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Abstract

We show how to compute Hong's bound for the absolute posiéise of a polynomial in
d variables with maximum degregin O(nlog”n) time, wheren is the number of non-zero
coefficients. For the univariate case, we give a linear tilgerdhm. As a consequence, the time
bounds for the continued fraction algorithm for real roalagion improve by a factor of.

1 Introduction

Let A be a polynomial ind variablesry, . . ., z4 with a maximum degree afin any of the variables.
Foranyp = (p1,...,pa) € {0,...,d}¢, we denote the quantity;’ 252 ... 2% by X?. Also, for any
pl, p? € {0,...,0}%, we will write p! = p?if p! # p? andpi > p? for eachk € {1,...,d}. Then,

A has the form .
A= Z aiXpi
i=1

where eachy; is a real numberp!, ..., p" are distinct elements df, .. .,5}¢ andn is the number
of non-zero coefficients inl. We say that a monomiaX?" of A is dominant if there is no other
monomialX?’ in A such thap’ > p'.

Let B be a real number such that whenewgr> B, for eachi € {1,...,d}, the polynomialA
and all its non-zero partial derivatives of every order have a pesialue. Such a quantity is called
a bound on the absolute positivenessiofFor p!, p? € {0,...,5}¢, let us denote by|p' — p?|| the
quantity "% [p! — p2| and let

il /1107 —p|
H(A) =max min ) .
i j a;
a;<0 aj>[)7]p]'>pi J
Hong [6] showed that if the coefficient of every dominant monomial iis positive, then the quantity
(1—2"14)~1H(A) is a bound on the absolute positivenessiof

The expression foff (A) gives an obvious way to compute it (dn?) time, wheren is the
number of non-zero coefficients, assuming that it takés) time to check for giveri and;j whether
p’ = p'. This is currently the best algorithm known. We show th&tA) can be computed on a
Real-RAM inO(n log? ) time. It can also be approximated within a factor of four using rational
arithmetic in linear time. Fo#l = 1, we show that{ (A) can be computed i@ (n) time.

Sharma [7] analyzed the bit-complexity of the continued fraction methods dbisolation. The
algorithms are recursive. In every node of the recursion tree, therdyrolynomial is transformed by



means of a Taylor shift and the Hong bound of the current polynomialnigated. Sharma remarks
that fast Taylor shifts (with quasi-linear running time) have no advantagestandard Taylor shifts
(with quadratic running time) as the computation of the Hong bound also takesaiic time. This
provides the motivation for our work: fast Taylor shift and our linear ting@athm for computing the
Hong bound in the univariate case improve the running time of the continaetioin algorithm by a
factor ofn, wheren is the degrekof the polynomial; this statement ignores logarithmic factors. For
a square-free polynomial of degreewith integer coefficients of bit-length, the bit complexity of
Akritas’ continued fraction algorithm [2] becoméis(n7L3) and the bit-complexity of a formulation
by Akritas and Strzebfwski [1, 3] become®) (nSL?). The bit-complexity of Sharma’s variant [7, The-
orem 5.11f become®) (n*L?). The latter bound matches the bound for the Akritas-Collins bisection
algorithm [4, 7].

We now review a few basic definitions and results from computational geptinetrwe will use
in the description of our algorithms.

2 Preliminariesand Notation
Let@ = {q1,...,qn} be a set of points in the plane so that for agy> i, thez-coordinate of; is

strictly greater than the-coordinate of;;. We denote the convex hull ¢f by CH (Q). The boundary
of CH (Q) consists of two chains betweenandg,, (see Figure 1). Theower hull of @ is the chain

an

T 7(p, Q)

Tangent point

Figure 1: Lower Hull and Lower Tangent

consisting of points lying on or (vertically) below the line passing throggandg,,. We denote the
lower hull of @ by LH(Q). For computational purposes, we will find it convenient to store lower
hulls as an array of vertices on it from left to right i.e. in the increasingiotiteirz-coordinates.

We say that a liné is alower tangent of CH (Q) if [ passes through at least one of the points of
Q@ and all points ofQ) lie on or abovel. Among the points of) that lie onl, let ¢ be the leftmost

lObserve that here we are usindor the degree as in [7]. Elsewhere in this paper wedse the degree and for the
number of non-zero coefficients

2Theorem 5.11 in [7] refers to algorithMcDS(A, M) defined in Section 5.4 of [7]. The definition of the algorithm
refers to the “ideal positive lower bound function” PLB. The next to femtagraph in Section 2.1 states that from now on
the Hong bound is used for computing the PLB function.



i.e. the point with the smallest-coordinate. Clearly; lies on LH (@) and we will call it thepoint of
tangency of [.

Let p be a point whose-coordinate is smaller than thecoordinate of;;. We denote by (p, Q),
the unique lower tangent toH () that passes through Suppose that we havef/ (Q) available as
an arrayvy, . . ., v of the points in it from left to right and we want to compute the array comegimng
to LH ({p} U Q). To do this, we first find the point of tangeneyof 7(p, Q). We then inserp in the
position ofv; 1 and mark this position as the beginning of the array. Effectively, we hewveved
v1,...,v;—1 from the front of the array and then insertgcht the front. This gives us the array
corresponding td.H ({p} U Q). The point of tangency of(p, Q) is the unique point; satisfying the
following conditions: (iyv;_1 lies strictly above the line throughandv; unless = 1 and (ii) v;+1 lies
on or above the line throughandv; unlessi = k. There are two ways to find the point of tangency.
One way is to simply traverse the list until we find a paintsatisfying the above conditions. The
time taken isO(i + 1), i.e. it is proportional to the number of points that are removed ffdif{ Q)
in order to obtainLH ({p} U Q). A second method is to do binary searching. For a psjntve can
easily decide whether it is the tangent point and if not whether the tangemtlies to the left of it or
to the right of it. This allows us to find the tangent point in timéog k).

Suppose that we want to go over the poigtsg,_1,...,q¢1 in that order and we always want
to maintain the lower hull of the set of points we have seen so far. In othetsyd we letQ;
denote the sefqi, gi+1,...,qn} fori € {1,...,n}, we want to enumeratéH (Q),,), LH(Qn-1),

..., LH(Q1) in that order. In how much time can we do thi§?/(Q,,) consists of just one point is
easily constructed. OnceH (Q;+1) is available for some, we can use the method described above
to constructLH (Q;) = LH ({¢;} U Qi+1). The total time taken depends on how we find the tangent
point at each step. If we use binary searching, the time taken in each $¥jpgs) and hence the
total time isO(nlogn). However, if we use the naive method of scanning the array from tme fro
until we find the tangent point, the time taken(@$n). This follows from the observation that
vertices are removed fromhH (Q;+1) in order to obtainLH (Q;), then the time required in that step
O(r; + 1). Since a point is removed from the lower hull at most once during the emtinmeration
process, the total time taken @3(n). The algorithm that we just described is a standard way of
incrementally computing convex hulls of two dimensional point sets.

3 Computing Hong's Bound for Univariate Polynomials

Let A = Y7 | a;z% be a polynomial in a single variablewhered; < dy < ... < d,, = § are
non-negative integers and, ao, . . . , a,, are non-zero reals wit, > 0. Then,2H (A) is a bound on
the absolute positiveness df where

H(A) = max min (
i j>i
a; <0 a; >0

|| ) 1/(dj—d;)

aj
Since thdog(-) function is monotone, we have

1 o 1 .
log H(A) = max min 281% ~1089
i og>i d; —d;

a; <0 a; >0

Logarithms in this paper will always be with ba&eletb, = — log|ax| for k € {1,...,n}. Our task



is to compute

bl_b,
log H(A) = in L——.
o8 H(A) = maxmin =

a;<0 aj>0

Fori € {1,...,n}, letp; be the point{d;, b;). The quantitij:Zi is then the slope of the line passing

throughp; andp;. For any: such thatz; < 0, let

Ss; = min bj bi
i .
i>i di —d;
J
aj>0

Note thats; is not defined for ali € {1,...,n}. Let P = {p1,...,pn}. We will call a point
p; € P apositive point if a; > 0 and we will call it anegative point if a; < 0. Denote bij the
set{p; : j > ianda; > 0} and letZ; denote the lower hull of?,". Notice thats; is the slope of
7(pi, P;) , the lower tangent t&@H (P;") passing throug;. We now describe two approaches to
computinglog H(A). The first approach is a naive approach that takéslogn) time. The second
approach improves the running time@gn).

3.1 A Suboptimal Algorithm

The first approach is to compute for all i € {1,...,n} s.t. a; < 0 and then take the maximum
among them. We go over the points, p,—1, ..., p1 in that order and we maintain the lower hull of
the positive points seen so far exactly as described in Section 2. Wheroeesg;, we assume that
we havel;, available as an array. #f; > 0, we find the tangent point of(p;, ijrl) by sequentially
scanningL;, 1 and then updaté&;,; to obtainZ;. If a; < 0, we setl; = L;y sinceP;” = P .
We then compute (p;, ;") by computing its tangent point using binary searchn This takes
O(log n) time. The total time taken i©(n log n) since the time required to maintain the lower hulls
of the positive points i®)(n) and the total time spent per negative poinbidog n). We next give an

algorithm with linear running time.

3.2 An Optimal Algorithm

In the previous approach, we computefor each negative point;. However we don’t need to do
so. As we process,, pn_1, - - -, 1, for any negative poing; we need to compute only if it is larger
than the largest; we have computed so far because we are interested only in the maximurs; . all
Refer to Algorithm 1 for the pseudocode of the algorithm that we are abaléscribe.

Foranyi € {1,...,n — 1}, leto; = max;>; ;<0 s; and let/; be the lower tangent te'H (P;')
with slopec;. Further lett; be the point of tangency.,, consists of jusp,,. We definer,, to be—oco
and/,, to be a line of slope-co passing through,, and(0, o). We sett,, = p,. We will maintain
these quantities along with;, as we process the points. In the emdwill give uslog H(A).

Suppose now that we are processing a ppint < n. At this time, we haveC; 1, 0,11, ¢; 11 and
t;+1 available.

Casel: a; < 0. We first set; = £;;1 sinceP;" = P |. We then check whethey; lies below/; ;.
If p; lies on or abové,, 1, then we are sure thaj is not larger thamr;; and we can just ignorg;.
In this case, we set; = 0,1, {; = ¢;11 andt; = t;.1. On the other hand i, lies below/; 1, we

know thats; is larger thanr;. We also know that the tangent poiqtof ¢; = 7(p;, Pf) cannot lie to
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the left oft;;.1. We find¢; (and hencé,;) by scanning’;., starting fromt;; and moving right along
L;11. The slope of; gives uss; and sinces; > 0,11, 0; = s;. Observe that edges af; ; that we
traverse in searching faf have slopes in the intervét; 1, 0;). We will use this fact to analyse the
running time of the algorithm.

Case 2: a; > 0. In this case we don’t need to computesince it is not defined. We set = o;41,
¢; = 041 andt; = t;+1. We then scart’; 1 from the front to find the tangent point ofp;, Pj) and
updatel;,; to getL; as before (see Section 3.1).

The pseudocode of the algorithm is shown in Algorithm 1. The time spent in ab kxcept
lines 10 and 19 is constant. In line 19, we compute the tangent point in ordeitdain the lower
hull of the positive points. As we have seen before, the total time spent ipriiiess i$)(n). Hence,
to show that our algorithm runs ifi(n) time, we just need to argue that the total time spent in line 10
is O(n). To see this, recall that as we search for the tangent point in line 10 awerse vertices of
L;4+1 starting fromt; ;1 until we reacht;. The edges between these vertices have slopes in the range
[oi+1,0;). This means that we traverse distinct edges each time we visit line 10. Each &éntiepeh
we spend in line 10 i®)(1 + # of edges visitefl Since at most edges ever appear in the lower hull
of the positive points, it follows that the total time spentin line 10(%).

3.3 Approximating H(A) using Rational Arithmetic

Since H(A) cannot always be computed exactly using rational arithmetic, Sharmadpbges a
procedure to compute a quantity( A) using rational arithmetic so that(A)/4 < 2H(A) < U(A).
His procedure computes

u(A) = max min {
i g>i
a;<0 a;>0

[loglai|| — [loga;| —1
j—i
and returng/(A) = 24(4+3, The quantity

[log|ai|| — [loga;] — 1
j—i

u/(A) = max min
ail<0 a]j>>10
can be easily computed using the linear time algorithm described earlier bgefining the point
pi to be (i, —|loga;] — 1) if a; > 0 and (i, —|log|a;|]) if a; < 0. So we just compute’(A) and
returnl (A) = 2L¥/(A)J+3,
The bit complexity of this algorithm is smaller than the bit complexity of Sharma’srigtgo by
a factor of©(n) since the only change we made to his algorithm is to us@g@rn) time algorithm
instead of arO(n?) time algorithm for the Real RAM model. The sizes of the numbers that we deal

with and the way we get the algorithm for the rational arithmetic model from treittign for Real
RAM model are the same as in Sharma’s case.

4 Computing the Bound for Multivariate Polynomials

We now describe our algorithm for computing the Hong Bound for multivapatgnomials. As we
have seen before, for a multivariate polynomial

A= iaiXpi
i=1
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1 Algorithm: Computelog H(A)
Input: PolynomialA(z) = " a;x%
Output: log H(A)
/'l Process p,
2 tp = Dn,
3 ¢, = LineThroughp,, (0,00));// ¢, is the line through p, and (0,00)
4 0, =—-00;// The slope of ¢, is —oc0
5 [fn = {pn}y
/1l Process p,_1,...,p1
6 for(i=n—1;i>1;i=i—1)do
7 if a; < 0then

8 Li= Ly,
9 if p; liesbelow ¢; 1 then
[ s> 0i+1
10 t; = ComputeTangentPointd;, £,11);// Conputes the tangent point
of 7(p;, P1;) by scanning L1 starting from t;,
11 ¢; = LineThroughp;,t;)// ¢; is the line through p, and ¢,
12 o; = s; = Slopg¥¢;) /| o; and s; are set to the slope of ¢
13 end
14 else
/'l p; lies on or above /;
15 ti = tiy1; 0i = 0ip1; bi = liga;
16 end
17 end
18 else
[l a;>0
19 t = ComputeTangentPoin{g;, £;11);// Conputes the tangent point of
r(pi,P;jrl) by scanning £;;; starting fromthe front
20 Replace points beforein L;. 1 by p; to obtain;;
21 end
22 end
23 return oy

Algorithm 1: Pseudocode of the optimal algorithm for univariate case



with d variables and a maximum degreedsah any of the variables,

|| /1107 =p'|
H(A) =max min — .
i j a;
a;i<0 q;>0, pi>pt J

We first form groups of indice&q, ..., U, andVi, ...V, so that the following hold:
e Foreacht € {1,...,r},if i € Uy andj € V, thena; < 0,a; > 0andp’ = p'.

e For each pair of indices j such that; < 0, a; > 0 andp’ > p’, there is a uniqué such that
i € U andj € V.

e >, |Uk| +|Vi| = O(nlog?n), where, as beforey is the number nonzero coefficients.

These groups can be easily computedim log® n) time using a standard data structure for orthogo-
nal range queries ithdimensions. The construction of the data structure that we will use cambé fo

in [5]. We build a data structure on the ggt;;a; > 0} which, given any query € {0,...,5},
returns the sefj;a; > 0 andp’ = p}. The answer to such a query is given as the disjoint union of
O(log? n) canonical subsets dfj; a; > 0}. The total size of the canonical subsets stored by the data
structure isO(n log? n) and these canonical subsets form the grddps. . , V,.. We then run a query
with eachi such thatz; < 0. The setly, is formed by the set of indicessuch that the answer to the
queryp’ contains the canonical subdét. It can be checked that these groups satisfy the conditions
above.

For any index, lety; be the quantit)Ejl:1 p; For each paifi, k) such that € Uy, we define

o; 1 as follows:
|| 1/(yj—vi)
. 1
0; ) = log min ( > .

JEV) aj
Then,
log H(A) = maxmin o; .
aiz<0 iel?]k
For each indey, letp; be the poin{y;, b;) in the plane wheré; = —log|a;| as defined earlier. Then
we have the following expression for ;:
. b= b
O} = min .
T IEVR Y — Vi

The quantity% is again the slope of the line passing throgglandp;.

For eachk, we compute the quantities j, for all i € Uj, by running the sub-optimal algorithm (see
section 3.1) for the univariate case Bp = {p; : i € Uy UV} }). This takeO(((|Ux| + |Vi|) log | Vk|)
time. Thus, computing the; ;'s for all k£ and alli € Uj, takes timeO(}", (|Ux| + |Vi|) log |Vi])

= O(nlog?*1n). As aresultH(A) can be computed in the same amount of time.

This running time can be easily improved@gn log? n) if we assume that thefs are sorted along
one of the dimensions and we form the groups using the other dimensiongo Ber them in the
decreasing order of their magnitude along the sorted dimension, just ad Wetlde univariate case,
and we use &d — 1)-dimensional orthogonal range query data structure (instead-afimensional
data structure) for the remaininf— 1 dimensions. More precisely, we run several one-dimensional



problems in parallel, one for each non-empty canonical subset ¢f/thel )-dimensional data struc-
ture. This means that we have as many one dimensional problems as the o@igdrernical subsets
in the data structure. As we process the points, for each point pragegsénput a two dimensional
point into one or more of the one dimensional problems. Recall that we ggdhe points in the
decreasing order of their magnitude in the sorted dimension. When wespra@inp; with a; > 0,
we insertp’ = (p, ..., pi)) into the data structure. This adgsto log?~! n canonical subsets in the
data structure. For each such subset, we add the pgirit) to the corresponding one-dimensional
problem. The one dimensional problems are solved using the sub-optiméttalggust as we did
above. The solutions to the one dimensional problems give the we need. From these quantities
we compute (A) as above.

Furthermore, if we exploit the fact that the coordinates of gtseare integers betwednandé
then we can replacleg n by log § in the bound. So, we get a running time@tn log? ). The ap-
proximation using rational arithmetic can be done as before for @achhis gives an approximation
for H(A).
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