
LEDA

A Library of Efficient Data Types and Algorithms *

Stefan Niiher and Kurt M e h l h o r n

Fachbereich tnformatik, Universit/it des Saarlandes
D-6600 Saarbrficken, Federal Republic of Germany

A b s t r a c t

LEDA is a library of efficient data types and algorithms. At present, its strength
is graph algorithms and related data structures. The computational geometry
part is evolving. The main features of the library are
• a clear separation of specification and implementation
• parameterized data types
• its extendibility
• its ease of use.
At present, the data types stack, queue, list, set, dictionary, ordered sequence,
priority queue, directed and undirected graph and partition are available. Based
on these data types a variety of network algorithms (shortest paths, matchings,
network flow, planarity testing and embedding, . . .) and geometric algorithms
(plane sweep, Voronoi digrams, . . .) are included.

Introduct ion

There is no standard library of the data structures and algorithms of combinatorial computing.
This is in sharp contrast to many other areas ofcomputing. There are e.g. packages in statistics
(SPSS), numerical analysis (LINPACK, EISPACK), symbolic computation (MACSYMA,
SAC-2) and linear programming (MPSX).

In fact the situation is worse, since even within small groups, say the algorithms group at
our home institution, software frequently is not shared. Rather, each researcher starts from
scratch and e.g. develops his own version of a balanced tree. Of course, this continuous
"reimplementation of the wheel" slows down progress, within research and even more so
outside. This is due to the fact that outside research the investment for implementing an

* This research was supported by the ESPRIT II Basic Research Action Program, ESPRIT P.
3075 - ALCOM, and by the DFG, grant SPP Me 620/6-1.

efficient solution frequently is not made, because it is doubtful whether the implementation
can be reused, and therefore methods which are known to be less efficient are used instead.
Thus scientific discoveries migrate only slowly into practice.

One of the major differences between combinatorial computing and other areas of computing
such as statistics, numerical analysis and linear programming is the use of complex data
types. Whilst the built-in types, such as integers, reals, vectors, and matrices, usually suffice
in the other areas, combinatorial computing relies heavily on types like stacks, queues,
dictionaries, sequences, sorted sequences, priority queues, graphs, points, planes, . . .

In the fall of 1988, we started a project (called LEDA for Library of Efficient Data types
and Algorithms) to build a small, but growing library of data types and algorithms in a
form which allows them to be used by non-experts. We hope that the system will narrow
the gap between algorithms research, teaching, and implementation. The main features of
the library are:

1) A clear separation between (abstract) data types and the data structures used to implement
them. This distinction is frequently not made in the combinatorial algorithms literature,
but is crucial for a library. Note that we stated above that each researcher implemented
his own version of a bManced tree, i.e., a data structure, and not his own version
of a dictionary, i.e., a data type. In LEDA, specifications are given using standard
mathematical terminology, e.g., a dictionary is defined as a function of finite support from
some set K to some set I . We did not expect any difficulties, when we started to write
LEDA specifications for dictionaries, priority queues, However, already priority
queues turned out to be non-trivial. For the efficiency of several recent implementations
of priority queues it is crucial, that operations take pointers into the data structure as
arguments, a fact, which at first sight seems to exclude a specification independently of
the implementation. To overcome this difficulty we introduced the abstract concept of
a pointer, which we call item in LEDA. In the case of priority queues, we have pq_items.
An insertion Q.insert(k, i) of a pair of key k and information i into a priority queue
Q returns a pq_item it. The user of the queue can store this item and later use it to
access the pair, e.g., in a decrease_inf operation: Q.decrease_inf(it,j) will reduce the
information of the pair stored in item it to j. In this way we have access by position
independently of the implementation.

2) Generic data types: Most of the data types in LEDA have type parameters. For
example, a dictionary has a key type K and an information type I and a specific
dictionary type is obtained by setting, say, K to int and I to real.

3) LEDA is extendible: Users can include own data types either by implementing data
structures from scratch in C++ or by combining already existing LEDA data types as
described in [1].

4) Ease of use: All data types and algorithms are precompiled C++ modules which can
be linked with application, programs.

(1) #include <LEDA/graph.h>
(2) #include <LEDA/prio.h>

(3) declare2(priority_queue,node,int)
(4) declare(node_array, pqAt em)

(5) void DIJKSTRA(graph& G, node s, edge_axray(int)& cost,
(6) node_array(int)& dist, node_array(edge)& pred)
(7) { priority_queue(node,int) PQ;
(8) node_array(pqAtem) I(G, nil);
(9) pq_item it;
(10) int c;
(11) node u,v;
(12) edge e;

(13) forall_nodes(v, G)
(14) { vred[v] = O;
(15) dist[v] = infinity;
(16) I[v] = PQ.insert(v, dist[v]);
(17) }
(18) aist[s] = o;
(19) PQ.decreaseAnf(I[s], O);
(20) whi le (lPQ.empty0)
(21) { i t = PQ.delete_min 0
(22) u = PQ.key (i t) ;
(23) forall_adj_edges(e, u)
(24) { v = G. targe t (e) ;
(25) c = dist[u] + cost[e];
(26) if (c < dist[v])
(27) { dist[v] = c;
(28) pred[v] -= e;
(29) PQ.decrease_inf(I[v] , c);
(30) }
(31) }
(32) } / / w h i l e
(33)}

Figure 1: Dijkstra's algorithm

Figure 1 shows an example (Dijkstra's algorithm for the single source shortest paths problem
in digraphs with non-negative edge costs, cf. [AHU83], [M84, section IV.7.2], [T83]). The
algorithm uses the data types graph and priority queue (lines (1) and (2)). In line (3), the
parameterized data type priority queue is specialized to the type priority_queue(node,int),
and in line (4), the parameterized data type node_axray is specialized to node_array(pq_item);
unfortunately C++ forces us to use different identifiers for the declare macro with different
number of arguments.

The input to the algorithm is a graph G, a node s of G, and a non-negative cost for
each edge. It returns for each node v the length of a shortest path from s to v (array
dist) and the last edge on such a shortest path (array Fred). In LEDA we use edge- and

node-arrays for the latter three parameters. A node_array(edge) is a mapping from nodes
to edges. The algorithm maintains for each node v a temporary distance label dist[v].
Initially, dist[s] = 0 and dist[v] = ~ for v ¢ s, cf. lines (13)-(19). In LEDA the loop
forall_nodes(v,G){...} can be used to iterate over all nodes v of a graph G. Dijkstra 's
algorithm uses a priority queue PQ. The priority queue contains pairs (v, dist[v]) and hence
has type priority_queue(node,int); cf. lines (3) and (7). Each node v of the graph needs to
know the position of the item < v, dist[v] > in the priority queue. We therefore declare the
data type node_array(pq_item) in line (4) and declare node_array(pq_item) I(G, nil) in line
(8). In this declaration the parameter G tells LEDA that we want an array which is indexed
by the nodes of G and the second parameter tells it that we want all entries initialized to
the pq_item nil.

Initially, the items < s ,0 > and < v , in f in i ty > for v ¢ s are put into PQ, cf. line (16).
Then in each iteration we select and delete an item it with minimal in f from PQ, cf. line
(21). Let it = < u, dist[u] >, cf. line (22). We now iterate through all edges e start ing in
edge u; cf. line (23). Let e = (u, v) and let c = dist[u] + cost[e] be the cost of reaching v
through edge e, cf. lines (24) and (25). I f c is smaller than the temporary distance label
dist[v] of v then we change dist[v] to e and record e as the new predecessor of v and decrease
the information associated with v in the priority queue., cf. lines (26) to (29).

The running time of this algorithm for a graph G with n nodes and m edges is O(n + m +
Tdeclare -}- n(Tinsert + TDeletemin A- Tgct_i,~f) + m . To se_key) where Tdectave is the cost of
declaring a priority queue and T x r z is the cost of operation X Y Z . Figure 1 is very similar
to the way Dijkstra's algorithm is presented in textbooks ([AHU83], [M84], [T83]). The
main difference is that Figure 1 shows executable code whilst the textbooks still require the
reader to fill in (non-trivial) details.

LEDA offers the da ta types stack, queue, list, set, dictionary, ordered sequence, priority
queue, partition, several graph types (undirected, directed, planar) and data types related
to graphs. Also, a variety of graph and network algorithms, e.g. for connectivity, shortest
paths, matchings, network flow, planarity testing and planar embedding, are included in the
library.

The two authors started the LEDA project in the fall of 1988. Most of the implementation
was done by the first author; he is sole project leader since the summer of 1989. More
detailed informations about LEDA can be found in [1] or [3]. The user manual ([2]) lists
the specifications of all data types currently contained in LEDA and gives many example
programs. LEDA is available from the first author for a handling charge of DM 100.

R e f e r e n c e s

[1] K. Mehlhorn and S. Ngher: "LEDA, a Library of Efficient Da ta Types and Algorithms",
MFCS 89, LNCS Vol. 379, 88 - 106, 1989

[2] S. Ngher: "LEDA1.0 User Manual", Technical Report A 05/89, Fachbereich Informatik,
Universitgt des Saarlandes, Saarbriicken, 1989

[3] S. Ngher and K. Mehlhorn: "LEDA, a Library of Efficient Data Types and Algo-
rithms", Technical Report A 04/89, Fachbereich Informatik, Universitgt des Saarlandes,
Saarbr/icken, 1989

