMCDS(A, M) defined in Section 5.4 of [7]. The definition of the algorithm
refers to the “ideal positive lower bound function” PLB. The next to lastparagraph in Section 2.1 states that from now on
the Hong bound is used for computing the PLB function.

2

i.e. the point with the smallestx-coordinate. Clearly,q lies onLH (Q) and we will call it thepoint of
tangency of l.

Let p be a point whosex-coordinate is smaller than thex-coordinate ofq1. We denote byτ(p, Q),
the unique lower tangent toCH (Q) that passes throughp. Suppose that we haveLH (Q) available as
an arrayv1, . . . , vk of the points in it from left to right and we want to compute the array corresponding
to LH ({p} ∪ Q). To do this, we first find the point of tangencyvi of τ(p, Q). We then insertp in the
position ofvi−1 and mark this position as the beginning of the array. Effectively, we have removed
v1, . . . , vi−1 from the front of the array and then insertedp at the front. This gives us the array
corresponding toLH ({p}∪Q). The point of tangency ofτ(p, Q) is the unique pointvi satisfying the
following conditions: (i)vi−1 lies strictly above the line throughp andvi unlessi = 1 and (ii)vi+1 lies
on or above the line throughp andvi unlessi = k. There are two ways to find the point of tangency.
One way is to simply traverse the list until we find a pointvi satisfying the above conditions. The
time taken isO(i + 1), i.e. it is proportional to the number of points that are removed fromLH (Q)
in order to obtainLH ({p} ∪ Q). A second method is to do binary searching. For a pointvj , we can
easily decide whether it is the tangent point and if not whether the tangent point lies to the left of it or
to the right of it. This allows us to find the tangent point in timeO(log k).

Suppose that we want to go over the pointsqn, qn−1, . . . , q1 in that order and we always want
to maintain the lower hull of the set of points we have seen so far. In other words, if we letQi

denote the set{qi, qi+1, . . . , qn} for i ∈ {1, . . . , n}, we want to enumerateLH (Qn), LH (Qn−1),
. . . ,LH (Q1) in that order. In how much time can we do this?LH (Qn) consists of just one point is
easily constructed. OnceLH (Qi+1) is available for somei, we can use the method described above
to constructLH (Qi) = LH ({qi} ∪ Qi+1). The total time taken depends on how we find the tangent
point at each step. If we use binary searching, the time taken in each step isO(log n) and hence the
total time isO(n log n). However, if we use the naive method of scanning the array from the front
until we find the tangent point, the time taken isO(n). This follows from the observation that ifri

vertices are removed fromLH (Qi+1) in order to obtainLH (Qi), then the time required in that step
O(ri + 1). Since a point is removed from the lower hull at most once during the entire enumeration
process, the total time taken isO(n). The algorithm that we just described is a standard way of
incrementally computing convex hulls of two dimensional point sets.

3 Computing Hong’s Bound for Univariate Polynomials

Let A =
∑n

i=1 aix
di be a polynomial in a single variablex whered1 < d2 < . . . < dn = δ are

non-negative integers anda1, a2, . . . , an are non-zero reals withan > 0. Then,2H(A) is a bound on
the absolute positiveness ofA, where

H(A) = max
i

ai<0

min
j>i

aj>0

(

|ai|

aj

)1/(dj−di)

.

Since thelog(·) function is monotone, we have

log H(A) = max
i

ai<0

min
j>i

aj>0

log|ai| − log aj

dj − di
.

Logarithms in this paper will always be with base2. Let bk = − log|ak| for k ∈ {1, . . . , n}. Our task

3

is to compute

log H(A) = max
i

ai<0

min
j>i

aj>0

bj − bi

dj − di
.

For i ∈ {1, . . . , n}, let pi be the point(di, bi). The quantitybj−bi

dj−di
is then the slope of the line passing

throughpi andpj . For anyi such thatai < 0 , let

si = min
j>i

aj>0

bj − bi

dj − di
.

Note thatsi is not defined for alli ∈ {1, . . . , n}. Let P = {p1, . . . , pn}. We will call a point
pi ∈ P a positive point if ai > 0 and we will call it anegative point if ai < 0. Denote byP+

i the
set{pj : j ≥ i andaj > 0} and letLi denote the lower hull ofP+

i . Notice thatsi is the slope of
τ(pi, P

+
i) , the lower tangent toCH (P+

i) passing throughpi. We now describe two approaches to
computinglog H(A). The first approach is a naive approach that takesO(n log n) time. The second
approach improves the running time toO(n).

3.1 A Suboptimal Algorithm

The first approach is to computesi for all i ∈ {1, . . . , n} s.t. ai < 0 and then take the maximum
among them. We go over the pointspn, pn−1, . . . , p1 in that order and we maintain the lower hull of
the positive points seen so far exactly as described in Section 2. When we processpi, we assume that
we haveLi+1 available as an array. Ifai > 0, we find the tangent point ofτ(pi, P

+
i+1) by sequentially

scanningLi+1 and then updateLi+1 to obtainLi. If ai < 0, we setLi = Li+1 sinceP+
i = P+

i+1.
We then computeτ(pi, P

+
i) by computing its tangent point using binary search onLi. This takes

O(log n) time. The total time taken isO(n log n) since the time required to maintain the lower hulls
of the positive points isO(n) and the total time spent per negative point isO(log n). We next give an
algorithm with linear running time.

3.2 An Optimal Algorithm

In the previous approach, we computesi for each negative pointpi. However we don’t need to do
so. As we processpn, pn−1, . . . , 1, for any negative pointpi we need to computesi only if it is larger
than the largestsj we have computed so far because we are interested only in the maximum of allsi’s.
Refer to Algorithm 1 for the pseudocode of the algorithm that we are aboutto describe.

For anyi ∈ {1, . . . , n − 1}, let σi = maxj≥i,aj<0 sj and letℓi be the lower tangent toCH (P+
i)

with slopeσi. Further letti be the point of tangency.Ln consists of justpn. We defineσn to be−∞
andℓn to be a line of slope−∞ passing throughpn and(0,∞). We settn = pn. We will maintain
these quantities along withLi, as we process the points. In the end,σ1 will give us log H(A).

Suppose now that we are processing a pointpi, i < n. At this time, we haveLi+1, σi+1, ℓi+1 and
ti+1 available.

Case 1: ai < 0. We first setLi = Li+1 sinceP+
i = P+

i+1. We then check whetherpi lies belowℓi+1.
If pi lies on or aboveℓi+1, then we are sure thatsi is not larger thanσi+1 and we can just ignorepi.
In this case, we setσi = σi+1, ℓi = ℓi+1 andti = ti+1. On the other hand ifpi lies belowℓi+1, we
know thatsi is larger thanσi. We also know that the tangent pointti of ℓi = τ(pi, P

+
i) cannot lie to

4

the left ofti+1. We findti (and henceℓi) by scanningLi+1 starting fromti+1 and moving right along
Li+1. The slope ofℓi gives ussi and sincesi > σi+1, σi = si. Observe that edges ofLi+1 that we
traverse in searching forti have slopes in the interval[σi+1, σi). We will use this fact to analyse the
running time of the algorithm.

Case 2: ai > 0. In this case we don’t need to computesi since it is not defined. We setσi = σi+1,
ℓi = ℓi+1 andti = ti+1. We then scanLi+1 from the front to find the tangent point ofτ(pi, P

+
i) and

updateLi+1 to getLi as before (see Section 3.1).

The pseudocode of the algorithm is shown in Algorithm 1. The time spent in all lines except
lines 10 and 19 is constant. In line 19, we compute the tangent point in order tomaintain the lower
hull of the positive points. As we have seen before, the total time spent in thisprocess isO(n). Hence,
to show that our algorithm runs inO(n) time, we just need to argue that the total time spent in line 10
is O(n). To see this, recall that as we search for the tangent point in line 10, we traverse vertices of
Li+1 starting fromti+1 until we reachti. The edges between these vertices have slopes in the range
[σi+1, σi). This means that we traverse distinct edges each time we visit line 10. Each time, the time
we spend in line 10 isO(1 + # of edges visited). Since at mostn edges ever appear in the lower hull
of the positive points, it follows that the total time spent in line 10 isO(n).

3.3 Approximating H(A) using Rational Arithmetic

SinceH(A) cannot always be computed exactly using rational arithmetic, Sharma [7] proposes a
procedure to compute a quantityU(A) using rational arithmetic so thatU(A)/4 < 2H(A) < U(A).
His procedure computes

u(A) = max
i

ai<0

min
j>i

aj>0

⌊

⌊log|ai|⌋ − ⌊log aj⌋ − 1

j − i

⌋

and returnsU(A) = 2u(A)+3. The quantity

u′(A) = max
i

ai<0

min
j>i

aj>0

⌊log|ai|⌋ − ⌊log aj⌋ − 1

j − i

can be easily computed using the linear time algorithm described earlier by just redefining the point
pi to be(i,−⌊log ai⌋ − 1) if ai > 0 and(i,−⌊log|ai|⌋) if ai < 0. So we just computeu′(A) and
returnU(A) = 2⌊u

′(A)⌋+3.

The bit complexity of this algorithm is smaller than the bit complexity of Sharma’s algorithm by
a factor ofΘ(n) since the only change we made to his algorithm is to use anO(n) time algorithm
instead of anO(n2) time algorithm for the Real RAM model. The sizes of the numbers that we deal
with and the way we get the algorithm for the rational arithmetic model from the algorithm for Real
RAM model are the same as in Sharma’s case.

4 Computing the Bound for Multivariate Polynomials

We now describe our algorithm for computing the Hong Bound for multivariatepolynomials. As we
have seen before, for a multivariate polynomial

A =
n

∑

i=1

aiX
ρi

5

Algorithm: Computelog H(A)1

Input: PolynomialA(x) =
∑n

i aix
di

Output: log H(A)
// Process pn

tn = pn;2

ℓn = LineThrough(pn, (0,∞)); // ℓn is the line through pn and (0,∞)3

σn = −∞; // The slope of ℓn is −∞4

Ln = {pn};5

// Process pn−1, . . . , p1

for (i = n − 1; i ≥ 1; i = i − 1) do6

if ai < 0 then7

Li = Li+1;8

if pi lies below ℓi+1 then9

// si > σi+1

ti = ComputeTangentPoint1(pi,Li+1); // Computes the tangent point10

of τ(pi, P
+
i+1) by scanning Li+1 starting from ti+1

ℓi = LineThrough(pi, ti) // ℓi is the line through pi and ti11

σi = si = Slope(ℓi) // σi and si are set to the slope of ℓi12

end13

else14

// pi lies on or above ℓi+1

ti = ti+1; σi = σi+1; ℓi = ℓi+1;15

end16

end17

else18

// ai > 0
t = ComputeTangentPoint2(pi,Li+1);// Computes the tangent point of19

τ(pi, P
+
i+1) by scanning Li+1 starting from the front

Replace points beforet in Li+1 by pi to obtainLi;20

end21

end22

return σ123

Algorithm 1: Pseudocode of the optimal algorithm for univariate case

6

with d variables and a maximum degree ofδ in any of the variables,

H(A) = max
i

ai<0

min
j

aj>0, ρj≻ρi

(

|ai|

aj

)1/||ρj−ρi||

.

We first form groups of indicesU1, . . . , Ur andV1, . . . Vr so that the following hold:

• For eachk ∈ {1, . . . , r}, if i ∈ Uk andj ∈ Vk thenai < 0, aj > 0 andρj ≻ ρi.

• For each pair of indicesi, j such thatai < 0, aj > 0 andρj ≻ ρi, there is a uniquek such that
i ∈ Uk andj ∈ Vk.

•
∑r

k=1 |Uk| + |Vk| = O(n logd n), where, as before,n is the number nonzero coefficients.

These groups can be easily computed inO(n logd n) time using a standard data structure for orthogo-
nal range queries ind dimensions. The construction of the data structure that we will use can be found
in [5]. We build a data structure on the set{ρj ; aj > 0} which, given any queryρ ∈ {0, . . . , δ}d,
returns the set{j; aj > 0 andρj ≻ ρ}. The answer to such a query is given as the disjoint union of
O(logd n) canonical subsets of{j; aj > 0}. The total size of the canonical subsets stored by the data
structure isO(n logd n) and these canonical subsets form the groupsV1, . . . , Vr. We then run a query
with eachi such thatai < 0. The setUk is formed by the set of indicesi such that the answer to the
queryρi contains the canonical subsetVk. It can be checked that these groups satisfy the conditions
above.

For any indexi, let yi be the quantity
∑d

j=1 ρi
j . For each pair(i, k) such thati ∈ Uk, we define

σi,k as follows:

σi,k = log min
j∈Vk

(

|ai|

aj

)1/(yj−yi)

.

Then,
log H(A) = max

i

ai<0

min
k

i∈Uk

σi,k.

For each indexj, letpj be the point(yj , bj) in the plane wherebj = − log |aj | as defined earlier. Then
we have the following expression forσi,k:

σi,k = min
j∈Vk

bj − bi

yj − yi
.

The quantitybj−bi

yj−yi
is again the slope of the line passing throughpi andpj .

For eachk, we compute the quantitiesσi,k for all i ∈ Uk by running the sub-optimal algorithm (see
section 3.1) for the univariate case onPk = {pi : i ∈ Uk ∪Vk}). This takesO(((|Uk|+ |Vk|) log |Vk|)
time. Thus, computing theσi,k’s for all k and all i ∈ Uk takes timeO(

∑

k (|Uk| + |Vk|) log |Vk|)
= O(n logd+1 n). As a result,H(A) can be computed in the same amount of time.

This running time can be easily improved toO(n logd n) if we assume that theρis are sorted along
one of the dimensions and we form the groups using the other dimensions. Wego over them in the
decreasing order of their magnitude along the sorted dimension, just as we did in the univariate case,
and we use a(d − 1)-dimensional orthogonal range query data structure (instead of ad-dimensional
data structure) for the remainingd − 1 dimensions. More precisely, we run several one-dimensional

7

problems in parallel, one for each non-empty canonical subset of the(d − 1)-dimensional data struc-
ture. This means that we have as many one dimensional problems as the numberof canonical subsets
in the data structure. As we process the points, for each point processed, we input a two dimensional
point into one or more of the one dimensional problems. Recall that we process the points in the
decreasing order of their magnitude in the sorted dimension. When we process a pointpi with ai > 0,
we insertρ̄i = (ρi

2, ..., ρ
i
d) into the data structure. This addsρ̄i to logd−1 n canonical subsets in the

data structure. For each such subset, we add the point(yi, bi) to the corresponding one-dimensional
problem. The one dimensional problems are solved using the sub-optimal algorithm just as we did
above. The solutions to the one dimensional problems give theσi,ks we need. From these quantities
we computeH(A) as above.

Furthermore, if we exploit the fact that the coordinates of theρis are integers between0 andδ
then we can replacelog n by log δ in the bound. So, we get a running time ofO(n logd δ). The ap-
proximation using rational arithmetic can be done as before for eachσk. This gives an approximation
for H(A).

5 Acknowledgements

The authors would like to thank Vikram Sharma for discussions and helpfulsuggestions on the prob-
lem and Chee Yap for pointing out a mistake in the original write-up.

References

[1] A. G. Akritas and A. Strzebónski. A comparative study of two real root isolation methods.Non-
linear Analysis: Modelling and Control, 10(4):297–304, 2005.

[2] A.G. Akritas. Vincent’s theorem in algebraic manipulation. PhD thesis, North Carolina State
University, 1978.

[3] A.G. Akritas, A. Bocharov, and A. Strzeboński. Implementation of real root isolation algorithms
in Mathematica. InAbstracts of the International Conference on Interval and Computer Algebra
Methods in Science and Engineering, Interval ’94, pages 23–27, 1994.

[4] G. E. Collins and A. G. Akritas. Polynomial real root isolation using Descartes’ rule of signs. In
R. D. Jenks, editor,SYMSAC, pages 272–275, Yorktown Heights, NY, 1976. ACM Press.

[5] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geometry:
Algorithms and Applications: Chapter 5. Springer, 1997.

[6] Hoon Hong. Bounds for absolute positiveness of multivariate polynomials. J. Symb. Comput.,
25(5):571–585, 1998.

[7] Vikram Sharma. Complexity of real root isolation using continued fractions.Theor. Comput. Sci.,
409(2):292–310, 2008.

8

