
PI Informatik 1 Kurt Mehlhorn

Constraint Programming and Graph Algorithms

Kurt Mehlhorn
Max-Planck-Institute for Computer Science

(with significant help from Sven Thiel)

• I am not an expert on the subject (four publications),
but I consider the subject an important one.

• I want to get some of you interested.

• constraint programming is a rich source of algorithmic problems

• efficient algorithms make a difference

• impact is multiplied through CP systems

PI Informatik 2 Kurt Mehlhorn

Constraint Programming

• What is it about?

– specify problems by systems of constraints
∗ Variables: x1, x2, . . . , xn, values in IN

∗ Constraints: C1(x1, . . . , xn), . . . , Ck(x1, . . . , xn)

– solve problems (= find satisfying assignment) by pressing solve.

• What are its benifits?

– it is general: N -queens, logical satisfiability, scheduling

– it is convenient: ILOG-solver, Oz, Claire, Eclipse, Chip, Sictus-Prolog, . . .
offer powerful constraint languages

PI Informatik 3 Kurt Mehlhorn

N-Queens-Problem

• Place n queens on an n× n chessboard,
no two in a row, column, diagonal, antidiagonal

• Variables: x1, . . . , xn i-th queen is in row i and column xi

• Constraints:

xi ∈ {1, 2, . . . , n}
Alldiff (x1, . . . , xn)

Alldiff (x1 + 1, . . . , xn + n)

Alldiff (x1 − 1, . . . , xn − n)

��
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

3

1

2

4

5

1 2 3 54

• that’s it (the Oz-program has 10 lines), isn’t this great?

PI Informatik 4 Kurt Mehlhorn

Solution Method: Enumeration and Narrowing

• assume variable xi takes values in Si, 1 ≤ i ≤ n.

• Si is called the domain of xi

• enumeration tries all possibilities
forall x1 in S1

forall x2 in S2

forall x3 in S3

....

• narrowing (pruning) attempts to eliminate values from the domains and
to close branches

• For example,

– if x1 is already restricted to a single value, say z,

– the constraint x2 6= x1 may remove z from the domain of x2.

PI Informatik 5 Kurt Mehlhorn

Solution Method: Enumeration and Narrowing

• distinguish between simple and difficult constraints
distinction is a pragmatic one

• satisfaction problem must be trivially solvable for systems of simple
constraints Example: x1 ∈ S1 ∧ x2 ∈ S2 ∧ . . . ∧ xn ∈ Sn

• difficult constraints are implemented as algorithms (called propagators):
propagators strengthen (narrow) the constraint store

Constraint Store (= system of simple constraints)

Propagator Propagator Propagator

PI Informatik 6 Kurt Mehlhorn

Propagators

Constraint store = set A of assignments.

A propagator for a constraint C (Ex: x < y) may conclude that:

• no a ∈ A satisfies C =⇒ state becomes empty, Ex: x ∈ {5, 6}, y ∈ {1, 2, 3}

• all a ∈ A satisfy C =⇒ propagator dies, Ex: x ∈ {1, 2, 3}, y ∈ {5, 6}

• additional simple constraints hold =⇒ state is narrowed,
Ex: x ∈ {2, 3, 4, 5}, y ∈ {2, 3, 4} =⇒ x 6= 5, x 6= 4, y 6= 2

• it is too weak to make any conclusions

PI Informatik 7 Kurt Mehlhorn

Propagators

Constraint store = set A of assignments.

A propagator for a constraint C (Ex: x < y) may conclude that:

• no a ∈ A satisfies C =⇒ state becomes empty, Ex: x ∈ {5, 6}, y ∈ {1, 2, 3}

• all a ∈ A satisfy C =⇒ propagator dies, Ex: x ∈ {1, 2, 3}, y ∈ {5, 6}

• additional simple constraints hold =⇒ state is narrowed,
Ex: x ∈ {2, 3, 4, 5}, y ∈ {2, 3, 4} =⇒ x 6= 5, x 6= 4, y 6= 2

• it is too weak to make any conclusions

The system applies propagators to the constraint store until either

state becomes empty failure, no satisfying assignment

all propagators die success, all assignments satisfy

neither of the above branch and recur on the resulting stores

PI Informatik 8 Kurt Mehlhorn

Alldiff and Matchings

• Ex: x ∈ {1, 2, 3}, y ∈ {2, 3, 4}, z ∈ {4} and Alldiff (x, y, z)

• Régin (94): A filtering algorithm for constraints of difference in CSPs

• bipartite graph: vars on one side, values on other side

• (x, val) ∈ E iff val is a possible value for x

x y z

1 2 3 4

x y z

1 2 3 4

• satisfying assignment = var-perfect matching

• narrowing: delete edges that belong to no var-perfect matching

PI Informatik 9 Kurt Mehlhorn

Alldiff and Matchings, Part II

• a var-perfect matching can be found in time O(
√
nm) time, where n =

number of nodes and m = number of edges.

• narrowing: orient matching edges from vars to vals, free edges from vals to
vars

x y z

1 2 3 4

x y z

1 2 3 4

• an edge belongs to some var-perfect matching iff

– it lies in a strongly connected component or

– on a path starting in a free value

• narrowing is a simple O(m) computation (given a perfect matching)

PI Informatik 10 Kurt Mehlhorn

Alldiff and Matchings, Part III

• branching and decremental algorithms

– a branch step on a variable splits the domain of a variable into two

– gives us near-perfect matchings in both subgraphs

– recomputation of a perfect matching in time O(m) by a single search for
an augmenting path

– we need decremental dynamic algorithms

• graphs are frequently dense, m = Θ(n2)

– O(m) might be too slow

– we need sublinear time algorithms

PI Informatik 11 Kurt Mehlhorn

High-Level Constraints Make A Difference

• Alldiff (x1, . . . , xn) can also be modelled as xi 6= xj for i 6= j.

• narrowing algorithm for low-level formulation is trivial: if domain of some
variable is a singleton, remove the value from the other domains.

• but propagation strength is much lower

– assume: domain of each xi is a random subset Si of size 3 of {1, . . . , n}
– if no var-perfect matching exists, Alldiff will terminate immediately

– on the other hand: as long as k ¿ √n variables are fixed
∗ it is unlikely that there is a variable v whose domain is pruned to a

singleton or even less. For fixed v

prob(|Sv ∩ the 3k values already used up| ≥ 2) ≤ 3(3k/n)2 ¿ 1/n

∗ at least two values have to be tried for the first ≈ √n vars
∗ running time Ω(2

√
n)

PI Informatik 12 Kurt Mehlhorn

The Alldiff Constraint: Bound Narrowing

• ranges are intervals; xi ∈ [li .. ri]

• goal: narrow the intervals by increasing li’s and/or decreasing ri’s.

• Puget (98) O(n logn), M/Thiel (2000) O(n) + time to sort endpoints

• bipartite graph has
∑
i(ri − li + 1) edges (that’s a lot),

but a simple structure (that’s good) already known to Glover (67)

x z w

1 3 4

y

2

– 1 can be matched with x or with z

– it would be stupid to match it with z, since z
has more possibilities than x

– scan through the vals and match with the var
that ends first.

– insert(rx = 3), insert(rz = 4), delmin, insert(ry =

2), delmin, delmin, insert(rw = 4), delmin

• matching and sccs in time O(n) after sorting

PI Informatik 13 Kurt Mehlhorn

Linear Time Matching in Convex Graph

insert(rx = 3), insert(rz = 4), delmin, insert(ry = 2), delmin, delmin, insert(rw = 4), delmin

• can be answered in time O(n logn) using a priority queue

• but this is an off-line extract min problem

• full sequence of inserts and delmins is known before . . .

• can be answered by union-find

– 2,4, delmin, 1, delmin, delmin, 3, delmin

– which delmin is going to return 1? The first one following it.

– 2, 4, delmin, delmin, 3, delmin

– which delmin is going to return 2? The first one following it.

– 4, delmin, 3, delmin,

• union-find on partition of a line is O(n) (Asano/Asano)

PI Informatik 14 Kurt Mehlhorn

Matchings in Sports Scheduling

• schedule a round of matches for n teams

• (x, y) ∈ E iff x may be matched with y

• satisfaction: find a matching in a general
graph

• narrowing: delete edges that do not belong to
a perfect matching

• satisfaction: O(
√
nmα(n,m))

narrowing: O(nmα(n,m))

• theory: Régin

• experiments: Henz/Müller/Tan/Thiel

• open problem: find a faster narrowing algo-
rithm

FCS BVB

AC 1860

PI Informatik 15 Kurt Mehlhorn

Clever Narrowing Algorithms Help, I

• Henz/Müller/Tan/Thiel

• n teams, schedule n− 1 rounds of play so that . . .

• in each round a subset of the matches are forbidden

• xt,i opponent of team t in round i

Alldiff (xt,1, . . . , xt,n−1) for all t, 1 ≤ t ≤ n
Pairing(x1,i, . . . , xn,i) for all i, 1 ≤ i ≤ n− 1

PI Informatik 16 Kurt Mehlhorn

Clever Narrowing Algorithms Help, II

problem neq /eq Alldiff Pairing

s_14_yes 242. 75.3 20.4

s_14_no 16.7 10.9 2.54

s_16_no 64.5 18.0 5.37

• Alldiff and Pairing are powerful constraints

– can also be expressed as collections of simpler constraints:

Alldiff (z1, . . . , zn) ⇐⇒ zi 6= zj for i 6= j

Pairing(z1, . . . , zn) ⇐⇒ zi 6= i and zi = j iff zj = i

– progragation algorithms for the simpler constraints are trivial, but
narrowing is much less effective.

PI Informatik 17 Kurt Mehlhorn

Further Examples

constraint algorithm authors

sorting bipartite and sccs in convex graphs GC, MT

global cardinality flow RP

global cardinality with costs min cost flow R

aggregation of constraints sweep + trees B

pairing general matching R, HMTT

domincance of trees weighted matching DKMNT

tour bipartite weighted matching FLM

PI Informatik 18 Kurt Mehlhorn

Scheduling and Sortedness

• another example for the power of constraints

• schedule jobs of duration d1,d2, . . . ,dn on k machines

• variables and constraints (Older, Swinkels, van Emden)

– si and ti = si + di starting and finishing times of job i

– si, ti ∈ {0, . . . , D − 1}
– σj = j-th largest starting time: (σ1, . . . , σn) = sort(s1, . . . , sn)

– τj = j-th largest finishing time: (τ1, . . . , τn) = sort(t1, . . . , tn)

– σ1 = σ2 = . . . = σk = 0, σk+1 = τ1, σk+2 = τ2, . . . , σn = τn−k

• bound narrowing for sort-constraint: Guernalec/Colmerauer, M/Thiel

PI Informatik 19 Kurt Mehlhorn

Research Strategies

• theoretical research is not enough

• cooperation with constraint programmers is vital

– they have the problems and

– they control the systems

– we cooperate with
∗ Oz/Mozart group in Saarbrücken: D. Duchier, A. Koller, T. Müller, J.

Niehren, G. Smolka
∗ N. Beldiceanu (SICS)

• you must provide implementations

– we base our implementations on LEDA

– experiment with them in Oz

– make them general enough to be used in other systems

PI Informatik 20 Kurt Mehlhorn

Summary and Further Work

• constraints are a rich and powerful specification language

• in comparison, integer linear programming is assembly language

• constraint programming is a rich source of algorithmic problems

• solutions have wide impact through constraint programming systems

• find solutions to the problems in Beldiceanu’s list

• develop library of narrowing algorithms

• integrate CP and ILP

Thanks for your attention.

